
An Integration Platform for Metacomputing
Applications

Toan Nguyen and Christine Plumejeaud

INRIA Rhône-Alpes
655, Avenue de l'Europe

Montbonnot, F-38334 Saint Ismier Cedex
Toan.Nguyen@inrialpes.fr

Abstract. Simulation and optimisation applications involve a large variety of
codes that result in high CPU loads on existing computer systems. Advances in
both hardware and software, including massively parallel computers, PC-
clusters and parallel programming languages somewhat alleviate current
performance penalties. It is the claim of this paper that formal specification
techniques, together with distributed integration platforms, provide a sound and
efficient support for high performance distributed computing in metacomputing
environments. Formal specifications provide rigourous and provable
approaches for complex applications definition and configuration, while
distributed integration platforms provide standardised deployment and
execution environments for coupling heterogeneous codes in problem-solving
environments supporting multi-discipline applications.

1. Introduction

Simulation and optimisation applications, e.g., as used for digital mockups in
aerospace design, and for numerical propulsion systems simulation [5], raise
important challenges to the computer science community [9, 12]. They require
powerful and sophisticated computing environments, e.g., parallel computers, PC-
clusters. They also require efficient communication software, e.g., message passing
protocols. Although these problems are not new, they have given rise to specific
solutions that have become de-facto standard, e.g., MPI and PVM.
Simultaneously, computer science has provided interesting solutions to the problems
of:
� formal specification of distributed and communicating systems
� standardized exchange and development environments for distributed applications
This paper explores the design and implementation of an integration platform which is
a computerised environment dedicated to the specification, configuration, deployment
and execution of collaborative multi-discipline applications. Such applications may

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2329, pp. 474−483, 2002.
 Springer-Verlag Berlin Heidelberg 2002

invoke a variety of software components from various disciplines that are connected
together to collaborate on common projects.
It details the development of an integration platform called CAST (an acronym for
“ Collaborative Applications Specification Tool ”) allowing the execution of test-
cases for aerodynamic design in the aerospace industry. The platform is based on an
high-level graphic user interface (Figure 1) allowing the formal specification of
optimisation applications, based on the work of Milner’s process communication
algebra SCCS [8]. It is deployed on a network of workstations (NOW) and PC-
clusters connected by a high-speed network called VTHD [13] and communicating
through a CORBA object request broker [10]. This was developed in part for a
european Esprit HPCN project, called “ DECISION ”: Integrated Optimisation
Strategies for Increased Engineering Design Complexity [3].

The paper is organised as follows. Section 2 is an overview distributed integration
platforms. It details the CAST integration platform dedicated to distributed multi-
discipline applications, including example test-cases. Section 3 is a conclusion.

2. Distributed Integration Platforms

Research in operating systems has emphasised the advantages of software components
for distributed computing, e.g., EJB (Enterprise Java Beans), CCM (Corba
Components Model) [1]. They allow the definition, deployment and execution of
distributed applications formed by various heterogenous software modules which were
not necessarily designed to cooperate. Further, they can reside on heterogeneous
platforms, provided that they communicate through a common hardware or software
medium.

Hence, the idiosyncracies of the data and module distribution is left to the software
developers. This is in constrast with dedicated standards that are used for parallel
programming, e.g., MPI. Here, the developers must code inside the modules the
grouping and spawning of the execution processes. The actual application code is
therefore mixed with distribution and parallelisation statements. This is not the case
with environments where modularity and transparent distribution is supported, e.g.,
CORBA. Here, the users’ code can be used as is, without modifications.

A particular test-case will illustrate the following sections. It consists in the shape
optimisation for an airfoil in stationary aerodynamic conditions [6]. The goal is to
reduce the shock-wave induced drag (Figure 2). Two algorithms are involved. One,
which computes the airflow around the airfoil, the other which optimises the airfoil’s
shape. The entry data are the airfoil shape (RAE2612), its angle of attack (2 degrees),
the airflow speed (Mach 0.84) and the number of optmisation steps (100). This
problem requires several CPU hours on an entry level SUN Sparc workstation running
the Solaris 2.6 operating system.

475An Integration Platform for Metacomputing Applications�

2.1 Principles

CAST is an integration platform designed to fulfill the requirements of distributed
simulation and optimisation applications in complex engineering design projects.
Example applications are industrial projects in the electronics and aerospace industry,
in particular concerning multi-discipline optimisation, e.g., coupled aerodynamics,
structure, acoustics and electromagnetics optimisation.
The target user population includes project managers and engineers that are experts in
their particular domain, i.e., electromagnetics, aerodynamics. They are well aware of
computer technology, but not necessarily experts in formal process specifications,
theoretical computational mathematics, nor object-oriented, CORBA and components
programming.
This constrains the integration platform to provide a high-level user interface, with no
exotic idiosyncracies related to process algebras and distributed computing.
The fundamentals of the platform are therefore:
- to rely on a sound theoretical background for process specifications
- transparent and widely accepted standards for distributed computing
- transparent use of a large variety of software
- transparent use of distributed and heterogeneous computer platforms
- hign-level user interface for ease of use by end-users, that are experts in non
computer science areas of interest.

The platform supports the definition, configuration, deployment and execution of
multi-discipline applications distributed over NOW, LAN, WAN and PC-clusters.
They are formed by collaborating modules which may run on heterogeneous
computers. The modules may be implemented using various programming languages
and they dynamically exchange data.
They are synchronised by user-specified plans which include sequences, embedded
and interleaved loops, and fork operators. These synchronisation operators are
components of a process algebra which is primarily based on Milner’s SCCS algebra
[8].

For instance, the formal specification of the HBCGA (Hybrid Binary Coded Genetic
Algorithm) wing shape optimisation example detailed in Section 2 produces the
following SCCS formula:

InitBCGA:InitHybrid:BGGA:(TRUE:(END)+FALSE:(FUN:(TRUE:(
HYBRID:(TRUE:(=>InitHybrid)+FALSE:(=>FUN)))+FALSE:(=>BG
GA))))

where BCGA, FUN, HYBRID and the various INIT modules are connected by the
loop operator, depicted by ‘=>’, the sequence operator ‘ :’ and the choice operator
‘+’. Other SCCS operators are available, including the synchronisation of tasks ‘&’
and the parallelisation operator ‘/’. The icons on the left-hand menu are used to build
the application on the screen by the use: they represent the SCCS operators. The

476 T. Nguyen and C. Plumejeaud�

tasks are defined by the users on menu driven screens that are not depicted here. Note
that this example involves two embedded loops and two interleaved loops.

The icons on the top menu line are tools to invoke various operations: opening of a
file, undo/redo, save to file, etc. Predefined applications may be loaded and modified
on-line or included in new applications, i.e., existing applications may be saved and
reuused later to form new ones.
The SCCS formula is produced automatically by CAST 2.0 from the application’s
graphic specification. It is used internally to generate the adequate distributed
execution structure.

The integration platform provides a high-level icon-based interface to the users which
can invoke simulation, verification, configuration, deployment and execution tools.
The result of the above HBCGA example is depicted by Figure 2.

Hardware configurations are uniformly supported, i.e., workstations, PC-clusters and
computers connected through NOW, LAN, WAN are transparently supported through
the definition of execution locations for the user modules. This is done by specifiying
the CORBA name servers for the various modules. Currently, no dynamic migration
of modules is supported by CAST. The end-user has no choice concerning the
execution location of the modules. Execution of the modules are invoked by dynamic
request to the ORB: the name server includes the name of the methods implementing
the required codes in the wrapper object definitions for any particular module.

Fig. 1. CAST: the user inerface

477An Integration Platform for Metacomputing Applications�

2.2 Specification of Complex Applications

The benefit gained from using process algebras to define the user applications is
twofold:
� it constrains the application developers to specify rigorously the modules

interactions and scheduling, without programming first the modules inputs/outputs,
thus leaving implementations considerations to a later phase in the application
design

� it produces formal specifications which can be processed by automatic verification
and reduction algorithms, thus ensuring further computational properties, e.g.,
fairness, deadlocks freeness, accessibility of the modules, etc.

Although the last point is not yet implemented, it is foreseen that the introduction of
verification and reduction algorithms will permit a significant gain in the integration
of complex distributed applications involving a large number of modules. This
provides a sound and theoretical background on which to rely in order to eventually
formally specify, prove and verify the application processes. For example, electronic
chips co-simulation involves dozens of modules which cooperate to simulate the
various aspects of electronics: electrical, thermal, clocks, etc. Managing and
controlling the interactions of these modules may require intricate relationships.
Proving that that these interactions are properly implemented and that the simplest
simulator has indeed been designed can be a cumbersome task that may benefit from
model validation and verification tools inherited from formal verification techniques.
This is common use in electronic chip design, and can be straightforwardly
implemented in CAST.

2.3 Implementation

A demonstrator was developed during a first six months phase (April-October
1998).This preliminary Corba-compliant integration platform was demonstrated
during the second DECISION project review in Sophia-Antipolis, October 1998. It
relied on the ILU object request broker (ORB) from Xerox [4] and the OLAN
distributed application configuration environment [1].
ILU has interesting features, including interfaces with a variety of programming
languages, e.g., C, C++, Lisp, Java, Python. But inherent limitations (e.g., no interface
repositories, no multi-threading) and performance penalties lead however to the
replacement of these software.

The replacement by the Orbacus ORB [10] from Object-Oriented Concepts, Inc., a
fully Corba-compliant ORB, started in November 1998. Orbacus permits a seamless
integration with the C++ and Java languages. This made possible the fast
implementation of the Corba version of CAST on Unix workstations.

478 T. Nguyen and C. Plumejeaud�

The prototype was demonstrated in April 1999. A contributing factor was the C++
language chosen for the implementation of CAST. Based on these grounds, the
upgrade to an extensive Corba-compliant integration platform, named CAST 2.0, was
therefore straightforward.

Fig. 2. Wing shape optimisation: induced drag reduction in high-speed cruise configuration

Extensions to the platform have since been implemented to support the dynamic plug-
in of solvers and optimisers to the platform. This uses the full dynamic creation and
invocation capabilties of the CORBA object-request broker.

2.4 Integration of Parallel Codes

A later development phase started in 2000 to support parallel codes and execution on
remote PC-clusters over wide-area networks. By the end of year 2000, this was
operational concerning the execution of parallel codes on PC-clusters. The users can
now define distributed simulation and optimisation applications that involve
sequential and parallel codes that cooperate. The codes run on parallel computers,
NOW and PC-clusters that are distributed over wide area networks.
Interfacing existing codes that involve MPI statements with CORBA was a challenge.
Various work has already been carried out concerning the integration of parallel codes
in distributed computing environments and was of invaluable help for this matter. Our
implementation uses the notion of “ parallel CORBA objects ” developed in PACO by
the PARIS project at IRISA [11]. Basically, a parallel CORBA object is a collection
of similar objects running in parallel on a PC-cluster for example. They are managed
by a particular server object which interfaces with the remote clients. The parallelism
is therefore transparent to the end user. This provides for the seamless integration of
parallel codes, written in Fortran using MPI for example, up to the interface of the
code with the parallel CORBA objects. PACO is itself built on the MICO object-

479An Integration Platform for Metacomputing Applications�

request broker [7]. MICO has therefore become the new ORB layer used by CAST
since September 2000.
The 2D wing shape optimisation example (Figure 2) presented in Section 2 was run on
a PC-cluster using a parallel version of the genetic algorithm written in Fortran, using
MPI statements. It was later made compliant with CORBA using PACO. It was run as
a set of servers and a CAST client on the network. In the last implementation, there are
several servers, one which is dedicated to the genetic optimisation algorithm, and the
others which are dedicated to the CFD and mesh calculations.

2.5 Metacomputing

The next step, which started in January 2001, involved the execution of simulation
applications concerning aerodynamic optimisation of airfoils in a metacomputing
environment, including workstations and PC-clusters distributed over several
locations at INRIA Rennes, INRIA Sophia-Antipolis near Nice and INRIA Rhône-
Alpes in Grenoble all connected by a high-speed gigabits/sec network (Figure 5).
Based on performance tests conducted on various deployment configurations, the
CAST software runs on the PC-cluster in Grenoble, the parallel genetic optimisation
algorithm runs on the PC-cluster in Sophia-Antipolis, and several instances of the
CFD solver run on the PC-cluster in Rennes. CAST is a CORBA client for the genetic
algorithm server, which acts in turn as a client for the CFD solvers (Figure 3).
The PC-cluster in Grenoble includes 225 Bi-Pentium III 733 MHz processors
connected by a 100 Mbits/sec FastEthernet network, running Linux (Mandrake 7.0).
The PC-cluster in Rennes includes 20 bi-Pentium III, 500 MHz, and bi-Pentium II,
450 MHz., connected by a FastEthernet 100 Mbits/sec network, running Linux
(Debian 2.2). The PC-cluster in Sophia-Antipolis includes 33 bi-Pentium III
processors (19 running at 933 MHz and 14 at 500 MHz), running Linux 2.2.

Fig. 3. Clients and servers for the optimisation application.

Several instances of the CFD solver run in parallel to account for the candidate
solutions generated by the genetic algorithm. Each CFD solver is allocated several
processors to account for the domain decomposition of the area around the airfoil,

480 T. Nguyen and C. Plumejeaud�

which is statically divided into four sub-domains (Figure 4). One processor is
allocated to each of the sub-domains. The airflow around the wing shape is computed
each time the airfoil is modified by the optimisation algorithm, i.e., for each
optimisation loop. Each optimisation loop generates several candidate solutions,
which are then evaluated in parallel, i.e., the mesh and the flow is computed for each
optimisation loop and for each solution generated by the optimisation algorithm.
In this example, the CFD solvers are the most time-consuming tasks. It is therefore of
most importance to duplicate and parallelize the mesh generation and computation of
the airflow around the wing shape. This is why there are several instances of the solver
executing in parallel for each candidate solution, in fact four of them for one wing
shape instance. There are in turn several candidate solutions that are produced by the
genetic optimisation algorithm that are evaluated in parallel. The processor allocation
is done statically: a requested number of processors is queried on each PC-cluster
prior to the execution of the application. It is then allocated to the specific tasks to
execute. Various performance tests have been conducted for this particular
application. The PC-clusters are connected by the high-speed gigabits/sec VTHD
network [13] (Figure 5).

3. Conclusion

This paper presents a software integration platform called CAST that combines both
techniques of formal specifications and distributed object-oriented development, for
the specification, configuration, deployment and execution of complex engineering
applications in a unified and operational way.
The platform was developed on Unix workstations and communicate through a
commercial CORBA object request broker. It was successfully tested, showing
blazing performance, against complex optimisation applications in a distributed
environment involving several remotely located PC-clusters at INRIA, connected to a
gigabits/sec high-speed network called VTHD.
The target user population includes project managers and engineers that are expert in
their particular domain, e.g., aerodynamics, electromagnetics.
The application tasks and their interactions are transparently mapped to distributed
software components. They are implemented using object-oriented programming
techniques. The actual user modules may include simultaneously non object-oriented
code, e.g., Fortran subroutines, as well fully object-oriented software, e.g., C++. In
this case, CAST takes automatically into account the diversity of the interfaces and
parameters for the various modules.
The CAST integration platform also offers a high-level graphics interface for the
specification of complex multi-discipline applications, thus making the formal
algebraic and theoretical background on which it is based, as well as the technicalities
of distributed computing, totally transparent to the end-users.

481An Integration Platform for Metacomputing Applications�

Fig. 4. Interaction between the genetic algorithm and the CFD solvers.

Also, an interesting feature in CAST is that it supports the coupling of CORBA and
non-CORBA modules simultaneously. This provides for a smooth transition from
existing application software and mathematical libraries to state-of-the-art integration
platforms and metacomputing environments. It is also expected that this will permit
the connection to third party environments that support widely accepted
communication standards and exchange protocols, e.g., CORBA.

Fig. 5. The optimisation application in the metacomputing environment.

Although metacomputing has focused much attention and efforts in the last few years,
large scale applications, including CPU and graphics intensive applications that
require large amounts of computing ressources are still demanding easy to use high-
performance problem-solving environments [2]. Examples of such applications
include the co-simulation of electronic chips in the CADNET project, numerical
propulsion systems simulation [5] and multidiscipline aircraft simulation, as for the
Digital Dynamic Aircraft approach in the AMAZE project. Indeed, the design
environments required now by aircraft manufacturers will include CFD, CSM,
acoustics and electromagnetics simulation and optimisation, ranging from the initial
CAD outlines up to the dynamic behavior of the airframe and systems under operating
constraints. This will put an unprecedented load on hardware and software resources
in problem-solving environments.
Still lacking specific features, e.g., load balancing, guaranteed QoS and security, the
CAST integration platform provides the functionalities that make it a good candidate
for high-performance metacomputing environments dedicated to multi-discipline
simulation applications.

482 T. Nguyen and C. Plumejeaud�

The software documentation, including the software specifications and the CAST
user’s manual, is available on-line at: http://www.inrialpes.fr/sinus/cast. Further
information on the project is available at: http://www.inrialpes.fr/sinus.

Acknowledgments

The authors wish to thank Alain Dervieux and Jean-Antoine Desideri from the SINUS
project at INRIA Sophia-Antipolis, as well as Jacques Periaux from Dassault-Aviation
(Pôle Scientifique), for their strong support and helpful advice.
Part of this project is funded by INRIA through ARC “ Couplage ” and by the French
RNRT program, through the VTHD project. It was also partly supported by the EEC
Esprit Program, through the HPCN “ DECISION ” project: “ Integrated Optimisation
Strategies for Increased Engineering Design Complexity ”.

References

1. Balter, R., et al. Architecturing and configuring distributed applications with OLAN. Proc.
IFIP Int’l. Conf. Distributed Systems platforms. Middleware ’98. Lake District.
September 1998.

2. Barnard, S., et al. Large-scale distributed computational fluid dynamics on the Information
Power Grid using Globus. Proc. NASA HPCC/CAS Workshop. NASA Ames Research
Center. February 2000.

3. J. Blachon, T. Nguyen “ DECISION prototype integration platform: CAST CORBA
prototype ”. Soft-IT Workshop. Invited lecture. “ Next generation of interoperable
simulation environments based on CORBA ”, INRIA-ONERA-Simulog. June 1999.

4. XEROX ILU Reference manual. 1998.
ftp://ftp.parc.xerox.com/pub/ilu/2.0a14/manual_html

5. Lopez, I.,et al. NPSS on NASA's IPG: using Corba and Globus to coordinate
multidisciplinary aeroscience applications. Proc. NASA HPCC/CAS Workshop. NASA
Ames Research Center. February 2000.

6. Marco N., Lanteri S. A two-level parallelization strategy for genetic algorithms applied to
shape optimum design. Research Report no. 3463. INRIA. July 1998.

7. http://www.mico.org
8. Milner R. Calculi for synchrony and asynchrony. Theoretical computer science. Vol. 25,

no. 3. July 1983.
9. Nguyen G.T., Plumejeaud C. Integration of multidiscipline applications in metacomputing

environments. Systèmes, Réseaux et Calculateurs Parallèles. Hermès Ed. To appear 2002.
10. Object-Oriented Concepts, Inc. ORBacus for C++ and Java. Version 3.1.1. Object-Oriented

Concepts, Inc. 1998.
11. Th. Priol. Projet PARIS “ Programmation des systèmes parallèles et distribués pour le

simulation numérique distribuée ”. INRIA. May 1999.
12. Sang, J., Kim, C., Lopez, I. "Developing Corba-based distributed scientific applications

from legacy Fortran programs" Proc. NASA HPCC/CAS Workshop. NASA Ames
Research Center. February 2000.

13. http://www.telecom.gouv.fr/rnrt/projets/pres_d74_ap99.htm

483An Integration Platform for Metacomputing Applications�

	Introduction
	Distributed Intrgration Platforms
	Principles
	Specification of Complex Application
	Implementation
	Integration of Parallel Codes
	Metacomputing

	Conclusion
	Acknowledgments
	References

