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Abstract. The development of Problem Solving Environments (PSEs) 
makes it possible to gain extra insight into the solution of numerical 
problems by integrating the numerical solver and solution visualisation 
into one package. In this paper we consider building a PSE using IRIS 
Explorer and SCIRun. The differences in these two PSEs are contrasted 
and assessed. The problem chosen is the numerically demanding one 
of elastohydrodynamic lubrication. The usefulness of these packages for 
present and future use is discussed. 

1 Introduction 

The field of scientific computing is concerned with using numerical methods to  
solve real world problems in fields such as engineering, chemistry, fluid flow or 
biology, which are typically defined by a series of partial differential equations. 
In solving these problems the ability to  use high quality visualisation techniques 
allows the user to  better understand the results generated, t o  identify any points 
of interest, or potential difficulties and to obtain greater insight into the solution 
to  a problem more quickly. 

This paper will investigate the use of Problem Solving Environments (PSEs) 
to  solve a demanding numerical problem in computational engineering. PSEs 
combine several important stages for the generation of numerical results into 
one body, thus having synchronous computation and visualisation. There are 
three ways in which even basic PSEs are advantageous. These are that the in- 
put parameters can all be set, or adjusted a t  run time; the numerical solver is 
only one part of the PSE and hence it can be possible to change solution meth- 
ods, if appropriate; and finally the visualisation is an innate component of the 
package, and results can be visualised and studied as the calculation proceeds. 
Computational steering gives the PSE another advantage over traditional solu- 
tion methods because this allows the test problem and/or the solution methods, 
to be updated during the calculation. The user, thus, "closes the loop" of the 
interactive visually-driven solution procedure [I]. 

The PSE construction in this paper has been done in order to compare, 
contrast and assess the usefulness and the ease of implementation of a challenging 
engineering problem, in IRIS Explorer [2] and SCIRun [I], two different software 
packages designed for building PSEs. 
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The numerical problem selected for integration into a PSE is that of elasto- 
hydrodynamic lubrication (EHL) in, for example, journal bearings or gears. This 
mechanical engineering problem requires sophisticated numerical techniques to 
be applied in order to  obtain solutions quickly. An engineer, for example, may 
want to  establish solution profiles for a particular lubricant under certain oper- 
ating conditions. With a PSE these could be quickly tuned to give the desired 
results, before tackling, say, a more demanding transient problem. The numer- 
ical code for solving EHL problems used in these PSEs is described in detail 
in [3], and the required changes to  its structure will be set out below. Examples 
of where this extra insight occurs will be given. 

The EHL problem will be described briefly in Section 2 which includes the 
equation system to be solved, and an outline of the numerical techniques used 
in the code. Section 3 considers the two PSEs developed. After some general is- 
sues have been covered, in Section 3.1 details of the implementation of the EHL 
PSE into IRIS Explorer, known as ECLIPSE (Elastohydrodynamic Lubrication 
Interactive Problem Solving Environment) are given. In Section 3.2 SCIRun is 
discussed in a similar manner, with the construction of the PSE, known inside 
SCIRun as ELLIPSE, detailed. In Section 4 the differences between the two 
systems discussed, both conceptually and in terms of their structure and use- 
fulness as frameworks for building PSEs. Finally, in Section 5 some conclusions 
are drawn about future development of PSEs bearing in mind the likely needs, 
in reference to  large problem sizes, parallelism and grid-based computations. 

2 The Numerical Problem 

Elastohydrodynamic lubrication occurs in journal bearings and gears, where, in 
the presence of a lubricant, a t  the point of contact there is a very large pressure 
exerted on a very small area, often up to  3 G Pa. This causes the shape of the 
contacting surfaces to  deform and flatten out at the centre of the contact. There 
are also significant changes in the behaviour of the lubricant in this area. 

A typical solution profile is shown in Figure l a  for the pressure profile across 
a point contact, such as will be considered in this paper. This is the equivalent 
situation of a ball bearing travelling along a lubricated plane. With oil flow from 
left to  right it can be seen that in the inlet region there is a very low pressure, 
in the centre of the contact there is a very high pressure, with an even higher 
pressure ridge around the back of the contact. Finally, in the outflow a cavitation 
region is formed where bubbles of air have entered the lubricant, and the pressure 
is assumed to  be ambient there. The corresponding surface geometry profile for 
the bearing has the undeformed parabolic shape of the contact flattened in the 
high pressure area. The centreline solution is shown in Figure lb .  

The history of the field is detailed out in papers such as [4]; much information 
about the numerical techniques currently used to  obtain fast, stable solutions is 
given in both [5] and [3], the latter of which describes in great detail the precise 
methods used in the code employed in this work. 
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(a) Pressure solution (b) Film thickness along the centreline 
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Fig. 1. Typical solutions across an EHL point contact 
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The EHL system solved depends on many physical parameters concerning 
both the physical nature of the contacts, the properties of the lubricant used, 
the loading and the rotation speeds of the surfaces. The solution variables which 
must be solved for are the pressure profile P, across the domain, the surface 
geometry H ,  the viscosity 7 and the density p. The full equation system is 
described in [5] and the appropriate references for the derivations are given 
therein. The pressure distribution is described by the Reynolds Equation: 

\ 
\ 

\ 

\ 
- \ t 

/ 

8 i j ~ ~  aP a pH3 aP uS(T) a (pH)  a@H) +-  -- ----- ax ( F a x )  ay ( 7.i a r  ) u s  ax a T  = 0 ,  (1) 

2 06 - '\,, Deformed shape 

'. 1 

02 - Undeformed 
contact 

0 
-2 5 -2 -1 5 -1 -0.5 0 0.5 1 1 5 

Distance along centreline of contact 

where us is the sum of the surface speeds in the X-direction at  non-dimensional 
time T ,  X is a non-dimensional constant, and X and Y are the non-dimensional 
coordinate directions, The standard non-dimensionalisation means that the con- 
tact has unit Hertzian radius, and that the maximum Hertzian pressure is rep- 
resented by P = 1. The boundary conditions for pressure are such that P = 0. 
For the outflow boundary, once the lubricant has passed through the centre of 
the contact it will form a free boundary, the cavitation boundary, beyond which 
there is no lubricant. The non-dimensional film thickness, H, is given by: 

where Hoo is the central offset film thickness, which defines the relative positions 
of the surfaces if no deformation was to occur. The two parabolic terms represent 
the undeformed shape of the surface, and the integral defines the deformation 
of the surface due to the pressure distribution across the entire domain. The 
conservation law for the applied force (the Force Balance Equation) is given by: 
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Since an isothermal, generalised Newtonian lubricant model is being used, only 
expressions for the density and .viscosity will be required. The density model 
chosen is that of Dowson and Higginson, whilst the viscosity model used is the 
Roelands pressure-viscosity relation, again see [5]. 

The solution variables are discretised on a regular mesh. Once discretised, 
the equations are solved in turn to iteratively produce more accurate solutions. 
This process is described in detail in [5] where detailed descriptions of the need 
for, and benefits of multigrid and multilevel multi-integration are given. 

The Fortran 77 software used here, Carmehl, is described by Goodyer in [3] 
and includes both variable timestepping for transient calculations [6] and also 
has the option to use adaptive meshing 171. Conventionally, once execution is 
complete then output files of data for the key variables are produced which may 
then be post processed for visualisation purposes. The user may request that the 
output solution is saved for continuation purposes on a future run. 

3 Problem Solving Environments 

This section describes the implementation of the Carmehl code into a PSE form 
suitable for both IRIS Explorer and SCIRun. The differences between the two 
products, and their implications are described later in Section 4. 

IRIS Explorer and SCIRun have several common ideas: both use a visual pro- 
gramming system where individual modules are attached together by a pipeline 
structure, representing the dataflow paths. Each module may have several in- 
puts, either from other modules or from widgets on the control panel of the 
module, and each represents a separate task which must be performed on the 
input data. Each module usually produces a new output dataset, which is then 
passed to the next module, or modules, downstream until the results are visu- 
alised. Since the datatypes required for visualisation are not the same as those 
used for numerical calculations conversion modules must be used. 

3.1 ECLIPSE in IRIS Explorer 

In implementating the EHL code as a module in IRIS Explorer [2] it is possible 
to build on earlier work employing IRIS Explorer for the development of PSEs, 
such as Wright et al. [8]. IRIS Explorer is marketed by NAG as a "advanced 
visual programming environment" for "developing customised visualisation ap- 
plications"'. In IRIS Explorer a shared memory arena is used and the pipeline of 
modules is called a map. Although the data can be imagined travelling through 
the map by the wires, in reality it is only passing pointers to structures of known 
types in the shared memory arena at the end of each module's execution cycle. 

A map in IRIS Explorer executes, normally, by a data set either being read 
in or generated and then control passes to the next module (or modules) down- 
stream in the map. These in turn execute, provided they have all their required 
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inputs and control passes again. If a required input is missing then the module 
will wait until it is received before executing. If a parallel computer is used, 
then simultaneous module firings will be done on separate processors. This is 
because IRIS Explorer starts each module as an entirely separate process in the 
computer. It will be seen how this has both positive and negative consequences. 

The Carmehl code has been implemented as one module containing the en- 
tirety of the numerical solver. The module's control panel is used to set the 
dimensions of the computational domain, the mesh refinement level, along with 
the total number of iterations required on each execution of the module. Other 
problem specific properties can also be defined on this control panel including 
information concerning transient problems, along with parameters governing sur- 
face features. The actual non-dimensional parameters governing the case in ques- 
tion may also be set here, or, through the addition of further modules, as shown 
in Figure 2, the actual operating conditions for the case defined upstream in the 
map, will be displayed. Once the module has completed execution, the datasets 
of the pressure and film thickness are sent down the map for visualisation. 

Fig. 2. ECLIPSE running in IRIS Explorer 

It is through the addition of extra input modules that steering levels may 
be abstracted. Shown in Figure 2 are three different input modules which define 
the physical conditions of the contact, the parameters defining the lubricant, 
and parameters used to set the number of iterations in the multilevel schemes 
used. Another input module, not shown here, is that for grid adaptation. 
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ECLIPSE has been developed from the original Carmehl Fortran code by 
adding an interface routine written in C. The generation of all the IRIS Explorer 
data structures and communication is done through the Application Program- 
ming  Interface (API) which is well documented for both C and Fortran. The 
design of the module control panel is usually done through the Module Builder 
which allows the widgets to be positioned through a visual interface, rather than 
by writing code. The Module Builder will also generate the necessary wrapper 
codes for complete control of the module's firing pattern and communication of 
data, and these require no alteration by a developer. 

Computational steering is implemented in IRIS Explorer using the looping 
mechanisms provided. Rather than saving results to  disk at  the end of a run, 
the work arrays inside Carmehl can be declared as static and hence the previous 
results are automatically available for use on the next run. A solution used in 
this manner may provide a good initial estimate for a differently loaded case, or 
be interpolated for a change of domain size. 

The use of the Hyperscribe module [9] would allow another layer of steering 
to be included. This module stores datasets or variables on disk for future us- 
age, at the user's discretion. If the entire work arrays, previously saved as static, 
were stored based on the problem's input characteristics then a suite of previ- 
ously calculated solutions could be created for future invocations of ECLIPSE 
on separate occasions, or even by other users. 

3.2 ELLIPSE in SCIRun 

SCIRun has been developed by the SCI group at  the University of Utah as a 
computational workbench for visual programming. Although a longstanding re- 
search environment, it has only recently been released as open source software. 
The discussion below is based on the Version 1.2.0 release2. SCIRun was de- 
veloped originally for calculations in computational medicine [lo] but has since 
been extended to  many other applications. 

The overall appearance of SCIRun is similar to that of IRIS Explorer, as can 
be seen in Figure 3 where the implementation of the EHL problem, ELLIPSE, 
can be seen working. In SCIRun when modules are connected together, they are 
known as a network. The module firing algorithm in SCIRun probes the network 
from the desired point of firing so that all modules have all the information they 
need to run, before then sending the information downstream and firing those 
modules. This means that upstream modules will be fired if they need to supply 
information to an input port. Similarly all the downstream modules directly 
affected by the firing will be made aware that new data will be coming. 

SCIRun is a multi-threaded program, and hence a single process, with (at 
least) one thread for each launched module. Therefore every module can have 
access to all same data without the use of shared memory. This has the advan- 
tage that there is more memory available for the generation of datasets to pass 
between modules, and the disadvantage that any operating system limits on the 

SCIRun is available from http://www.sci.utah.edu/ 
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Fig. 3. ELLIPSE running in SCIRun 

memory available to a single process apply to  the entirety of SCIRun, meaning 
that calculation and visualisation are all included in the same maximum space 
allocation defined by the system. It also means that any variables declared as 
static in one invocation of a module will be the same as used in other invocations, 
since the operating system cannot differentiate between the two. 

SCIRun is written in C++ and requires that a t  least the driver routine of 
any contributed module is too. This also means that any of the calls to other 
SCIRun objects, such as datatypes, needs to be done a SCIRun class. By passing 
the relevant class pointers to the Fortran, it is possible to return to the class 
function in order to interact with the SCIRun interface and features. 

In Version 1.2.0 all the module control panels, called UIs in SCIRun, are 
written in Tcl and must be programmed by hand. This clearly limits the ease 
of redesigning the panels, and requires more code to be written to handle the 
interface between widgets and program variables. 

The datatype in SCIRun used to construct meshes for ELLIPSE is Trisurf. 
This is a structure for a surface made up of tesselating triangles. First the list of 
coordinates of the nodes in the mesh are specified, followed by the connectivities 
of the points to form the triangles. As yet, SCIRun has no standard modules for 
manipulating the generated surfaces and so the three dimensional perspective, 
such as shown in Figure 3, must be included in the creation of the mesh. In order 
to get the colourmap distributed across the surface then solution values must be 
stored at each node, again as the mesh is generated. 

Since SCIRun is written as a single threaded process it has added flexibility 
with regard to the rewiring of modules during execution. For the EHL problem, 
when a transient case is run, the output datasets are prepared and released 
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down the pipeline for visualisation at the end of each timestep. With more than 
one solution variable being solved for, there is obviously a choice as to what is 
visualised at anytime. In SCIRun these changes can be made 'on the fly'. For 
example if the pressure solution was being visualised, then it is possible to change 
to a surface geometry plot between timesteps. This is an important feature since 
it allows the user to learn and experiment interactively. 

Parallelism can be easily achieved on SCIRun thanks to its threaded struc- 
ture. SCIRun has its own implementation of threads that can be easily incor- 
porated into a user's code. The use of threads means a shared memory machine 
must be used, but within these constraints the parallel performance for numer- 
ical calculations is very good. Next generation packages, such as Uintah [Ill, 
use a combination of MPI and threads to achieve massively parallel scientific 
computations on terascale computing platforms. 

4 Evaluation 

When comparing these packages it is important to remember that IRIS Explorer 
is a longstanding commercial package supported by NAG whilst the first publi- 
cally available version of SCIRun was only released last year. The development 
histories of the two packages are obviously different. IRIS Explorer has a large 
number of standard modules for reading in various formats of data files, ma- 
nipulation of datasets, and for the visualisation of this data, with the source 
of (practically) every module now being part of the distribution. SCIRun was 
developed in a problem driven way, is completely open source and the number 
and variety of modules will grow in the coming years. 

These different backgrounds are most tellingly reflected in the ease of use of 
the environments. For a novice use wanting to visualise output data using IRIS 
Explorer it is a relatively simple process. By addition of a further few modules 
it is possible to create very intricate output pictures. In SCIRun there is a steep 
learning curve at  present to be able to  visualise data, especially with the smaller 
number of visualisation manipulation modules provided. This manipulation must 
be done in the initial generation of each mesh and is therefore an additional 
computational expense for the main module. 

In the previous section it was seen how IRIS Explorer and SCIRun have 
very different paradigms for operation: IRIS Explorer launches each module as 
a separate process whilst SCIRun is a single, multithreaded process. This has 
both positive and negative aspects. The advantage of threading is that it is very 
simple to get data transfer from one module to another. It was seen how SCIRun 
is more flexible in the rewiring of modules during execution. In IRIS Explorer 
new connections can only be made after the module has finished executing rather 
than after each timestep. This is different to the work of Walkley et  al. [12] where 
the numerical calculation is less demanding, hence when the control panel is re- 
read every few timesteps, new connections are registered. 

In SCIRun all the modules are loaded as shared libraries. This means that for 
module developers, coding changes require recompilation of the relevant library, 
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and currently (though not in future releases) the reloading of SCIRun. In IRIS 
Explorer only the module which has changed needs to  be reloaded using a trivial 
'Replace' operation which remembers the data connections of the module. 

The design features for constructing a new module in IRIS Explorer benefit 
from the visual design tools of the Module Builder which allows easy placement of 
widgets on the control panel and makes the interaction between input variables 
and those in the driver code very simple. In SCIRun each variable must be 
captured by the user from the panel, since the module wrapper is generated 
when the module is first created rather than at  compilation, as in IRIS Explorer. 
This also means that the module wrapper is usually hidden from the developer. 

In terms of solving the EHL problem it has been seen that both software 
packages efficiently handle the PSE structure, achieving similar visualisations 
by slightly different methods. Using the PSE has been tremendously beneficial 
in quickly being able to understand complex datasets and see the influence of 
single parameters. By increasing the regularity of dataset output it is possible 
to watch the numerical solver converge on the solution. Added insight into the 
problem was gained using IRIS Explorer's visualisation modules to overlay the 
surface geometry colour map on the 3D pressure mesh, showing the relationship 
between pressure and film thickness in a distinctive and hitherto unseen way. 

SCIRun benefits from having parallelism at its heart, meaning that incorpo- 
rating it into an individual module can be accomplished in a relatively straight- 
forward manner. Parallelism in IRIS Explorer has mainly only been done by 
using the module as a front end to lauching parallel calculations outside of the 
environment, often on a different machine. Remote processing combined with 
collaborative visualisation is another area where IRIS Explorer currently takes 
the lead. In the companion paper [12] Walkley et al. show how a similar compu- 
t ational steering IRIS Explorer PSE is first developed for interaction in transient 
calculations, and then run collaboratively over a network using COVISA [13]. 

Support for computational steering is central to both packages. Looping of 
modules is relatively simple to implement in IRIS Explorer through simply wiring 
relevant modules together, whereas in SCIRun the dataflow mechanism means 
that care must be taken to ensure that no module is waiting for itself to fire. 

5 Conclusions and Future Work 

The overall conclusion is that both IRIS Explorer and SCIRun provide good ways 
to generate PSE environments for problems, such as the EHL problem considered 
here. An example of how the use of the PSE has enabled extra insight into the 
problem has been explained. 

SCIRun is clearly still in the early stages of its life at Version 1.2.0 whereas 
IRIS Explorer, now at  Version 5.0 is not necessarily too far ahead. Experience 
suggests that IRIS Explorer's functionality can be recreated in SCIRun, although 
may involve more programming and a deeper understanding of the software. 

It is clear that for the construction of PSEs in the coming years both codes 
still have work to be done. Parallelism will be very important for increasing 
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problem sizes. This issue has been successfully addressed in the Uintah PSE 
already developed in Utah [ll]. The issues behind visualisation of significantly 
larger datasets remain to be fully resolved in IRIS Explorer which can create 
intermediary copies of the datasets for each module manipulating them. 
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