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Abstract. Uniform linear mesh independent convergence rate estimate
is given for some proposed algorithms for variational inequalities in con-
nection with domain decomposition and multigrid methods. The algo-
rithms are proposed for general space decompositions and thus can also
be applied to estimate convergence rate for classical block relaxation
methods. Numerical examples which support the theoretical predictions
are presented.

1 Some subspace correction algorithms

Consider the nonlinear convex minimization problem

min
v∈K

F (v), K ⊂ V , (1)

where F is a convex functional over a reflexive Banach space V and K ⊂ V
is a nonempty closed convex subset. In order to solve the mimization problem
efficiently, we shall decompose V and K into a sum of subspaces and subsets of
smaller sizes respectively as in [4] [7]. More precisely, we decompose

V =
m∑
i=1

Vi, K =
m∑
i=1

Ki, Ki ⊂ Vi ⊂ V , (2)

where Vi are subspaces and Ki are convex subsets. We use two constants C1 and
C2 to measure the quality of the decompositions. First, we assume that there
exits a constant C1 > 0 and this constant is fixed once the decomposition (2) is
fixed. With such a C1 > 0, it is assumed that any u, v ∈ K can be decomposed
into a sum of ui, vi ∈ Ki and the decompositions satisfy

u =
m∑
i=1

ui , v =
m∑
i=1

vi, and

(
m∑
i=1

‖ui − vi‖2
) 1

2

≤ C1‖u− v‖ . (3)
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For given u, v ∈ K, the decompositions ui, vi satisfying (3) may not be unique.
We also need to assume that there is a C2 > 0 such that for any wi ∈ V, v̂i ∈
Vi, ṽj ∈ Vj it is true that

m∑
i=1

m∑
j=1

|〈F ′(wij + v̂i)− F ′(wij), ṽj〉| ≤ C2

( m∑
i=1

‖v̂i‖2
) 1

2
( m∑
j=1

‖ṽj‖2
) 1

2

, (4)

In the above, F ′ is the Gâteaux differential of F and 〈·, ·〉 is the duality pairing
between V and its dual space V ′, i.e. the value of a linear function at an element
of V . We also assume that there exists a constant κ > 0 such that

〈F ′(v1)− F ′(v2), v1 − v2〉 ≥ κ‖v1 − v2‖2V , ∀w, v ∈ V . (5)

Under the assumption (5), problem (1) has a unique solution. For some nonlinear
problems, the constant κ may depend on v1 and v2. For a given approximate
solution u ∈ K, we shall find a better solution w using one of the following two
algorithms.

Algorithm 1 Choose a relaxation parameter α ∈ (0, 1/m] and decompose u
into a sum of ui ∈ Ki satisfying (3). Find ŵi ∈ Ki in parallel for i = 1, 2, · · · ,m
such that

ŵi = arg min
vi∈Ki

G(vi) with G(vi) = F

( m∑
j=1,j &=i

uj + vi

)
. (6)

Set wi = (1− α)ui + αŵi and w = (1− α)u + α
∑m

i=1 ŵi .

Algorithm 2 Choose a relaxation parameter α ∈ (0, 1] and decompose u into a
sum of ui ∈ Ki satisfying (3). Find ŵi ∈ Ki sequentially for i = 1, 2, · · · ,m such
that

ŵi = arg min
vi∈Ki

G(vi) with G(vi) = F

(∑
j<i

wj + vi +
∑
j>i

uj

)
(7)

where wj = (1− α)uj + αŵj , j = 1, 2, · · · i− 1. Set w = (1− α)u+ α
∑m

i=1 ŵi .

Denote u∗ the unique solution of (1), the following convergence estimate is
correct for Algorithms 1 and 2 (see Tai [6]):

Theorem 1. Assuming that the space decomposition satisfies (3), (4) and that
the functional F satisfies (5). Then for Algorithms 1 and 2, we have

F (w)− F (u∗)
F (u)− F (u∗)

≤ 1− α

(
√

1 + C∗ +
√
C∗)2

, C∗ =

(
C2 +

[C1C2]
2

2κ

)
2

κ
. (8)
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2 Some Applications

We apply the algorithms for the following obstacle problem:

Find u ∈ K, such that a(u, v − u) ≥ f(v − u), ∀v ∈ K, (9)

with a(v, w) =
∫
Ω
∇v ·∇w dx, K = {v ∈ H1

0 (Ω)| v(x) ≥ ψ(x) a.e. in Ω} . It is
well known that the above problem is equivalent to the minimization problem
(1) assuming that f(v) is a linear functional on H1

0 (Ω). For the obstacle problem
(9), the minimization space V = H1

0 (Ω). Correspondingly, we have κ = 1 for
assumption (5). The finite element method shall be used to solve (9). It shall be
shown that domain decomposition and multigrid methods satisfy the conditions
(3) and (4). For simplicity of the presentation, it will be assumed that ψ = 0.

2.1 Overlapping domain decomposition methods

For the domain Ω, we first divide it into a quasi-uniform coarse mesh partitions
TH = {Ωi}Mi=1 with a mesh size H . The coarse mesh elements are also called sub-
domains later. We further divide each Ωi into smaller simplices with diameter of
order h. We assume that the resulting finite element partition Th form a shape
regular finite element subdivision of Ω. We call this the fine mesh or the h-level
subdivision of Ω with the mesh parameter h. We denote by SH ⊂W 1,∞

0 (Ω) and
Sh ⊂ W 1,∞

0 (Ω) the continuous, piecewise linear finite element spaces over the
H-level and h-level subdivisions of Ω respectively. For each Ωi, we consider an
enlarged subdomain Ωδ

i consisting of elements τ ∈ Th with distance(τ,Ωi) ≤ δ.
The union of Ωδ

i covers Ω̄ with overlaps of size δ. For the overlapping subdo-
mains, assume that there exist m colors such that each subdomain Ωδ

i can be
marked with one color, and the subdomains with the same color will not intersect
with each other. Let Ωc

i be the union of the subdomains with the ith color, and
Vi = {v ∈ Sh| v(x) = 0, x +∈ Ωc

i }, i = 1, 2, · · · ,m. By denoting the subspaces
V0 = SH , V = Sh, we find that

a). V =
m∑
i=1

Vi and b). V = V0 +
m∑
i=1

Vi. (10)

Note that the summation index is now from 0 to m instead of from 1 to m when
the coarse mesh is added. For the constraint set K, we define

K0 = {v ∈ V0| v ≥ 0}, and Ki = {v ∈ Vi| v ≥ 0}, i = 1, 2, · · · ,m. (11)

Under the condition that ψ = 0, it is easy to see that (2) is correct both with or
without the coarse mesh. When the coarse mesh is added, the summation index
is from 0 to m. Let {θi}mi=1 be a partition of unity with respect to {Ωc

i }mi=1, i.e.
θi ∈ Vi, θi ≥ 0 and

∑m
i=1 θi = 1. It can be chosen so that

|∇θi| ≤ C/δ, θi(x) =

{
1 if x ∈ τ , distance (τ, ∂Ωc

i ) ≥ δ and τ ⊂ Ωc
i ,

0 on Ω\Ωc
i .

(12)
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Later in this paper, we use Ih as the linear Lagrangian interpolation operator
which uses the function values at the h-level nodes. In addition, we aslo need
a nonlinear interpolation operator I"H : Sh (→ SH . Assume that

{
xi0
}n0

i=1
are all

the interior nodes for TH and let ωi be the support for the nodal basis function
of the coarse mesh at xi0. The nodal values for I"Hv for any v ∈ Sh is defined as
(I"Hv)(x

i
0) = minx∈ωi v(x), c.f [6]. This operator satisfies

I"Hv ≤ v, ∀v ∈ Sh, and I"Hv ≥ 0, ∀v ≥ 0, v ∈ Sh. (13)

Moreover, it has the following monotonicity property

I"h1
v ≤ I"h2

v, ∀h1 ≥ h2 ≥ h, ∀v ∈ Sh. (14)

As I"Hv equals v at least at one point in ωi, it is thus true that for any u, v ∈ Sh

‖I"Hu− I"Hv − (u− v)‖0 ≤ cdH |u− v|1, ‖I"Hv − v‖0 ≤ cdH |v|1, (15)

where d indicates the dimension of the physical domain Ω, i.e. Ω ⊂ Rd, and

cd =



C if d = 1;

C
(
1 +

∣∣log H
h

∣∣ 12) if d = 2,

C
(
H
h

) 1
2 if d = 3,

With C being a generic constant independent of the mesh parameters. See Tai
[6] for a detailed proof.

2.2 Decompositions with or without the coarse mesh

If we use the overlapping domain decomposition without the coarse mesh, i.e.
we use decomposition (10.a), then we will get some domain decomposition al-
gorithms which are essentially the block-relaxation methods. Even in the case
V = Rn, the analysis of the convergence rate for a general convex functional
F : Rn (→ R and a general convex set K ⊂ Rn is not a trivial matter, see [2] [3].
A linear convergence rate has been proved in [1] [5] for the overlapping domain
decomposition without the coarse mesh. However, all the proofs require that
the computed solutions converge to the true solution monotonically. Numerical
evidence shows that linear convergence is true even if the computed solutions
are not monotonically increasing or decreasing. In the following, we shall use our
theory to prove this fact.

For any given u, v ∈ Sh, we decompose u, v as

u =
m∑
i=1

ui, v =
m∑
i=1

vi, ui = Ih(θiu), vi = Ih(θiv). (16)

In case that u, v ≥ 0, it is true that ui, vi ≥ 0. In addition,

m∑
i=1

‖ui − vi‖21 ≤ C

(
1 +

1

δ2

)
‖u− v‖21,
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which shows that C1 ≤ C(1 + δ−1). It is known that C2 ≤ √
m with m being

the number of colors. From Theorem 1, the following rate is obtained without
requiring that the computed solutions increase or decrease monotonically:

F (w) − F (u∗)
F (u)− F (u∗)

≤ 1− α

1 + C(1 + δ−2)
.

For Algorithm 2, we can take α = 1 .
Numerical experiments and the convergence analysis for the two-level domain

decomposition method, i.e. overlapping domain decomposition with a coarse
mesh, seems still missing in the literature. To apply our algorithms and theory,
we decompose any u ∈ K as

u = u0 +
m∑
i=1

ui, u0 = I"Hu, ui = Ih(θi(u− u0)). (17)

From (13) and the fact that u ≥ 0, it is true that 0 ≤ u0 ≤ u and so ui ≥ 0, i =
1, 2, · · · ,m, which indicates that u0 ∈ K0 and ui ∈ Ki, i = 1, 2, · · · ,m. The
decomposition for any v ∈ K shall be done in the same way. It follows from (15)
that ‖u0 − v0‖1 ≤ C‖u − v‖1. Note that ui − vi = Ih

(
θi(u − v − I"Hu + I"Hv)

)
.

Using estimate (15) and a proof similar to those for the unconstrained cases, c.f.
[7], [8], it can be proven that ‖ui − vi‖21 ≤ cd

(
1 + H

δ

) ‖u− v‖21. Thus

(
‖u0 − v0‖21 +

m∑
i=1

‖ui − vi‖21
) 1

2

≤ C(m)cd

(
1 +

(
H

δ

) 1
2

)
‖u− v‖1.

The estimate for C2 is known, c.f. [7], [8]. Thus, for the two-level domain decom-

position method, we have C1 = C(m)cd

(
1 +

√
H√
δ

)
, C2 = C(m), where C(m)

is a constant only depending on m, but not on the mesh parameters and the
number of subdomains. An application of Theorem 1 will show that the following
convergence rate estimate is correct:

F (w)− F (u∗)
F (u)− F (u∗)

≤ 1− α

1 + c2d(1 +Hδ−1)
.

2.3 Multigrid decomposition

Multigrid methods can be regarded as a repeated use of the two-level method.
We assume that the finite element partition Th is constructed by a successive
refinement process. More precisely, Th = ThJ for some J > 1, and Thj for j ≤
J is a nested sequence of quasi-uniform finite element partitions, see [6], [7],
[8]. We further assume that there is a constant γ < 1, independent of j, such
that hj is proportional to γ2j. Corresponding to each finite element partition
Thj , let {xkj }njk=1 be the set of all the interior nodes. Denoted by {φij}nji=1 the

nodal basis functions satisfying φij(x
k
j ) = δik. We then define a one dimensional
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subspace V i
j = span(φij). Letting V = MJ , we have the following trivial space

decomposition:

V =
J∑
j=1

nj∑
i=1

V i
j . (18)

Each subspace V i
j is a one dimensional subspace. For any v ≥ 0 and j ≤ J −

1, define vj = I"hjv − I"hj−1
v ∈ Mj . Let vJ = v − I"hJ−1

v ∈ MJ . A further

decomposition of vj is given by vj =
∑nj

i=1 v
i
j with vij = vj(x

i
j)φ

i
j . It is easy to

see that

v =
J∑
j=1

vj =
J∑
j=1

nj∑
i=1

vij .

For any u ≥ 0, it shall be decomposed in the same way, i.e.

u =
J∑
j=1

nj∑
i=1

uij , u
i
j = uj(x

i
j)φ

i
j , uj = I"hju− I"hj−1

u, j < J ; uJ = u− I"hJ−1
u.

(19)
It follows from (13) and (14) that uij, v

i
j ≥ 0 for all u, v ≥ 0, i.e. uij, v

i
j ∈ Ki

j =

{v ∈ V i
j : v ≥ 0} under the condition that ψ = 0. Define

c̃d =



C, if d = 1;

C(1 + | logh| 12 ), if d = 2;

Ch−
1
2 , if d = 3.

The following estimate can be obtained using approximation properties (15) (see
[6]):

J∑
j=1

nj∑
i=1

‖uij−vij‖21 ≤ C
J∑
j=1

h−2
j ‖uj−vj‖20 ≤ c̃2d

J∑
j=1

h−2
j h2

j−1 |u− v|21 ≤ c̃2dγ
−2J |u− v|21 ,

which proves that
C1

∼= c̃dγ
−1J

1
2 ∼= c̃dγ

−1| logh| 12 .
The estimate for C2 is known, i.e. C2 = C(1− γd)−1, see Tai and Xu [8]. Thus
for the multigrid method, the error reduction factor for the algorithms is

F (w)− F (u∗)
F (u)− F (u∗)

≤ 1− α

1 + c̃2dγ
−2J

.

2.4 Numerical experiments

We shall test our algorithms for the obstacle problem (9) with Ω = [−2, 2] ×
[−2, 2], f = 0 and ψ(x, y) =

√
x2 + y2 when x2 + y2 ≤ 1 and ψ(x, y) = −1

elsewhere. This problem has an analytical solution [6]. Note that the continuous
obstacle function ψ is not even in H1(Ω). Even for such a difficult problem,
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Fig. 1. Convergence for the two-level method for decomposition (17) with different
overlaps, h = 4/128, and H = 4/8.
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Fig. 2. Convergence for the multigrid method

uniform linear convergence has been observed in our experiments. In the imple-
mentations, the non-zero obstacle can be shifted to the right hand side.

Figure 1 shows the convergence rate for Algorithm 2 with different over-
lapping sizes for decomposition (17). Figure 2 shows the convergence rate for
Algorithm 2 with the multigrid method for decomposition (19) and J indicates
the number of levels. In the figures en is the H1-error between the computed so-
lution and the true finite element solution and e0 is the initial error. log(en/e0)
is used for one of the subfigures. The convergence rate is faster in the beginning
and then approaches a constant after some iterations.
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