
The Taylor Center for PCs: Exploring, Graphing and
Integrating ODEs with the Ultimate Accuracy

Alexander Gofen

The Smith-Kettlewell Eye Research Institute, 2318 Fillmore St., San Francisco, CA 94102,
USA

galex@ski.org, www.ski.org/gofen

Abstract. A software package intended as a cross-platform integrated
environment for exploring, graphing, real time 2D and 3D “playing” and
integrating ODEs with the Modern Taylor method, is presented. Designed
under Windows in Delphi-6, the package implements a powerful Graphical
User Interface (GUI), and is portable to windowed versions of Linux also. The
downloadable Demo of the package displays a variety of meaningful examples
including such an illustrative as the Problem of Three Bodies and
“Choreography” [8].

1 Introduction

It seems, there were no sophisticated Taylor Solvers designed for PCs since
ATOMFT [2], and definitely not as a cross platform Windows/Linux application
developed in Delphi. Thus, the goal was to develop a new version of such a package,
called the Taylor Center (similarly to “Audio Centers” with radio, cassette, CD
players). It has to take full advantage of:

(1) Hardware breakthroughs such as linear memory and the high speed/memory
characteristics of the modern PCs;

(2) Software breakthroughs such as the new metaphor of modern operating
environments – Graphical User Interface (GUI) and event driven logic, supported by
such developer-friendly and efficient systems as Delphi-6 (for Windows) and Kylex
(for Linux);

(3) Some new features of the Modern Taylor method and its applications.

From the programmatic point of view, any Taylor solver differs from conventional
integrators in that the input – an Initial Value Problem – should be provided not as a
function simply computing the right hand parts, but rather as arithmetic expressions
representing the right hand parts themselves in order to enable automatic
differentiation. Typically, these right hand parts must be (automatically) reduced to
the so called canonic equations first [1, 3], but this version of the Taylor solver is built
around an algorithm evaluating postfix sequences obtained while parsing the so called
Linear Elaborated Declarations (in ADA terminology):

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2329, pp. 562−571, 2002.
 Springer-Verlag Berlin Heidelberg 2002

u0 = f0({numeric values only});
u1 = f1(u0, {numeric values});
. . . .
un = fn(u0, u1,…, un-1, {numeric values}).

(1)

Here each variable first appears in the left hand part before it may be used in the right
hand parts of the subsequent equations (just like the principle of declaring constants in
Pascal).

To evaluate (1), first we apply a recursive parsing procedure to each line to obtain its
postfix sequence, whose operands are either numeric values, or the previously
computed variables. The evaluation process of the postfix sequence consists of
locating triplets (Operand1, Operand2, Operation °) in it, evaluating the elementary
equation

Result := Operand1 ° Operand2,

and replacing the triplets with the corresponding Result until the whole sequence
reduces to just one term – the final result of the evaluation.

The modern Taylor Method means basically iterative evaluation of recurrent
equations similar to (1). Let us consider the standard Initial Value Problem for ODEs:

uk'=fk(u1,…, um), uk|t=a= ak, k=1,…m (2)

where u
k
' means derivatives with respect to t. The equations (2) make it possible to

obtain the set of all first order derivatives u
k
' by computing the right hand parts.

According to the classical Taylor method, these equations make it possible to obtain
the set of all N-order derivatives u

k

(N) also. To do that, we have to recurrently apply the
well known rules of differentiation to both parts of the equations and substitute the
already obtained numerical values. As such, the classical Taylor method had not been
considered as a numerical method for computers at least for two reasons: applying the
formulas for N-th derivative to complex expressions (superposition of several
functions in the right hand parts) is both challenging and computationally wasteful
due to the exponentially growing volume of calculations in the general case).

On the contrary, the Modern Taylor Method capitalizes on the fact that however
complicated the right hand parts are, they are equivalent to a sequence of simple
formulas (instructions). Indeed, this sequence of instructions is exactly that resulting
from the process of postfix evaluation (which is similar to reducing the source system
to the so called Canonical equations [1, 3]). If the set of the allowed operations
consists of the four arithmetic operations (and also raising to constant power,
exponent and logarithm), computing the N-th derivative requires only no more than
O(N2) operations and it is easily programmable [6]. Thus, unlike its classical
counterpart, the Modern Taylor Method becomes viable and competitive for a
computer implementation.

563The Taylor Center for PCs

2 How it is implemented

To achieve more flexibility in specifying an Initial Value problem (2), the source data
is organized as Linear Elaborated Declarations in four sections in the given order:
Symbolic constants, Initial values, Auxiliary variables, ODEs (Table 1).

Table 1. How the source data of the Initial Value Problem is organized as Linear Elaborated
Declarations

Variables and equations Explanation
c1 = NumericValue
c2 =C2(c1, NumericValues)
.

Symbolic constants and
functions of them

u1 = U1(c1, c2,…, NumericValues)
.
um = Um(c1, c2,…, u1,…, NumericValues)

Initial values for
the Main variables and
functions of them

v1 = V1(c1,…, um, NumericValues)
v2 = V2(c1,…, um, v1, NumericValues)
.

Auxiliary variables

u1' = f1(u1,…, um, c1, c2,…, v1, v2,…)
.
um' = fm(u1,…, um, c1, c2,…, v1, v2,…)

The source ODEs

 Internal Auxiliary
variables

The Symbolic constants and Auxiliary variables make it possible to parameterize
Initial Value problems and to optimize computation by eliminating re-calculations of
common sub-expressions. For example, in the Three Body Problem the section of
Constants is:

i15 = -1.5 {exponent index used in subsequent equations}
m1 = 1 {masses}
.
x1c = 1 {initial positions of the three bodies}
.
x3c = cos(240)
.

The equations in the section Auxiliary variables are these:

dx12 = x1 - x2 {projections of the distances between the bodies}
.
r12 = (dx12^2 + dy12^2)^i15 {common sub-expressions of the ODEs}
r23 = (dx23^2 + dy23^2)^i15
r31 = (dx31^2 + dy31^2)^i15

The ODEs themselves are:

564 A. Gofen

x1' = vx1
.
vy3' = m2*dy23*r23 - m1*dy31*r31

Without the auxiliary variables, the more familiar, but non-optimized equations would
look like this (just the last one)

vy3' = m2(y2-y3)((x2-x3)
2 + (y2-y3)

2) -3/2 + m1(y1-y3)((x3-x1)
2 + (y3-y1)

2)-3/2

(see [7] for the downloadable Demo). The data from the Table 1 is to be processed in
the following three stages:

(1) Like the list of linear elaborated declarations, it should be parsed line by line into
the postfix sequence for the subsequent automatic differentiation process;

(2) The differentiation process up to the specified order is performed. The set of
coefficients of the Taylor expansion (also called the Analytical elements) for each
variable is obtained;

(3) With the obtained Taylor coefficients, the convergence radius R should be
estimated, an integration step h<R determined and the Taylor expansion applied to
increment the all main variables. Then, the stages 2 and 3 may be repeated as many
times as necessary (unless a singularity is reached).

The syntax checking and parsing for the stage 1 is done just as in the case of an
arbitrary arithmetic expression [4]. As to the evaluation, here we need a more
sophisticated algorithm, capable of evaluating N-order derivatives for results of each
operation in the postfix sequence. To achieve that, we will “compile” the postfix
sequences into the three-address instructions of an abstract Processor, and create the
software implementation of that Processor. This “compiled set of instructions” for a
given problem would remain the same even if we need to switch from real numbers to
complex numbers, or from one real type to another, including the cases of software
emulated very long floating point types.

3 The Evaluating and Differentiating Processor

The memory for this Processor is the special dynamic array of auxiliary variables
AuxVars:

AuxVars : array of array of extended;

An element AuxVars[i] corresponds to the variable or symbolic constant in line i of
Table 1, while AuxVars[i, j] means the j-order derivative of that variable (when non-
constant).

The format of the instruction of the Processor is this:

565The Taylor Center for PCs

type TInstruction = record
ty : (cc, cv, vc, vv); {flags: (C)onstant or (V)ariable}

 op : char; {operation to perform}
 i1, i2, i3 : word {addresses, i.e. indexes in AuxVars}

end;

For each postfix triplet (Operand1, Operand2, Operation) there is an instruction of
the type TInstruction, such that Operand1 is in AuxVars[i1], Operand2 in
AuxVars[i2], and the result of performing of the Operation is assigned to
AuxVars[i3]. To compile a “program” evaluating a postfix sequence, we should scan
the postfix sequence from left to right until a first triplet (Operand1, Operand2,
Operation) is encountered. So, the postfix sequence is encoded in a set of instructions,
preserved for the subsequent massive computations of the corresponding arithmetic
expression.

Actually, this Processor is designed to do not only simple evaluations like

Result := Operand1 ° Operand2,

but also to perform the iterative differentiation up to any given order

Result(N) := (Operand1 ° Operand2)(N), N = 0, 1, 2,…

given the corresponding formulas for computing N-th derivative of certain functions –
for example the Leibnitz formula

 N

(uv)(N) = Σ u(i)v(N-i)

i=0

and other similar ones [1,3,6] (all the derivatives are normalized meaning u(i)/i!). So,
with this Processor we can obtain derivatives of any required order in the initial point
a for all variables (Table 1) representing the source initial value problem.

4. Estimation of the Convergence Radius

To estimate the convergence radius, we use the algorithm based on the formula of
Cauchy-Hadamard

R
-1

 = sup |an|
1/n

where Taylor coefficients an are obtained for each unknown function in the source
ODEs. Each component of the solution may have its own radius, thus the procedure
selects the minimal among them, which should be considered as a convergence radius
for the whole system. Although the formula is exact, the result is heuristic because the

566 A. Gofen

formula is applied to only a finite number of terms, with simplified assumptions for
obtaining the supremum. As a matter of fact, in order to obtain the right integration
step h, we neither can nor even need to know the exact value of the radius: in any case
the step value is going to be adjusted to meet the required accuracy.

So, given the Taylor coefficients a0, a1, …, an, first of all we obtain their floating point
exponents e0, e1, …, en using the standard procedure FrExp(x, m, result) for all non-
zero coefficients, and assigning -4951 (the minimal possible type extended exponent)
to zero coefficients. These are the rough log2 of the values, so that logarithms of the
sequence of the required fractional powers for further processing are these:

e1/1, e2/2, …, en/n = sn.

The supremum of the sequence is the greatest point of condensation. To find it for this
finite sequence (usually 30-40 terms), the following heuristic procedure is applied.

The sequence {sn} is sorted in descending order (suppose, it is already done). A
condensation point of the sequence most probably belongs to such a segment [si+w; si],
whose length si - si+w is minimal (w is about n/6, usually 4-5). Thus, we scan {sn} for
the most narrow difference si - si+w, i=1,2,... expecting that the greatest condensation
point must be there. The i, delivering that minimum, is further considered for
obtaining the average s of si ,…, si+w, and then (returning from the binary logarithms
back to the basic values), the value 2-s is accepted as a heuristic radius of convergence
R. As many numeric experiments showed, this very economical procedure delivers
quite a reasonable value for R.

5. The Step Size and Accuracy Control

The problem of selecting the optimal order of approximation N and integrating step h
(to meet the required accuracy) is vital for any implementation of the Taylor method
[1,3]. For example, according to Moore’s rule of thumb, it is advised to set N as the
number of decimal digits in the floating point mantissa (19 for the 8-byte mantissa in
the type extended), and to specify h so that the quotient q=h/R=0.1. In the Taylor
Center the defaults for these values are N=30, q=0.5. This q affects each of the three
modes of the error control.

In the No error control mode the value of q is not automatically adjusted and remains
that specified by the user. Generally speaking, the smaller the quotient, the higher the
accuracy, but more steps would be necessary to cover the given segment (which may
compromise the accuracy).

Even with no error control we can estimate the actual accuracy by switching the
direction back and reaching the initial point. The column of the differences then will
show how far we are away from the initial values.

567The Taylor Center for PCs

Another approach to estimate the accuracy in this mode is to perform the integration
until the given point twice with different quotients q, say with q = 0.2 and q = 0.05,
and to compare the results.

The following two methods of error control rely on the values of the absolute and/or
relative error tolerance entered by the user.

The Back-step error control mode changes the algorithm of integration so that each
integration step occurs in a loop of step adjustments in the following way.

(1) The step h obtained in point t with the given starting value of q =q0 (shown on the
display) is applied, then the algorithm computes the new element in point t+h and the
Taylor expansion in this new point with the step value (-h). Ideally that must be equal
to the solution in the previous point t.

(2) If the components of the solution fit the specified error tolerance in the table, this
step doesn’t require any adjustment and it ends the loop. Otherwise…

(3) The step is split (halved), and the process repeats either until the specified
accuracy is reached, or the limit (of 30 splitting) is exceeded. The latter means that the
specified accuracy cannot be achieved for the given point due to a variety of reasons.
(The 30 splits mean that the last attempt was made with the step as little as 2-30 of the
initial step).

Similarly, the Half-step error control also arranges a loop of step adjustments with
the goal of achieving the specified accuracy. It works as follows.

(1) The step h obtained with the given starting value of q = q0 is applied, and then the
algorithm computes the new element in point t+h to be used as a vector of check
values. The step h is split: h = h1 + h2.

(2) The values in the same point t+h, h = h1 + h2, are obtained in two steps and then
compared with the check values. If the components of the solution fit the specified
error tolerance, this step doesn’t require any adjustment and ends the loop.
Otherwise…

(3) The step is split (halved), and the process repeats either until the specified
accuracy is reached, or the limit (of 30 splitting) is exceeded. The latter means that the
specified accuracy cannot be achieved for the given point.

6 Reaching the Ultimate Accuracy

The ultimate accuracy at each finite integration step (i.e. the accuracy up to all
available digits of the mantissa) is an ambitious, but achievable goal in the framework
of the Taylor method and specifically in this package (the user has to specify the
relative error tolerance for the desired components say less than 2-64).

568 A. Gofen

-13.

Therefore, in order to achieve the best accuracy in multiple step integration, we have
to:

(1) Minimize the number of steps needed to cover the required segment by using a
method of integration with finite steps independent on the required accuracy. Indeed,
this method is the Taylor method.

(2) Implement a longer (or of any given length) type of float numbers and arithmetic
over them as a software emulation (it exists in several versions of Pascal).

569

 integration step may still not be enough for obtaining all correct
digits in the result of the two or more integration steps: such is the nature of
essentially unstable problems like those mentioned above. For example, for a
Lagrange case of the three body problem, in spite of the fact that the accuracy at each
individual step was as high as 10-19, after about 150 such steps covering the full
period, the accuracy dropped till only 10

Several cases of essentially unstable problems (the two body problem, or the three
body Lagrange case producing symmetrical ellipses with low enough eccentricities)
were tested with the goal of reaching the ultimate accuracy. About 150-200 steps
were required to cover one period, and this highest accuracy was achieved at each
step (maybe except one).

The reason while the Taylor method may fail in achieving the highest accuracy is the
same that may happen in any numeric computations with floating point numbers: a
subtractive error. It occurs when a sum or difference of the computed values is zero,
or so near zero, that the exponent of the result is N units smaller than either of the
operand’s exponents (N is near the length of the mantissa, 64 for the type extended).
Whether the effect of such a dramatic loss of precision is catastrophic for a given
computational process depends on the way it propagates farther to the end result.

For the Taylor method, summing is a part of computing almost all derivatives, thus
the subtractive error occurs when any of the n-order derivatives or its computed sub-
expressions in a current point reaches a near-zero value. The bigger the n, the easier
this effect is eliminated by the factor hn while selecting a smaller step h. In the worst
exceptional case when n=1 (or the Taylor series’ sum is zero), no small h can cure the
problem in this point. Still, unless this point is not a singularity for the solution, there
is always a simple remedy: we can avoid this exceptional point selecting the previous
step a bit smaller. After that, a new finite step would make it posiible to easily jump
over this “problem” point (according to the theory of analytical functions, the zero
points may be only isolated).

It is worth noting that whichever integrating method is used, the ultimate accuracy at
each and every one

The Taylor Center for PCs

7 Features of the Taylor Center

With this version of the Taylor Center you can:

- Specify and study the Initial Value Problems for virtually any system of ODEs in the
standard format with numeric and symbolic constants and parameters;

- Perform numerical integration of Initial Value Problems with the highest possible
accuracy while the step of integration remains finite and does not approach zero
(instead, the order of approximation is high);

- Perform integration either "blindly", or graphically visualized. It stops either after a
given number of steps, or when an independent variable reaches a given value, or
when a dependent variable reaches a given value (as explained in the next item);

- Switch integration between several versions of ODEs defining the same trajectory,
but with respect to different independent variables. For example, it is possible to
switch the integration from that with respect to t to that by x, or by y in order to
reach a given end value (or zeros) of a dependent variable;

- Integrate piecewise-analytical ODEs;

- Specify different methods of controlling the accuracy and the step size;

- Specify accuracy for individual components either as an absolute or relative error
tolerance, or both;

- Apply the order of approximation as high as you like (30, or 40 or whatever), and
get the solution in the form of the set of analytical elements – Taylor expansions
covering the required domain;

- Study Taylor expansions and the radius of convergence for the solution at all points
of interest up to any high order (with the only limitation that the terms in the series
do not exceed the maximum value of about 104932 implied by the 10-byte
implementation of the real type extended);

- Graph color curves (trajectories) for any pair of variables of the solution – up to 7 on
one screen – either as plane projections, or as 3D stereo images (for triplets of
variables) to be watched through anaglyphic (red/blue) glasses;

- "Play" dynamically the near-real time motion along the computed trajectories either
as 2D or 3D stereo animation;

- Explore several meaningful examples supplied with the package such as the problem
of Two and Three Bodies. Symbolic constants and expressions make it possible to
parameterize the equations and initial values and to easily try different initial
configurations of special interest.

In particular, the examples include a fascinating case of the so called Choreography
for the Three Body motion, an eight-shaped orbit, discovered just recently (2000) by
Chenciner and Montgomery [8]. You can "feed" those equations into the Taylor
Center, integrate them, draw the curves and play the motion in the real-time mode all
in the same place.

570 A. Gofen

The features of the future versions of the product will include everything above plus
the following:

- It will come not only as the Taylor Center GUI executable, but also as the separate
units, allowing the users to include them directly in their Delphi projects to perform
massive computations with ODEs, and also as a DLL to use in other environments;

- It will implement the Merge procedure and a library of ODEs, defining a large
variety of commonly used elementary functions. (Presently, the functions which are
not in the allowed limited list may be used also – providing that the user declares
the ODEs defining them and properly links them with the source;

- It will work for complex numbers, which will make it possible to study the solutions
of ODEs in the complex plane in order to locate and explore their singularities;

- The application will be ported to Linux/Kylex;

- The set of the internal differentiation instructions will be translated into the machine
code - to reach the highest possible speed for massive computations. (Meanwhile it
is an emulator written in Delphi which runs these instructions). Also, it may be
translated into instructions in Pascal, C or Fortran to be further compiled and linked
with other applications;

- Integrating by a parameter or integrating boundary value problems [6].

References

1. Moore, R. E.: Interval Analysis. Prenitce-Hall, Englewood Cliffs, N.Y. (1966).
2. Chang Y. F., The ATOMFT User Manual. Version 2.50, 976 W. Foothill Blvd . #298,

Claremont, CA 91711 (1988)
3. Gofen, A. M.: Taylor Method of Integrating Ordinary Differential Equations: the Problem of

Steps and Singularities. Cosmic Research, Vol. 30, No. 6, pp. 581-593 (1992)
4. Gofen, A. M.: Recursion Excursion. Delphi Informant Magazine. Vol. 6, No. 8 (2000)
5. Gofen, A. M.: Recursive Journey to Three Bodies. Delphi Informant Magazine. Vol. 8, No. 3

(2002)
6. Gofen, A. M.: ODEs and Redefining the Concept of Elementary Functions. These

Proceedings (2002)
7. Gofen, A. M.: The Taylor Center Demo for PCs.

http://www.ski.org/rehab/mackeben/gofen/TaylorMethod.htm
8. Chenciner, Montgomery. The N-body problem “Choreography” www.maia.ub.es/dsg

571The Taylor Center for PCs

	Introduction
	How it is implemented
	The Evaluating and Differentiating Processor
	Estimation of the Convergence Radius
	The Step Size and Accuracy Control
	Reaching the Ultimate Accuracy
	Features of the Taylor Center
	References

