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Abstract. This paper proposes the Average Diffusion (ADF) method
for solving the load balancing problem. It is shown that a sufficient and
necessary condition for the ADF method to converge to the uniform
distribution of loads is the induced network of processors to be d-regular,
connected and not bipartite. Next, we proceed and apply Fourier analysis
determining the convergence factor γ in terms of the diffusion parameters
cij (weighted case) when the network of processors is a ring and 2D-torus.
It is shown that cij = 1

2 and cij ∈ (0, 1
2 ) when the network is a ring and

2D-torus, respectively, thus solving partially the open problem which
concerns the determination of the diffusion parameters cij .

Keywords: Load balancing, diffusion method, multiple parameters, d-
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1 Introduction

1.1 Environmental models: the origin of the problem

Recently a number of numerical models concerning the simulation of environ-
ment (weather prediction, air pollution, occean simulation) have been paral-
lelized resulting in a considerable reduction in time (e.g. see [13] and the refer-
ences herein). These studies show the suitability of the atmospheric computa-
tions for parallelization. These models use a three dimensional grid to simulate
the physical processes at the atmosphere. The computations involved in such sim-
ulation models are of three types: “dynamics”, “physics” and “chemistry”.
Dynamics computations simulate the fluid dynamics at the atmosphere (advec-
tion, diffusion) and are carried out on the horizontal domain. Since these com-
putations use explicit numerical schemes to discretize the involved differential
equations, they are inherently parallel. Alternatively, the physical and chemistry
computations simulate the physical and chemistry processes such as clouds, pre-
cipitations, radiative transfer and are carried out on the vertical grid. These
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computations must be carried out for each grid point and do not require any
data from its neighbour grid points. As the computations for each grid column
are independent, domain decomposition techniques is best to be applied to the
horizontal domain. The column computations refer to the physical and chemistry
processes which can be subject to significant spatial and temporal variation in
the computational load per grid point. As more sophisticated physics and chem-
istry will be introduced in the above environmental models, these computational
load imbalances will tend to govern the parallel performance. Furthermore, on a
network of processors, the performance of each processor may differ. To achieve
good performance on a parallel computer, it is essential to establish and main-
tain a balanced work load among the processors. For this reason, it is necessary
to calculate the amount of load to be migrated from each processor to its neigh-
bours. Then, it is also necessary to migrate the load based on this calculation.
In case of the environmetal models the amount of work on each processor is
proportional to the number of grid points on the processor. To our knowledge
there is a limited use of distributed load balancing schemes. In [1] we use the dif-
fusion method to solve the load balancing problem in the Regional Atmospheric
Modelling System (RAMS) obtaining encouriging results.

1.2 The load balancing problem

The ultimate goal of any load balancing scheme, static or dynamic, is to im-
prove the perfomance of a parallel application code, using efficiently the parallel
or distributed systems. For this purpose the computational work must be well
balanced across processors and second the time spent performing interprocessor
communication must be small. For many applications it is possible to make a
priori estimates of load distribution and such load balancing schemes are called
static. In other applications the computational requirements vary over time in
an unpredictable way and it is no possible to make a priori estimates of load
distribution. Such load balancing schemes are called dynamic.

Research on dynamic load balancing has focused on suboptimal algorithms
that use local information in a distributed memory architecture. These algo-
rithms describe rules for migrating tasks on overutilized processors to under-
utilized processors in the network. Tradeoffs exist between achieving the goal
of completely balancing the load and the communications costs associated with
migrating tasks. Every load balancing algorithm decides to give load to the
neighbouring processors depending only on local information, i.e. by comparing
the load of the underlying processor with the load of the neighbouring proces-
sors and thereby trying to reach a local equilibrium. After a number of diffusion
cycles, which in the worst case is quadratic to the number of processors, a global
equilibrium of the load will be reached [5].

The parallel and distributed system is modeled as an undirected graph where
nodes represent the processors and the edges represent the network connections.
Each processor is associated with a real variable which reflect the work load
currently running on it. We assume that during the balancing process no load
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is generated or consumed and the graph does not change. The system is syn-
chronous, homogeneous and the network connections have unbounded capacity.
We concentrate only on solving the data flow problem using the ADF method
ignoring the migration problem [11].

The original diffusion algorithm has been proposed by Cybenko [9] and, in-
dependently, by Boillat [5]. Diffusion type algorithms [9, 5, 17] are some of the
most popular ones for the flow problem. The quality of a diffusion algorithm
can be measured in terms of number of iterations it requires to reach a balanced
state. Recently the Diffusion method was combined with semi-iterative tech-
niques [16] reducing the number of iterations by an order of magnitude [10–12,
14]. In addition, diffusion type methods are also used solving the flow problem
for asynchronous distributed systems [3].

This paper is organized as follows. In section 2 we introduce the Average
Diffusion (ADF) method. In section 3 we study its convergence analysis and in
particular, we find necessary and sufficient conditions for convergence. In section
4 we use Fourier analysis to determine the values of the diffusion parameters cij
and present our results for the ring and the 2D-torus processor graphs. It is
shown that cij = 1

2 and cij ∈ (0, 1
2 ) when the network is a ring and 2D-torus,

respectively, thus solving partially the open problem which concerns the deter-
mination of the diffusion parameters cij . Finally, our conclusions are discussed
in section 5.

2 The Average Diffusion Method

2.1 The method

Let G = (V,E) be a connected, undirected graph with |V | nodes and |E| edges.
Let ui ∈ � be the load of node vi ∈ V and u ∈ �|V | be the vector of load values.
The average load per processor is

ū =
1

|V |
|V |∑
i=1

ui.

The computation of ū requires global communication between the processors
which is a time consuming process. To avoid the aforementioned problem we
restrict the computation between neighbour processors. The load of processor i
is computed as the weighted average work load of its direct neighbours as follows:

ui =
1∑

j∈A(i)

ĉij

∑
j∈A(i)

ĉijuj

or ∑
j∈A(i)

ĉij(ui − uj) = 0 (1)
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where ui and uj are the workloads of processors i and j, respectively, A(i) is
the set of nearest neighbors and ĉij are the nonnegative diffusion parameters. In
matrix form, (1) is written as

Lu = 0 (2)

where L is the weighted Laplacian matrix [11] of graph G and has the splitting

L = D −A,

where D = (dii) is the diagonal matrix with dii = deg(i), deg(i) denotes the
degree of i and A is the adjacent matrix of the graph G. For solving the homo-
geneous linear system (2), we consider the iterative scheme

u(n+1) = Bu(n), (3)

where
B = D−1A. (4)

Let B = (bij) with

bij =

{
cij, if i �= j and j ∈ A(i)
0, otherwise

where

cij =
ĉij∑

j∈A(i)

ĉij
. (5)

From (5) it follows that
0 < cij < 1

since ĉij > 0. Moreover, for B to be symmetric we must have cij = cji, which
(because of (5)) imposes the condition A(i) = A(j) since ĉij = ĉji.This means
that all the processors must have the same number of neighbors, that is dii = d.
In other words, the matrix B is symmetric when the graph is d-regular. In the
sequel we develop our analysis under this assumption. The iterative method
given by (3), will be referred to as the Average Diffusion (ADF) method and the
matrix B is its iteration matrix. In case of the nonweighted Laplacian L, ĉij = 1
and

bij =

{
1
d if i �= j and j ∈ A(i)
0 otherwise.

2.2 The iteration matrix B

For the average work load of ADF to be invariant B must be doubly stochastic
[2]. Let us first prove that B is row stochastic, i.e

ū = Bū, (6)
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where ū is the vector whose every entry is exactly

∑
i
ui

|V | , which implies that (6)

will hold if
∑

j∈A(i)

bij = 1. But,

∑
j∈A(i)

bij =
∑

j∈A(i)

cij = 1.

The last equality holds, because of (5). Therefore, B is row stochastic.

Lemma 1 If the network graph is d-regular, then B is symmetric.

Proof. For B to be symmetric we must have B = BT , or because of (4) A =
DAD−1 which holds in case the elements of D are all equal. This is true since
the network graph is d-regular.

Finally, B is doubly stochastic since it is symmetric and row stochastic. In the
following, we use the properties of B to establish conditions under which the
ADF method converges to the uniform load distribution and determine its rate
of convergence. Note, that B is also irreducible and nonnegative matrix. The
matrix B satisfies the conditions to the Perron-Frobenius theorem [2, 16], hence
for its eigenvalues µi, i = 1, 2, . . . , n, we have

µn ≤ µn−1 ≤ . . . ≤ µ2 < µ1 = 1.

The last inequality is strict since 1 is a simple eigenvalue. For convergence of
ADF we must find conditions under which γ(B) < 1, where

γ(B) = max
i �=1

|µi|

which will be referred to as the convergence factor.

3 Convergence Analysis

In this section we find necessary and sufficient conditions for the ADF method
to converge.

Theorem 1 The ADF method always converges to the uniform distribution if
and only if the induced network is connected and not bipartite.

Proof. A graph is bipartite if its vertex-set can be partitioned into two parts V1

and V2 such that each edge has one vertex in V1 and one vertex in V2. If we
order the vertices so that those in V1 come first, then the adjacency matrix of a
bipartite graph takes the form [4]

A =

[
0 K

KT 0

]
, (7)
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where 0’s are used to denote square zero block matrices on the diagonal of B
and K is a rectangular nonnegative matrix. Since B = D−1A it is evident that
B will also possess the form (7). It is well known that the eigenvalues of a matrix
which takes the above form (7) occur in pairs ±µi [4]. Hence, the eigenvalues of
B satisfy

−1 = µn < µn−1 . . . ≤ µ2 < µ1 = 1.

Therefore, the ADF method converges to the uniform distribution (γ < 1) if and
only if −1 is not an eigenvalue of B. If the network graph is not bipartite, then
−1 is not an eigenvalue of B.

4 Local Fourier analysis

The conventional way to analyze the ADF method is to use matrix analysis [17].
This approach depends on the properties of the resulting diffusion matrix which
in turn depends on the topology of the graph. In this section we use an alter-
native technique to analyze diffusion algorithms. This technique is the Fourier
analysis. Assuming that the iterative diffusion methods solve numerically a Par-
tial Differential Equation (e.g. the Convection-Diffusion equation) we can apply
Fourier analysis to study its error smoothing effect [6–8, 15]. Fourier analysis
applies only to linear constant coefficient PDEs on an infinite domain or with
periodic boundary conditions. However, at a heuristic level this approach pro-
vides a useful tool for the analysis of more general PDE problems. Following
the same idea, we will apply the Fourier analysis approach to the ADF method.
When the graph is the ring or the 2D-torus we obtain the same results for the
nonweighted case as in [17]. However, our derivation produces results in the
weighted case also. In particular, we are able to determine the convergence fac-
tor γ(B) in terms of the diffusion parameters cij and study their role in the
convergence behaviour of ADF. Next, we will apply this technique for the ring
and 2D-torus processor graphs.

4.1 The ring

At a local node the ADF scheme (3) can be written as

u
(n+1)
j = Bju

(n)
j (8)

where Bj≡(cj+1E + cj−1E
−1) is the local ADF operator and

Euj = uj+1, E−1uj = uj−1

are the forward-shift and backward-shift operators in the x-direction, respectively.

Expressing (8) in terms of the error vector e(n) = u
(n)
j − u we have

e
(n+1)
j = Bje

(n)
j , n = 0, 1, 2, ...
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If the error function e
(n)
j is the complex sinusoid eikx, we have

Bje
ikx = µj(k)e

ikx

where

µj(k) = cj+1e
ikh + cj−1e

−ikh, h =
1

N

where N is the number of processors. So, we may view eikx as an eigenfunction
of Bj with eigenvalues µj(k). Furthermore,

|µj(k)| = ([(cj+1 + cj−1) cos kh]
2 + [(cj+1 − cj−1) sin kh]2)1/2. (9)

In the nonweighted case cj = 1
d , where d = 2 for the ring, hence (9) becomes

|µj(k)| = cos(kh) (10)

where k is selected such that |µj(k)| attains its maximum value less than 1.
Letting k = 2π ,  = 0,±1,±2, . . . ,±(N − 1), (10) yields

γ(Bj) = cos(2πh)).

Note, that γ(Bj) is equal to γ(B), where γ(B) is determined using matrix anal-
ysis [17].
In the weighted case for the operator Bj to be symmetric we must have

cj+1 = cj−1 (11)

and (9) yields
|µj(k)| = 2cj+1 cos kh.

Moreover, for the operator Bj to be row stochastic we must have

cj−1 + cj+1 = 1. (12)

From (11) and (12) it follows that

cj =
1

2
, j = 0, 1, 2, . . . , N − 1.

Therefore, the diffusion parameters must be equal to 1
2 in case of the ring network

topology and the weighted case coincides with the nonweighted one.

4.2 The 2D-torus

Using a similar approach as in the previous section, we will define the local ADF
operator for 2D-torus network graph. Define the x1-direction, (x2-direction)
forward-shift and backward-shift operators, E1 and E−1

1 (E2 and E−1
2 ), as

E1uij = ui+1,j, E−1
1 uij = ui−1,j,

E2uij = ui,j+1, E−1
2 uij = ui,j−1.
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Then, the local ADF operator for 2D-torus network graph is Bij≡(ci+1,jE1 +
ci−1,jE

−1
1 + ci,j+1E2 + ci,j−1E

−1
2 ) and thus we have

Bije
i(k1x1+k2x2) = µij(k1, k2)e

i(k1x1+k2x2),

where

µij(k1, k2) = (ci+1,je
ik1h + ci−1,je

−ik1h + ci,j+1e
ik2h + ci,j−1e

−ik2h),

h = 1√
N

. Furthermore,

|µij(k1, k2)| =
(
[(ci+1,j + ci−1,j) cos k1h + (ci,j+1 + ci,j−1) cos k2h]

2+

[(ci+1,j − ci−1,j) sin k1h + (ci,j+1 − ci,j−1) sink2h]
2
)1/2

. (13)

In the nonweighted case cij = 1
d , where d = 4 for the 2D-torus, hence (13)

becomes

|µij(k1, k2)| = 1

2
(cos(k1h) + cos(k2h)) (14)

where k1,k2 are selected such that |µij(k1, k2)| attains its maximum value less

than 1. Letting k1, k2 = 2π ,  = 0,±1,±2, . . . ,±√
N − 1), (14) yields

γ(Bij) =
1

2
(1 + cos(2πh)).

Note, that γ(Bij) is equal to γ(B), where γ(B) is determined using matrix
analysis [17].
In the weighted case for the operator Bij to be symmetric we must have

ci+1,j = ci−1,j and ci,j+1 = ci,j−1 (15)

and (13) yields

|µij(k1, k2)| = 2(ci+1,j cos k1h + ci,j+1 cos k2h).

Moreover, for the operator Bij to be row stochastic we must have

ci+1,j + ci−1,j + ci,j−1 + ci,j+1 = 1. (16)

Combining (15) and (16) we obtain

ci+1,j + ci,j+1 =
1

2
(17)

or any combination of cijs from (15) must have sum equal to 1
2 . From (17) it

follows that for cij ∈ (0, 1
2 ) the ADF method converges and the “optimum”

values for cij , which minimize γ(Bij), must lie in the above interval. Choosing
cij = 1

4 , the weighted case coincides with the nonweighted one. This was also
the case in the ring topology.
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5 Conclusions

In this paper we introduced an iterative distributed load balancing scheme, the
ADF method. We showed that for the workload to be invariant the graph must
be d-regular. Moreover, we found that a necessary and sufficient condition for the
convergence of the ADF method is the processor network to be connected and
not bipartite. The use of Fourier analysis gave us the ability to find a closed from
formula for the eigenvalues of the iteration matrix B in terms of the diffusion
parameters cij. For the ring and 2D-torus the formula coincides with the one
given by [17] in the nonweighted case, thus verifying the validity of our approach.
In this work we found that the diffusion parameters cij must be equal to 1

2 in case
of a ring topology. Moreover, cij must lie in the interval (0, 1

2 ) for the 2D-torus,
thus solving partially the open problem which concerns the determination of the
diffusion parameters cij . Currently, our research is focused on the determination
of the “optimum” values of cijs for more general graphs (2d-regular).
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