
Implementing Scalable Parallel Search
Algorithms for Data-Intensive Applications

L. Ladányi 1, T. K. Ralphs!2, and M. J. Saltzman3

1 Department of Mathematical Sciences, IBM T. J. Watson Research Center,
Yorktown Heights, NY 10598, ladanyi@us.ibm.com

2 Department of Industrial and Systems Engineering, Lehigh University, Bethlehem,
PA 18017, tkralphs@lehigh.edu, www.lehigh.edu/~tkr2

3 Department of Mathematical Sciences, Clemson University, Clemson, SC 29634,
mjs@clemson.edu, www.math.clemson.edu/~mjs

Abstract. Scalability is a critical issue in the design of parallel software
for large-scale search problems. Previous research has not addressed this
issue for data-intensive applications. We describe the design of a library
for parallel search that focuses on efficient data and search tree manage-
ment for such applications in distributed computing environments.

1 Introduction

This paper describes research in which we are seeking to develop highly scal-
able algorithms for performing large-scale parallel search in distributed-memory
computing environments. This project builds on previous work in which we de-
veloped two object-oriented, generic frameworks for implementing parallel al-
gorithms for large-scale discrete optimization problems (DOPs). SYMPHONY
(Single- or Multi-Process Optimization over Networks) [12, 10] is a framework
written in C and COIN/BCP [13] is a framework written in the same spirit
in C++. Because of their generic, object-oriented designs, both are extremely
flexible and can be used to solve a wide variety of discrete optimization prob-
lems. However, these frameworks have somewhat limited scalability. The goal of
this research is to address these scalability issues by designing a more general
framework called the Abstract Library for Parallel Search (ALPS).

ALPS is a C++ class library upon which a user can build a wide variety of
parallel algorithms for performing tree search. Although the framework is more
general than SYMPHONY and COIN/BCP, we will initially be interested in
using ALPS to implement algorithms for solving large-scale DOPs. DOPs arise in
many important applications, but most are in the complexity classNP-complete
so there is little hope of finding provably efficient algorithms [3]. Nevertheless,
intelligent search algorithms, such as branch, constrain, and price (BCP), have
been tremendously successful at tackling these difficult problems.

To support the implementation of parallel BCP algorithms, we have designed
two additional C++ class libraries built on top of ALPS. The first, called the

! Funding from NSF grant ACR-0102687 and the IBM Faculty Partnership Program.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2329, pp. 592−602, 2002.
 Springer-Verlag Berlin Heidelberg 2002



Branch, Constrain, and Price Software (BiCePS) library, implements a generic
framework for relaxation-based branch and bound. In this library, we make very
few assumptions about the nature of the relaxations, i.e., they do not have to
be linear programs. The second library, called the BiCePS Linear Integer Solver
(BLIS), implements LP-based branch and bound algorithms, including BCP.

The applications we are interested in are extremely data-intensive, meaning
that they require the maintenance of a vast amount of information about each
node in the search tree. However, this data usually does not vary much from
parent to child, so we use data structures based on a unique differencing scheme
that is memory efficient. This scheme for storing the tree allows us to handle
problems much larger than we could otherwise.

A number of techniques for developing scalable parallel branch and bound
algorithms have been proposed in the literature [1, 2, 4, 5, 15]. However, we know
of no previous work specifically addressing the development of scalable algo-
rithms for data-intensive applications. Standard techniques for parallel branch
and bound break down in this setting, primarily because they all depend on
the ability to easily shuttle search tree nodes between processors. The data
structures we need in order to create efficient storage do not allow this fluid
movement. Our design overcomes this difficulty by dividing the search tree into
subtrees containing a large number of related search nodes that can be stored
together. This requires the design of more sophisticated load balancing schemes
that accommodate this storage constraint.

2 Motivation

2.1 Scalability Issues for Parallel Search Algorithms

We will address two primary design issues that are fundamental to the scalability
of parallel search algorithms. Control mechanisms are the methods by which
decisions are made regarding the overall direction of the search, i.e., in what order
the search tree nodes should be processed. The design of control mechanisms is
closely tied to load balancing, the method by which we ensure that all processors
have useful work to do. In general, centralized control mechanisms allow better
decision making, but limit scalability by creating decision-making bottlenecks.
Decentralized control mechanisms alleviate these bottlenecks, but reduce the
ability to make decision based on accurate global information.

A more important issue for data-intensive algorithms is efficient data han-
dling. In these algorithms, there are a huge number of data objects (see Sect. 3.2
for a description of these) that are global in nature and must be efficiently gen-
erated, manipulated, and stored in order to solve these problems efficiently. The
speed with which we can process each node in the search tree depends largely on
the number of objects that are active in the subproblem. Thus, we attempt to
limit the set of active objects in each subproblem to only those that are necessary
for the completion of the current calculation. However, this approach requires
careful bookkeeping. This bookkeeping becomes more difficult as the number of
processors increases.

593Implementing Scalable Parallel Search Algorithms for Data-Intensive Applications



2.2 Branch and Bound

In order to illustrate the above principles and define some terminology, we first
describe the basics of the branch and bound algorithm for optimization. Branch
and bound uses a divide and conquer strategy to partition the solution space into
subproblems and then optimizes individually over each of them. In the processing
or bounding phase, we relax the problem, thereby admitting solutions that are
not in the feasible set S. Solving this relaxation yields a lower bound on the
value of an optimal solution.1 If the solution to this relaxation is a member of
S, then it is optimal and we are done. Otherwise, we identify n subsets of S,
S1, . . . , Sn, such that ∪ni=1Si = S. Each of these subsets is called a subproblem;
S1, . . . , Sn are also sometimes called the children of S. We add the children of S
to the list of candidate subproblems (those which need processing). This is called
branching.

To continue the algorithm, we select one of the candidate subproblems, re-
move it from the list, and process it. There are four possible results. If we find a
feasible solution better than the current best, then we replace the current best
by the new solution and continue. We may also find that the subproblem has
no solutions, in which case we discard, or fathom it. Otherwise, we compare the
lower bound to upper bound yielded by the current best solution. If it is greater
than or equal to our current upper bound, then we may again fathom the sub-
problem. Finally, if we cannot fathom the subproblem, we are forced to branch
and add the children of this subproblem to the list of active candidates. We con-
tinue in this way until the list of active subproblems is empty, at which point our
current best solution is the optimal one. The order in which the subproblems are
processed can have a dramatic effect on the size of the tree. Processing the nodes
in best-first order, i.e., always choosing the candidate node with the lowest lower
bound, minimizes the size of the search tree. However, without a centralized
control mechanism, it may be impossible to implement such a strategy.

2.3 Branch, Constrain, and Price

Branch, constrain, and price is a specific implementation of branch and bound
that can be used for solving integer programming problems. Early works [6, 7,
11, 16] laid out the basic framework of BCP. Since then, many implementations
(including ours) have built on these preliminary ideas. In a typical implemen-
tation of BCP, the bounding operation is performed using linear programming.
We relax the integrality constraints to obtain a linear programming (LP) re-
laxation. This formulation is augmented with additional, dynamically generated
constraints valid for the convex hull of solutions to the original problem. By
approximating the convex hull of solutions, we hope to obtain an integer solu-
tion. If the number of columns in the constraint matrix is large, these can also
be generated dynamically, in a step called pricing. When both constraints and
variables are generated dynamically throughout the search tree, we obtain the

1 We assume without loss of generality that we wish to minimize the objective function

594 L. Ladányi, T.K. Ralphs, and M.J. Saltzman



algorithm known as branch, constrain, and price. Branching is accomplished by
imposing additional constraints that subdivide the feasible region. Note that the
data objects we referred to in Sect. 2.1 are the constraints and the variables. In
large-scale BCP, the number of these can be extremely large.

3 The Library Hierarchy

To make the code easy to maintain, easy to use, and as flexible as possible,
we have developed a multi-layered class library, in which the only assumptions
made in each layer about the algorithm being implemented are those needed for
implementing specific functionality efficiently. By limiting the set of assumptions
in this way, we ensure that the libraries we are developing will be useful in a
wide variety of settings. To illustrate, we briefly describe the current hierarchy.

3.1 The Abstract Library for Parallel Search

The ALPS layer is a C++ class library containing the base classes needed to
implement the parallel search handling, including basic search tree management
and load balancing. In the ALPS base classes, there are almost no assumptions
made about the algorithm that the user wishes to implement, except that it is
based on a tree search. Since we are primarily interested in data-intensive appli-
cations, the class structure is designed with the implicit assumption that efficient
storage of the search tree is paramount and that this storage is accomplished
through the compact differencing scheme we alluded to earlier. This means that
the implementation must define methods for taking the difference of two nodes
and for producing an explicit representation of a node from a compact one.
Note that this does not preclude the use of ALPS for applications that are not
data-intensive. In that case, the differencing scheme need not be used.

In order to define a search order, ALPS assumes that there is a numerical
quality associated with each subproblem that is used to order the priority queue
of candidates for processing. For instance, the quality measure for branch and
bound would most likely be the lower bound in each search tree node. In addition,
ALPS has the notion of a quality threshold. Any node whose quality falls below
this threshold is fathomed. This allows the notion of fathoming to be defined
without making any assumption about the underlying algorithm. Again, this
quality threshold does not have to be used if it doesn’t make sense.

Also associated with a search tree node is its current status. In ALPS, there
are only four possible stati indicating whether the subproblem has been processed
and what the result was. The possible stati are: candidate (available for further
processing), processed (processed, but not branched or fathomed), branched,
and fathomed. In terms of these stati, processing a node involves computing
its quality and converting its status from candidate to processed. Following
processing, the node is either branched, producing children, or fathomed.

595Implementing Scalable Parallel Search Algorithms for Data-Intensive Applications



3.2 The Branch, Constrain, and Price Software Library

Primal and Dual Objects. BiCePS is a C++ class library built on top of
ALPS, which implements the data handling layer appropriate for a wide variety
of relaxation-based branch and bound algorithms. In this layer, we introduce
the concept of a BcpsObject, which is the basic building block of a subproblem.
The set of these objects is divided into two main types, the primal objects and
the dual objects. Each of the primal objects has a value associated with it that
must lie within an interval defined by a given upper and lower bound. One can
think of the primal objects as being the variables.

In order to sensibly talk about a relaxation-based optimization algorithm,
we need the notion of an objective function. The objective function is defined
simply as a function of the values of the primal objects. Given the concept of an
objective function, we can similarly define the set of dual objects as functions of
the values of the primal objects. As with the values of the primal objects, these
function values are constrained to lie within certain given bounds. Hence, one
can think of the dual object as the constraints.

Note that the notion of primal and dual objects is a completely general
one. With this definition of variables and constraints, we can easily apply the
general theoretical framework of Lagrangian duality. In Lagrangian duality, each
constraint has both a slack value and the value of a dual multiplier or dual
variable associated with it. Similarly, we can associate a pair of values with each
variable, which are the reduced cost (the marginal reduction in the objective
function value or the partial derivative of the objective function with respect to
the variable in question) and the value of the primal variable itself.

Processing. Although the objects separate naturally into primal and dual
classes, our goal is to treat these two classes as symmetrically as possible. In
fact, in almost all cases, we can treat these two classes using exactly the same
methods. In this spirit, we define a subproblem to be comprised of a set of ob-
jects, both primal and dual. These objects are global in nature, which means
that the same object may be active in multiple subproblems. The set of objects
that are active in the subproblem define the current relaxation that can be solved
to obtain a bound. Note that this bound is not valid for the original problem
unless either all of the primal objects are present or we have proven that all of
the missing primal objects can be fixed to value zero.

We assume that processing a subproblem is an iterative procedure in which
the list of active objects can be changed in each iteration by generation and
deletion, and individual objects modified through bound tightening. To define
object generation, we need the concepts of primal solution and dual solution,
each consisting of a list of values associated with the corresponding objects.
Object generation then consists of producing variables whose reduced costs are
negative and/or constraints whose slacks are negative, given the current primal
or dual solutions (these are needed to compute the slacks and reduced costs).

With all this machinery defined, we have the basic framework needed for pro-
cessing a subproblem. In overview, we begin with a list of primal and dual objects

596 L. Ladányi, T.K. Ralphs, and M.J. Saltzman



from which we construct the corresponding relaxation, which can be solved to
obtain an initial bound for the subproblem. We then begin to iteratively tighten
the bound by generating constraints from the resulting primal solution. In ad-
dition, we may wish to generate variables. Note that the generation of these
objects “loosens” the formulation and hence must be performed strategically.
The design also provides for multi-phase approaches in which variable genera-
tion is systematically delayed. During each iteration, we may tighten the object
bounds and use other logic-based methods to further improve the relaxation.

Branching. To perform branching, we choose a branching object consisting of
both a list of data objects to be added to the relaxation (possibly only for the
purpose of branching) and a list of object bounds to be modified. Any object
can have its bounds modified by branching, but the union of the feasible sets
contained in all child subproblems must contain the original feasible set in order
for the algorithm to be correct.

3.3 The BiCePS Linear Integer Solver Library

BLIS is a concretization of the BiCePS library in which we implement an LP-
based relaxation scheme. This simply means that we assume the objective func-
tion and all constraints are linear functions of the variables and that the relax-
ations are linear programs. This allows us to define some of the notions discussed
above more concretely. For instance, we can now say that a variable corresponds
to a column in an LP relaxation, while a constraint corresponds to a row. Note
that the form a variable or a constraint takes in a particular LP relaxation de-
pends on the set of objects that are present. In order to generate the column
corresponding to a variable, we must have a list of the active constraints. Con-
versely, in order to generate the row corresponding to a constraint, we must be
given the list of active variables. This distinction between the representation and
realization of an object will be explored further is Sect. 5.

4 Improving Scalability

One of the primary goals of this project is to increase scalability significantly
from that of SYMPHONY and COIN/BCP. We have already discussed some
issues related to scalability in Sect. 2. As pointed out there, this involves some
degree of decentralization. However, the schemes that have appeared in the liter-
ature are inadequate for data-intensive applications, or at the very least, would
require abandoning our compact data structures. Our new design attempts to
reconcile the need for decentralization with our compact storage scheme, as we
will describe in the next few sections.

4.1 The Master-Hub-Worker Paradigm

One of the main difficulties with the master-slave paradigm employed in SYM-
PHONY and COIN/BCP is that the tree manager becomes overburdened with

597Implementing Scalable Parallel Search Algorithms for Data-Intensive Applications



requests for information. Furthermore, most of these requests are synchronous,
meaning that the sending process is idle while waiting for a reply. Our differ-
encing scheme for storing the search tree also means that the tree manager may
have to spend significant time simply reconstructing subproblems. This is done
by working back up the tree undoing the differencing until an explicit description
of the node is obtained.

Our new design employs a master-hub-worker paradigm, in which a layer
of “middle management” is inserted between the master process and the worker
processes. In this scheme, each hub is responsible for managing a cluster of work-
ers whose size is fixed. As the number of processors increases, we simply add more
hubs and more clusters of workers. However, no hub will become overburdened
because the number of workers requesting information from it is limited. This
scheme, which maintains many of the advantages of global decision-making while
moving some of the computational burden from the master process to the hubs,
is similar to a scheme implemented by Eckstein in his PICO framework [1].

Each hub is responsible for balancing the load among its workers. Periodi-
cally, we must also perform load balancing between the hubs themselves. Note
that this load-balancing must be done not only with respect to the quantity
of work available to each hub, but also the quality, i.e., nodes of high-quality
must be evenly distributed among the hubs. This is done by maintaining skele-
ton information about the full search tree in the master process. This skeleton
information includes only what is necessary to make load balancing decisions—
primarily the quality of each of the subproblems available for processing. With
this information, the master is able to match donor hubs (those with too many
nodes or too high a proportion of high-quality nodes) and receiver hubs, who
then exchange work appropriately.

4.2 Task Granularity

The most straightforward approach to improving scalability is to increase the
task granularity and thereby reduce the number of decisions that need to be
made centrally, as well as the amount of data that has to be sent and received.
To achieve this, the basic unit of work in our design is an entire subtree. This
means that each worker is capable of processing an entire subtree autonomously
and has access to all of the methods used by the tree manager to manage the
tree, including setting up and maintaining its own priority queue of candidate
nodes, tracking and maintaining the objects that are active within its subtree,
and performing its own processing, branching, and fathoming. Each hub is re-
sponsible for tracking a list of subtrees of the current tree that it is responsible
for. The hub dispenses new candidate nodes (leaves of one of the subtrees it
is responsible for) to the workers as needed and tracks their progress. When a
worker receives a new node, it treats this node as the root of a subtree and begins
processing that subtree, stopping only when the work is completed or the hub
instructs it to stop. Periodically, the worker informs the hub of its progress.

The implications of changing the basic unit of work from a subproblem to a
subtree are vast. Although this allows for increased grain size, as well as more

598 L. Ladányi, T.K. Ralphs, and M.J. Saltzman



compact storage, it does make some parts of the implementation much more
difficult. For instance, we must be much more careful about how we perform
load balancing in order to try to keep subtrees together. We must also have a
way of ensuring that the workers don’t go too far down on an unproductive path.
In order to achieve this latter goal, each workers must periodically check in with
the hub and report the status of the subtree it is working on. The hub can then
decide to ask the worker to abandon work on that subtree and send it a new
one. An important point, however, is that this decision making is always done
in an asynchronous manner. This feature is described next.

4.3 Asynchronous messaging

Another design feature that increases scalability is the elimination of synchronous
requests for information. This means that every process must be capable of work-
ing completely autonomously until interrupted with a request to perform an ac-
tion, either by its associated hub (if it is a worker) or by the master process (if
it is a hub). In particular, this means that each worker must be capable of act-
ing as an independent sequential solver, as described above. To ensure that the
workers are doing useful work, they periodically send an asynchronous message
to the hub with information about the current state of its subtree. The hub can
then decide at its convenience whether to ask the worker to stop working on the
subtree and begin work on a new one.

Another important implication of this design is that the workers are not able
to assign global identifiers to newly generated objects. In the next section we
will explore the consequences of this decision.

5 Data Handling

Besides effective control mechanisms and load balancing procedures, the biggest
challenge we face in implementing search algorithms for data-intensive appli-
cations is keeping track of the objects that make up the subproblems. Before
describing what the issues are, we describe the concept of objects in a little
more detail.

5.1 Object Representation

We stated in Sect. 3.2 that an object can be thought of as either a variable
or a constraint. However, we did not define exactly what the terms variable or
constraint mean as abstract concepts. For the moment, consider an LP-based
branch and bound algorithm. In this setting, a “constraint” can be thought
of as a method for producing a valid row in the current LP relaxation, or, in
other words, a method of producing the projection of a given inequality into the
domain of the current set of variables. Similarly, a “variable” can be thought
of as a method for producing a valid column to be added to the current LP
relaxation. This concept can be generalized to other settings by requiring each

599Implementing Scalable Parallel Search Algorithms for Data-Intensive Applications



object to have an associated method that performs the modifications appropriate
to allow that object to be added to the current relaxation.

Hence, we have the concept that an object’s representation, which is the way
it is stored as a stand-alone object, is inherently different from its realization
in the current relaxation. An object’s representation must be defined with re-
spect to both the problem being solved and the form of the relaxation. Within
BiCePS, new categories of objects can be defined by deriving a child class from
the BcpsObject class. This derived class holds the data the user needs to realize
that type of object within the context of a given relaxation and also defines the
method of performing that realization. When sending an object’s description to
another process, we need to send only the data itself, and even that should be
sent in as compact a form as possible. Therefore the user must define for each
category of variable and constraint a method for encoding the data compactly
into a character array. This form of the object is then used whenever the object
is sent between processes or when it has to be stored for later use. This encod-
ing is also used for another important purpose that is discussed in Sect. 5.2. Of
course, there must also be a corresponding method of decoding as well.

5.2 Tracking Objects Globally

The fact that the algorithms we consider have a notion of global objects is, in
some sense, what makes them so difficult to implement in parallel. In order to
take advantage of the economies of scale that come from having global objects,
we must have global information and central storage. But this is at odds with
our goal of decentralization and asynchronous messaging.

To keep storage requirements at a minimum, we would like to know at the
time we generate an object whether we have previously generated that same
object somewhere else in the tree. If so, we would like to refer to the original
copy of that object and delete the new one. Ideally, we would only need to store
one copy of each object centrally and simply copy it out whenever it is needed
locally.

Instead, we simply ensure that at most one copy of each object is stored
locally within each process. Objects within a process are stored in a hash table,
with the hash value computed from the encoded form. If an object is generated
that already exists, the new object is deleted and replaced with a pointer to
the existing one. Note that we can have separate hash tables for primal and
dual objects, as well as for each object category. The same hashing mechanism
is implemented in the hubs with the additional complexity that when an entire
subtree is sent back from a worker, the pointers to the hashed objects in the
search tree nodes must be reconciled. This is the limit of what can be done
without synchronous messaging.

There is yet one further level of complexity to the storage of objects. In
most cases, we need only keep objects around while they are actually pointed
to, i.e., are active in some subproblem that is still a candidate for processing. If
we don’t occasionally “clean house,” then the object list will continue to grow
boundlessly, especially in the hubs. To take care of this, we use smart pointers

600 L. Ladányi, T.K. Ralphs, and M.J. Saltzman



that are capable of tracking the number of references to an object and deleting
the object automatically after there are no more pointers to it.

5.3 Object Pools

Of course, the ideal situation would be to avoid generating the same object twice
in the first place. For this purpose, we provide object pools. These pools contain
sets of the “most effective” objects found in the tree so far so that they may be
utilized in other subproblems without having to be regenerated. These objects
are stored using a scheme similar to that for storing the active objects, but their
inclusion in or deletion from the list is not necessarily tied to whether they are
active in any particular subproblem. Instead, it is tied to a rolling average of
a quality measure that can be defined by the user. By default, the measure is
simply the slack or reduced cost calculated when the object is checked against
a given solution to determine the desirability of including that object in the
associated subproblem.

6 Conclusions

We have described the main design features of a library hierarchy for imple-
menting large-scale parallel search for data-intensive applications. The issues
that must be addressed in order to develop scalable algorithms for such applica-
tions are more complex than those for less demanding applications. This project
is being developed as open source under the auspices of the Common Optimiza-
tion Interface for Operations Research (COIN-OR) initiative in order to provide
a wide range of users with a powerful and flexible framework for implementing
these algorithms. Source code and documentation will be available from the CVS
repository at www.coin-or.org.

References

1. Eckstein, J.: Parallel Branch and Bound Algorithms for General Mixed Integer
Programming on the CM-5. SIAM Journal on Optimization 4, 794–814, 1994.

2. Eckstein, J.: How Much Communication Does Parallel Branch and Bound
Need? INFORMS Journal on Computing 9, 15–29, 1997.

3. Garey, M.R., and Johnson, D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., San Francisco, 1979.

4. Gendron, B., and Crainic, T.G.: Parallel Branch and Bound Algorithms: Survey
and Synthesis. Operations Research 42, 1042–1066, 1994.

5. Grama, A., and Kumar, V.: Parallel Search Algorithms for Discrete Optimiza-
tion Problems. ORSA Journal on Computing 7, 365–385, 1995.

6. Grötschel, M., Jünger, M., and Reinelt, G.: A Cutting Plane Algorithm for the
Linear Ordering Problem. Operations Research 32, 1195–1220, 1984.

7. Hoffman, K., and Padberg, M.: LP-Based Combinatorial Problem Solving. An-
nals of Operations Research 4, 145–194, 1985.

601Implementing Scalable Parallel Search Algorithms for Data-Intensive Applications



8. Kumar, V., and Rao, V.N.: Parallel Depth-first Search. Part II. Analysis. In-
ternational Journal of Parallel Programming 16, 501–519, 1987.

9. Kumar, V., and Gupta, A.: Analyzing Scalability of Parallel Algorithms and
Architectures. Journal of Parallel and Distributed Computing 22, 379–391,
1994.

10. Ladányi, L., Ralphs, T.K., and Trotter, L.E.: Branch, Cut, and Price: Sequen-
tial and Parallel. In Computational Combinatorial Optimization, D. Naddef
and M. Jünger, eds., Springer, Berlin, 223–260, 2001.

11. Padberg, M., and Rinaldi, G.: A Branch-and-Cut Algorithm for the Resolution
of Large-Scale Traveling Salesman Problems. SIAM Review 33, 60–100, 1991.

12. Ralphs, T.K., SYMPHONY Version 2.8 User’s Guide. Lehigh University In-
dustrial and Systems Engineering Technical Report 01T-011. Available at
www.branchandcut.org/SYMPHONY.

13. Ralphs, T.K. and Ladányi, L.: COIN/BCP User’s Guide, 2001. Available at
www.coin-or.org.

14. Rao, V.N., and Kumar, V.: Parallel Depth-first Search. Part I. Implementation.
International Journal of Parallel Programming 16, 479–499, 1987.

15. Rushmeier, R., and Nemhauser, G.L.: Experiments with Parallel Branch and
Bound Algorithms for the Set Covering Problem. Operations Research Let-
ters 13, 277–285, 1993.

16. Savelsbergh, M.W.P.: A Branch-and-Price Algorithm for the Generalized As-
signment Problem. Operations Research 45, 831–841, 1997.

602 L. Ladányi, T.K. Ralphs, and M.J. Saltzman


	Introduction
	Motivation
	Scalability Issues for Parallel Search Algorithms
	Branch and Bound
	Branch, Constrain, and Price

	The Library Hierarchy
	The Abstract Library for Parallel Search
	The Branch, Constrain, and Price Software Library
	The BiCePS Linear Integer Solver Library

	Improving Scalability
	The Master-Hub-Worker Paradigm
	Task Granularity
	Asynchronous messaging

	Data Handling
	Object Representation
	Tracking Objects Globally
	Object Pools

	Conclusions
	References

