Evolutionary Optimization Techniques on
Computational Grids:

Baker Abdalhaq, Ana Cortés, Tomas Margalef and Emilio Luque
Departament d’Informatica, E.T.S.E, Universitat Autdonoma de Barcelona, 08193-
Bellaterra (Barcelona) Spain

baker@aowsl0.uab.es
{ana.cortes, tomas.margalef,emilio.luque}@uab.es

Abstract. Optimization of complex objective functions such as environmental
models is a compute-intensive task, difficult to achieve by classical optimiza-
tion techniques. Evolutionary techniques such as genetic algorithms present
themselves as the best alternative to solving this problem. We present a friendly
optimization framework for complex objective function on a computational
grid platform, which allows easy incorporation of new optimization strategies.
This framework was developed using the MW library and the Condor system.
The framework architecture is described, and a case study of a forest-fire
propagation simulator is then analyzed.

1 Introduction

Models are increasingly being used to make predictions in many fields of environ-
mental science Typically, simulation (a computer program that represents a given
model) exhibits difficulties in exactly imitating the real behavior of the simulated
system. Basically, this difficulty lies in two main considerations. On the one hand,
environmental models frequently require information on a high number of input vari-
ables about which it is not usually possible to provide accurate values for all. There-
fore, the results provided by the corresponding simulator usually deviate from the
system’s real behavior. On the other hand, models can be wrongly designed becom-
ing the model itself the main cause of erroneous results.

Generally, model/simulator analysis is mainly focused on one of these two sources of
errors. Whichever analysis goal is chosen, the degree of complexity in model analy-
sis, which can involve model validation, verification and calibration, resulted in par-
ticularly difficult tasks in terms of computing power.

Since distributed computing systems (also called metacomputers or grid computing
environments) have, over the last decade, increased as a great source of computing

* This work was supported by the CICYT under contract TIC 98-0433 and partially supported
by the DGICYT (Spain).

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2329, pp. 513-522, 2002.
© Springer-Verlag Berlin Heidelberg 2002

514 B. Abdalhaq et al.

power, relevant optimization works were addressed to these environments [1][2][3].
All these works are focused on mathematical optimization techniques, which can be
applied when some degree of knowledge about the function to be optimized is pro-
vided. However, there is still considerable work to do in the area of non-mathematical
approaches that are more suitable for optimization processes dealing with functions
about which no information is provided. Environmental models/simulators are a good
example of this kind of functions. Usually, environmental simulators are provided as
black-boxes, and the only known information about them consists of how they should
be provided with input information, and the nature of the results that they generate.
Under this assumption, mathematical optimization techniques are destined to failure,
and non-mathematical schemes such as Genetic Algorithms, Simulating Annealing,
Tabu Search and so on, have arisen as the best candidates to approach such problems.

The aim of this work is to provide a framework for the optimization of complex
functions (considered as black-box functions) that take advantage of the computing
power provided by a grid-computing environment. The BBOF (Black-Box Optimiza-
tion Framework) system has been developed using the master-worker programming
paradigm and uses Condor as a distributed resource management.

The rest of the paper is organized as follows. In section 2, the problem statement is
reported. The architecture of the proposed optimization framework is described in
section 3. Implementation details are described in section 4. Section 5 shows how
BBOF has been applied to a forest-fire propagation simulator and, finally, section 6
presents the main conclusions.

2 Problem Statement

Formal optimization is associated with the specification of a mathematical objective
function (called L) and a collection of parameters that should be adjusted (tuned) to
optimize the objective function. This set of parameters is represented by a vector
referred to as 6. Consequently, one can formulate an optimization problem as fol-
lows:

Find 6 * that solves renin L(O) e}
S

where L:R” — R' represents some objective function to be minimized (or maxi-
mized). Furthermore, 0 represents the vector of adjustable parameters (where 0 * is
a particular setting of 6), and S < R” represents a constrain set defining the allow-
able values for the 0 parameters. Put simply, the optimization problem deals with the
aim of defining a process to find a setting for the parameter vector 6 , which provides

the best value (minimum or maximum) for the objective function L. This search is
carried out according to certain restrictions of the values that each parameter can take.

Evolutionary Optimization Techniques on Computational Grids 515

The whole range of possibilities that can be explored in obtaining the optimization
goal is called the search space, which is referred to as S.

As we mentioned in the previous section, we are interested in complex model optimi-
zation regardless how the model itself works. Under this assumption, the underlying
model/simulator is identified as a complex black-box function about which no infor-
mation is provided. However, there is the possibility of measuring the quality of the
results provided by the simulator for any input vector (8). Consequently, the objec-
tive function (L) involves both executing the simulator and the quality function si-
multaneously, being the final value provided by the quality function, the value to be
minimized or maximized.

Typically, the way to solve equation (1) consists of applying an existent optimization
technique to an initial guess for € in order to obtain a new set of input parameters
closer to the optimal solution (68 *). However, applying any optimization technique
once alone never leads to a good solution. Therefore, the same process is repeated
again by starting with a new or nearly guess.

Beside the strictly mathematical definition of the optimization problem, there are
some extra issues that should be considered when dealing with geographically dis-
persed CPU’s as source of computing power. Some of these features include the dy-
namic availability of the machines, communication delays between processors, het-
erogeneity system and scheduling problems. Despite of all these drawbacks, these
platforms are well suited to large-scale computations needed by environmental model
optimization problems.

3 Distributed optimization framework

As was commented above, optimization techniques typically obtain progressive im-
provements in the original guess of the vector 8 by consecutive executions of the
optimization process. A great improvement in this way of proceeding is to consider,
not only one guess at a time, but a wide set of guesses and, based on the results ob-
tained for all of these, to automatically generate a new set of guesses and to re-
evaluate the objective function for them all, and so on. For this reason, our optimiza-
tion framework works in an iterative fashion, where it moves step-by-step from an
initial set of guesses for 6 to a final value that is expected to be closer to the true 6 *
(optimal vector of parameters) than the initial guesses. This goal is achieved because,
at each iteration of this process, a preset optimization technique is applied to generate
a new set of guesses that should be better than the previous one.

This iterative scheme is the core of the proposed framework, which is called the
Black-Box Optimization Framework (BBOF). BBOF has been implemented in a
plug&play fashion. On the one hand, the optimized function can be any system

516 B. Abdalhaq et al.

(complex simulator) that has a vector of parameters as input, and provides one or
more values as output (a quality function should also be provided to determine the
goodness of the results). On the other hand, any optimization technique ranging from
evolutionary techniques, such as genetic algorithms or simulating annealing through
strictly mathematical schemes, can easily be incorporated.

Due to its characteristics, the proposed framework fits well into the master-worker
programming paradigm working in an iterative scheme. An iterative master-worker
application consists of two entities: a master and multiple workers. The master is
responsible for decomposing the problem into small task (and distribute these tasks
among a farm of worker processes), as well as for gathering the partial results in order
to produce the final result of the computation. The worker processes receive a mes-
sage from the master with the next task, process the task, and send the results to the
master. The master process may carry out certain computations while tasks of a given
batch are being completed. After that, a new batch of tasks is assigned to the master,
and this process is repeated several times until completion of the problem (after K
cycles or iterations). Figure 1.a schematically shows how master and workers proc-
esses interact during one iteration of the iterative process described above, when 3
workers are considered and the number of tasks to be executed by the workers is 8.

If we analyze the above-described behavior, we can easily match each element with
the main components of BBOF. In particular, since the evaluation of the black-box
and quality functions for each guess of @ are independent of each other, they can be
identified as the work done by the workers. Consequently, the responsibility for col-
lecting all the results from the different workers and for generating the next set of
guesses by applying a given optimization technique will be concentrated on the mas-
ter process. Figure 1.b graphically illustrates how this matching is undertaken.

Optimisation Technique

[0:[6el0s] 0] o[6: 0]

]
L(6i)
Objective Objective Objective
@ function L function L function L
(b)

(a)

Fig 1. Master and worker process interaction (a) and how these processes are matched to the
BBOF elements (b).

master
[T1[r2[T3]T4[T5]T6[T7]TE]

Once the architecture of BBOF has been described, we now describe the manner in
which the BBOF was implemented.

Evolutionary Optimization Techniques on Computational Grids 517

4 Implementation issues

We should bear in mind that our initial goal was to develop an optimization frame-
work for solving complex problems on a computational grid. For this purpose, we
have used Condor as a resource management on a grid-computing environment [4]
and the MW library [5] so as to easily implement our master-worker scheme. In the
following section, we briefly outline certain basic ideas on Condor and MW.

4.1 Condor

Condor is a software system that runs on a cluster of workstations in order to harness
wasted CPU cycles. Condor was first developed for Unix systems, and can currently
be executed on a wide range of machines. A Condor pool consists of any number of
machines, possibly heterogeneous, which are connected by a network. One machine,
the central manager, keeps track of all the resources and jobs in the pool. Condor
allows High Throughput Computing (HTC) to be obtained, that is, the obtention of
large amounts of processing capacity sustained over long time periods. The resources,
i.e. hardware, middleware and software, are large, dynamic and heterogeneous.

4.2 MW

MW is a set of C++ abstract-based classes that must be re-implemented in order to fit
the particular application. These classes hide difficult metacomputing issues, allowing
rapid development of sophisticated scientific computing applications. Basically, there
are three abstract base classes to be re-implemented. The MWDriver class correspon-
dents to the master process and contains the control center for distributing tasks to
workers. The MWTask class describes inputs and outputs —data and results — which
are associated with a single unit of work. The MWWorker class contains the code
required to initialize a worker process and to execute any tasks sent to it by the mas-
ter. BBOF’s implementation is based on these MW classes. As mentioned in section
3, BBOF has two main parts: the objective function (black-box and quality functions)
and the optimization technique. In particular, the objective function (L) corresponds
to the MWWorker class, whereas the optimization technique has been integrated as
the MWDriver class. Finally, a particular instance of the MWTask class directly
matches with a given input parameter vector. Concerning communication, there are
MW versions that perform communications by using PVM, the file system and sock-
ets. In this work, MW was used with PVM [6], where MW workers are independent
jobs spawned as PVM programs. The original MW does not consider multiple itera-
tions of the process depicted in figure 1.a. However, our optimization framework is
based on an iterative way of working. For this purpose, we have developed our opti-
mization framework based on an extended version of MW [7], which allows MW to
iterate a predetermined number of times.

518 B. Abdalhaq et al.

5 Case study: Forest-fire propagation

Forest fire propagation is considered a challenging problem in the area of simulation,
due to the complexity of its physical model, the need for great amount of computation
and the difficulties of providing accurate inputs to the model. Uncertainties in the
input variables needed by the fire propagation models (temperature, wind, moisture,
vegetation features, topographical aspects...) can have a substantial impact on result
errors and must be considered. For this reason, optimization methodologies to adjust
the set of input parameters of a given model would be provided in order to obtain
results as close as possible to real values.

In particular, we have applied the proposed optimization framework to a fire propa-
gation simulator called ISStest [8], which, from an initial fire front (set of points),
generates the position of the fire line after a given period of time. As has just been
mentioned, forest fire propagation simulators deal with a wide set of input parame-
ters. In the experimental study reported below, we only focus on finding the proper
values of the wind input parameter, which is defined as a vector composed of two
components: wind speed (w,) and wind direction (w,).

Obviously, the expected behavior of the [SStest is that the new fire line provided after
a certain preset time exactly matches the real situation of the fire line once that time
has passed. Therefore, our objective function L, in this case, consists of executing
once ISStest for a given configuration of input values, and evaluating the distance
between the real fire line and the fire line obtained by simulation. For this purpose,
the Hausdorff distance [9] was chosen. The Hausdorff distance measures the degree
of mismatch between two sets of points by measuring the distance of a point from one
set that is farthest away from any point of the other, and vice versa. Formally, the
directed Hausdorff distance i between two set of points M and I at a specific point in
lis:

WM, 1 Fnzzx(g'(distance (m,i))))

Thus, the Hausdorff distance H is defined as: H(M,I) = max(h(M ,I),h(I,M)) . In

this case, our objective resides in finding the global minimum of this function, given
that our aim is that the simulated and real fire lines should be the same, and that the
difference between the two should therefore be 0.

The experiments carried out considered that wind speed and wind direction remain
fixed during the fire-spread simulation process. The real fire line, which was used as a
reference during the optimization process, was obtained in a synthetic manner. In
other words, we fixed known values for w, and w, parameters and, subsequently,

the ISStest simulator was executed three times with a setting of the simulation time
equal tol5 minutes for each execution. This presupposes that the fire propagation was

Evolutionary Optimization Techniques on Computational Grids 519

spent 45 minutes. At each execution, the output fire line obtained was used as the
initial fire line for the next execution. Finally, the obtained fire line was stored and
treated as the real fire line. Obviously, the wind speed and wind direction used during
this process (which werel5km/h and 180° respectively) were dismissed once all this
process had finished. Since for each ISStest execution we have two parameters (wind
speed and wind direction), and bearing in mind that we executed the fire simulator
three times, the global vector that should be guessed by the optimization technique
consists of 6 elements (8 = (le Wy We Wgo Wg wd3)).

We now describe the experimental study carried out using the forest fire propagation
simulator commented above.

5.1 Experimental platform

The experiments reported below were executed on a Linux cluster composed of 21
PC’s with Intel Celeron processor 433 MHz, each one having 32 MB RAM and con-
nected with a Fast Ether Net 100 Mb. All the machines are configured so as to use
NFS (Network File System) and the Condor system; additionally, PVM are installed
on them all.

5.2 Implemented optimization techniques

In this experimental study, we considered two different optimization techniques.
Genetic Algorithms (GA) were chosen as a relevant non-mathematical technique
within the branch of evolutionary strategies, whereas, on behalf of mathematical
optimization techniques, we have adopted a statistical/parabolic method. In the fol-
lowing section, we will outline the main features of each one of these techniques.

Genetic Algorithm

GAs are characterized by emulating natural evolution [10]. Therefore, under the GA
scenario, in which one refers to a vector of parameters as chromosome, a gene is
identified with one parameter and the population is the set of vectors (chromosome)
used for one iteration of the algorithm. The way to obtain the new population con-
sists of applying certain operators (called transmission operators) to the starting set of
vectors. These operators (Elitism, Selection, Crossover and Mutation) are in charge
of defining the changes to be done on the set of initial vector guesses in order to gen-
erate an improved set of vectors.

Statistical/parabolic method

As we previously mentioned, mathematical techniques are supposed to work incor-
rectly for the kind of problem that we are approaching. However, we implemented a
statistical/parabolic method in order to compare the results provided by this scheme
with those obtained with the evolutionary techniques described above. This particular

520 B. Abdalhaq et al.

method was chosen once the behavior of the objective function had been outlined for
a very simple case. In particular, we considered the simplest case in which the input
vector is only composed of two parameters (wind speed and wind direction). This is
the case in which the ISStest is executed only once for a fixed period of time, and for
which the wind does not change during the whole simulation. Figure 2 shows the
value of the objective function when wind speed is fixed to the corresponding real
value and the free parameter (wind direction) varies within its corresponding search
space (from 0° to 360°). Since a similar behavior was observed for wind direction, a
good approximation to the obtained shape seemed to be the parabolic one.

wind speed= 15 km/h

12.000

10.000

s.ooo‘/\ SN
6.000 N\ /

4.000 \ /

2.000 \/

S

distance(m)

S R IR I IR

wind direction

Fig.2 Objective function cross-section at optimal wind speed (15 km/h).

The formal expression to describe this kind of functions corresponds to equation 2,
where f'is the approximation of the objective function L.

2
J(X)=Bog+ Buxi+ Bpxi + .o+ By,x/)
2
o v Bx, + B ox, .+ B, X
In order to find the optimum of this function using calculus, we need to derive it for

each variable x, and to find the zero of the derivative. The formula describing this
derivation form and the equation we should solve is the following:

If (X)
ox,
Vi=1..p

=B, +2B,x, +..+nB,x"" =0
4)

This approach can help us, if and only if, the objective function can be approximated
with good precision to some function that is calculus friendly.

Evolutionary Optimization Techniques on Computational Grids 521

5.3 Experimental results

In this section, we will describe the main results of a preliminary set of experiments,
which were performed with the aim of comparing both mathematical optimization
techniques (parabolic method) against a new generation of strategies such as genetic
algorithms. As we commented, our optimization framework was implemented by
using an iterative master-worker programming scheme. In the case of the mathemati-
cal approach, the optimization process was iterated once, and the number of vectors
evaluated (task to be assigned to the workers) were 200. In contrast to this, when the
genetic algorithm was applied, the number of iterations of the whole optimization
process were 20, whereas the number of vectors to be evaluated at each iteration were
10. Therefore, the total number of times that the objective function was evaluated is
the same in both cases. Furthermore, since the initial set of guesses for both strategies
was obtained in a random way, the global optimization process was performed four
times; the mean values for all the results (Hausdorff distance in m.) is shown in table
1.

Table 1. Comparison between all the algorithms for homogeneous wind field

Algorithm Genetic Statistical/parabolic
Distance (m) 11 443
Evaluations 200 200

As we can observe, GA on average reaches a distance equal to 11m, which is one
order of magnitude less than the result obtained in the case of the mathematical ap-
proach. The mathematical technique suffers both from deviation from the optimal due
to the model and the rare shape of the objective function.

6 Conclusions

In this work, we have described a friendly framework for optimizing black-box func-
tions called BBOF (Black-Boxes Optimization Framework). This framework was
developed using the MW library and the Condor system. We applied BBOF to a for-
est-fire propagation simulator (ISStest) including two optimization techniques: the
Genetic Algorithm and the Statistical/parabolic method.

A basic set of experiments were performed and the results denote the difficulty ex-
hibited by classical optimizers in minimized complex objective function such as the
one studied. In contrast to this, evolutionary optimization techniques such as genetic
algorithms provide substantial improvements in results. These preliminary results
have encouraged us to continue our study in this area, as they confirm our expecta-
tions.

522 B. Abdalhaq et al.

References

—

. Czyzyk J., Mesnier M.P., More J.J.: The Network-Enabled Optimization Systems (NEOS)
Server. Preprint MCS-P615-1096, Argonne National Laboratory, Argone, Illinois, (1997).
2. Ferris M., Mesnier M., More J.: NEOS and Condor: Solving optimization problems over the
Internet, Preprint ANL/MCS-P708-0398, available at http://www-

unix.mcs.anl.gov/metaneos, (March 1998)

3. Linderoth J. and Wright S.J: Computational Grids for Stochastic Programming, Optimiza-
tion. Technical Report 01-01, UW-Madison, Wisconsin-USA,(October 2001)

4. Livny M. and Raman R.: High Throughput Resource Management, Computational Grids:
The Future of High-Performance Distributed Computing. Edited by lan Foster and Carl
Kesselman, published by Morgan Kaufmann (1999)

5. Goux J.-P., Kulkarni S., Linderoth J., Yoder M.: An enabling framework for master-worker
applications on the computational grid. Proceedings of the Ninth IEEE Symposium on High
Performance Distributed Computing (HPDC9), Pittsburgh, Pennsylvania, (August 2000)
43-50

6. Geist A., Beguelin A., Dongarra J., Jiang W., Manchek R. and Sunderam V.: PVM: Parellel
Virtual Machine A User’s Guide and Tutorial for Networked Parallel Computing. MIT
Press (1994)

7. Heymann E., Senar M.A., Luque E. and Livny M.: Evaluation of an Adaptive Scheduling
Strategy for Master-Worker Applications on Clusters of Workstations. Proceedings of the
7" International Conference on High Performance Computing (HiPC’2000), LNCS series,
vol. 1971 (2000) 214-227

8. Jorba J., Margalef T., Luque E., J. Campos da Silva Andre, D. X Viegas: Parallel Approah to
the Simulation Of Forest Fire Propagation. Proc. 13 Internationales Symposium “Infor-
matik fur den Umweltshutz” der Gesellshaft Fur Informatik (GI). Magdeburg (1999)

9. Reiher E., Said F., Li Y. and Suen C.Y.: Map Symbol Recognition Using Directed Haus-
dorff Distance and a Neural Network Classifier. Proceedings of International Congress of
Photogrammetry and Remote Sensing, Vol. XXXI, Part B3, Vienna, (July 1996) 680-685

10.Thomas Baeck, Ulrich Hammel, and Hans-Paul Schwefel: Evolutionary Computation:

Comments on the History and Current State. IEEE Transactions on Evolutionary Computa-

tion, Vol. 1, num.1 (April 1997) 3-17

	Introduction
	Problem Statement
	Distributed optimization framework
	Implementation issues
	Condor
	MW

	Case study: Forest-fire propagation
	Experimental platform
	Implemented optimization techniques
	Experimental results

	Conclusions
	References

