
Workload Scheduler with Fault Tolerance for MMSC*

Juhee Hong, Hocheol Sung, Hoyoung Lee, Keecheon Kim, Sunyoung Han

Department of Computer Science and Engineering , Konkuk University,
1 Hwayangdong, Kwangin-gu, Seoul, 143-701, Korea

{jhhong, bullyboy, hylee, kckim, syhan}@kkucc.konkuk.ac.kr

Abstract. Media server of the MMSC(Multimedia Message Service Center)
offers a function that converts sound and image for various types of handsets.
MMS Relay requests a media type and format conversion and the media server
handles this conversion. When MMS Relay requests a media conversion, a
workload scheduler makes the job distributed properly and processed by sev-
eral media servers. Since the whole system load can be distributed evenly, the
performance of MMS system can be improved. The stability and the reliability
are provided. In this paper, we propose and implement a workload scheduler
in which jobs are processed distributively by monitoring the weights of the
jobs in each media server. The weights are assigned to the jobs according to
the conversion time. Also, we guarantee a fault tolerance capability of media
server to retransmit the jobs fast when fault happens by monitoring the ac-
tive/idle states and executing the processes.

1 Introduction

With the development of wireless communication and high-speed network, there is a
clear need for a more advanced messaging service that allows mobile users to send
and receive longer messages with richer contents. In mobile a message service, SMS
(Short Message Service) allowing only plain text has been evolved to MMS (Multi-
media Messaging Service) that accepts a mixture of different media types including
text, image, sound and video. This new messaging service called MMS can be in the
future mobile networks such as GPRS and UMTS [1][2][10]. In the multimedia mes-
sages, it is possible to perform a format conversion based on the characteristics of the
handsets. It is a media server that takes the responsibility of the conversion when a
MMS Relay requests a conversion. Since a multimedia message takes longer to con-
vert than text, multiple media servers are needed for faster processing [1][3].

3GPP and WAP Forum specify the necessity of media server for this type conver-
sion, however they don’t specify the performance improvement through fast conver-
sion of multimedia message explicitly [2][3]. Therefore, load balancing is necessary

* This work is supported by NCA(National Computerization Agency) of Korea for Next Gen-
eration Internet Infrastructure Development Project 2002.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2329, pp. 643−652, 2002.
 Springer-Verlag Berlin Heidelberg 2002



to prevent a overload in a specific media server when multiple media servers convert
media formats.

In this paper, we propose and implement a workload scheduler that distributes
jobs by monitoring the weight of the jobs in each media server and the scheduler
runs the jobs according to weight assigned by the conversion time. The performance
and the reliability can be improved in delivery the message. Also, we guarantee fault
tolerance capability by retransmitting the job fast when a fault happens by monitor-
ing active/idle states and executing the processes. We show enhanced performance in
multiple media servers through our simulation tests.

The rest of this paper is organized as follows. In section 2, we introduce the over-
all MMSC component and architecture. In section 3, we present a design of work-
load scheduler supporting load balancing and fault tolerance. In section 4, we pres-
ent our implementation, and in section 5, we compare and estate test results through
the performance evaluation. Finally, section 6 gives our concluding remarks.

2 MMSC(Multimedia Message Service Center)

MMSC is a system for MMS as defined in our testing system based on 3GPP and
WAP Forum. MMS is intended to provide a rich set of content to mobile subscribers
in their messages, it supports both sending and receiving of such messages and as-
sumes that messaging transmission and retrieval is supported by their handsets
[1][3][10]. There are four basic types of equipment within MMSC, these are MMS
Relay, MMS Server, Media Server, and Operation console [3][4].

Fig. 1. MMSC(MMSC(Multimedia Message Service Center)

Fig. 1 shows an external configuration of our MMSC. The following explains
each elements of Fig. 1.

� MMS Server
This element is responsible for storing and handling the incoming and out-

going messages.

644 J. Hong et al.



� MMS Relay
This element transfers messages between different messaging systems associ-

ated with the MMS Server. It should be able to generate a charging data (CDR)
when receiving multimedia messages or when delivering multimedia messages
to the MMS User Agent or to another MMS environment [1][2].

� User Databases
This is the system comprised of one or more entities that contain user related

information such as subscription and configuration (e.g. user profile, HLR).

� User
It is a function of application layer to provide the users with the ability to

view, compose and handle multimedia messages such as sending, receiving,
and deleting.

Depending on the business model, the MMS Server and the MMS Relay may be
combined, or distributed across different domains. In practice, MMS system may be
integrated in a single physical place and we explain it as a set of components for
better understanding.

3 Design of Workload Scheduler

Media server is important and independent server in MMSC, because it performs a
format conversion for the multimedia messages based on the characteristics of the
handsets [1]. If one MMS Relay and one media server have been consisted sepa-
rately, routing and scheduling issues between MMS Relay and media server aren’t
important. But as the necessity of messaging service increases, more than two MMS
Relays and media servers are needed. Thus, the routing between MMS Relays and
media servers is very important, because it influences the system performance. In
order to support this routing function, there must be a monitoring capability in the
media servers. Monitoring detects the faults and prevents an overloading problem.

Fig. 2 shows the scheduler suggested in this paper and it performs a load balanc-
ing for fast contents conversion in multiple MMS Relays and Media Servers. Be-
cause of the distributive processing for a request, it should include fault tolerance to
handle the faults happened in a specific Media Server or process.

645Workload Scheduler with Fault Tolerance for MMSC



Fig. 2. System topology

We designed a workload scheduler based on the least-connection algorithm be-
cause the algorithm directs the network connections to server with the least number
of established connections [6]. But the scheme suggested in this paper is based on the
sum of the weight of jobs at work in each media server because the connections are
within a local network. Weights are assigned for the fast media conversion because it
takes different time for each media conversion. These weights are statistical values
obtained through our tests for media conversion. Table 1 and 2 show the values.

Media server with the least of the weighted jobs is selected by the scheme below.
If there are n jobs at work in a media server and each job has a weight Wi(i = 1, … ,
n), the weighted job in that media server is expressed by�(1 / Wi ) (i = 1, ... ,n).
Therefore, the selected media server has a value of min{�(1 / Wi )} (i = 1, ... ,n).

Table 1. Statistical value for image format type

(unit : count/second)

Source\Destination GIF JPEG PNG BMP WBMP

GIF 5.1 5.0 5.2 4.2
JPEG 3.4 2.5 5.2 1.4
PNG 2.7 5.1 5.2 3.1
BMP 3.0 5.1 2.4 3.5

WBMP 0.2 5.1 5.0 5.2

Table 2. Statistical value for audio format type

(unit : count/second)

Source\Destination WAV MP3 MID

WAV 3.9 2.9
MP3 5.0 2.0
MID 5.1 X

646 J. Hong et al.



A scheduler distributes the requests received from MMS Relay using the above
scheme. Fig. 3 shows the whole processing diagram of the load balancing. Our sys-
tem is consisted of two parts, a scheduler and a media server.

� Scheduler
It is responsible for load balancing and fault tolerance, it creates a worker

thread and processes the request.

� Media server
It performs a media format conversion.

To select a media server with the smallest of weighted jobs, the scheduler retrieves
media server list table and finds the states whether it is in active or idle for a candi-
date media server. This is repeated until the media server is selected to convert the
request. When a media server is selected, weighted job field of the list table is in-
creased. Monitoring the conversion state is made known by sending a signal to the
media server. We have two signal types, one is a ‘complete’ signal when process
finishes normally and the other is a ‘fault’ signals when an absurd end of process or
other errors happen.

Fig. 3. Media server processing diagram

The current media server receives these signals and knows the conversion state.
When a scheduler does not receive a signal in a given time, it regards it as fault and
retrieves the next media server. When a complete signal comes to an end, job field in
the list table decreases.

Conversion state of media server is reported to the scheduler through the periodic
signal. A heartbeat message notifies that the server is active, and the scheduler up-
dates time field of the media server in the list table. Updated time value is calculated
from the receiving heartbeat message time plus(+) the given time intervals. If a

647Workload Scheduler with Fault Tolerance for MMSC



heartbeat message does not arrive in time, the media server is regarded as fault and
retransmits the requests to another server.

4 Implementation

4.1 Modules

The system consists of two parts, a scheduler and a media server. A scheduler for-
wards the requests to a media server using load balancing and fault tolerance
mechanism. It consists of a request-handling module, a media server list table, and a
heartbeat message-handling module. Media server appends a heartbeat message-
sending module and a complete signal-sending module to monitor the state conver-
sion process.

The request-handling module distributes the conversion requests to media server
evenly. It is required to listen a request from MMS Relay and forward appropriately
to a media server by the load balancing algorithm. It creates a new thread whenever
a request comes in and destroys the thread in its completion.

The request-handling thread needs an algorithm to check the state for sending re-
quest to a media server. First, it should have a capability of retrieving a media server
with the smallest total weight and checks the state, whether it is in active or idle. If it
is selected, a media server will receive and execute the conversion request.
Then the request-handling thread increases the weight of job in the media server list
table, and it starts monitoring the job. If a fault occurs, a new media server will be
selected again. Otherwise, the thread decreases the weight of the jobs and it is de-
stroyed automatically.

4.2 Structure

A media server list table is a table to retrieve a media server with the smallest of
weighted jobs by the load balancing algorithm. It consists of Server ID, Server Ad-
dress, Job, Time and Critical Section for synchronization.

Server ID is an unique number for identifying each media server and the Server
Address is IP address. Job is the weighted value of the job in execution in each media
server and Time is the expected time that the media server will be active for some
times. The value of the Time is calculated from the incoming time value of heartbeat
message added to the predefined interval value. During that time, a scheduler con-
siders that media server is active. Otherwise it is idle. Critical Section is used for
locking when the table is being updated.

648 J. Hong et al.



Table 3. Media server List Table

Server ID
Server

Address
Job Time

Critical
Section

Unique iden-
tification of
each media

server

IP address of
each media

server

The weighted
value of the
job in execu-
tion in each
media server

The value of
incoming
heartbeat

+ predefined
interval value

The variable
for synchroni-

zation

Table 4. Media server List Table structure

typedef struct _ServerEnt {

int ServerId;

SOCKADDR_IN ServerAddr;

unsigned int uWgtOfJob;

DWORD dwTime;

CRITICAL_SECTION critical_sec;

} ServerEnt;

4.3 Fault Tolerance Mechanism

When a media server starts a service, it creates a thread for sending a heartbeat mes-
sage and forwards it to a scheduler. If a media server succeeds in UDP connection to
a scheduler, it starts sending a heartbeat message. Then, the request-handling thread
executes UDP listening daemon to receive the message and updates the time field in
the media server list table whenever it receives a message. If a heartbeat message
does not arrive in time, the media server is regarded as fault, and retransmits the
requests to another server.

A media server sends a complete-signal to Process Monitoring Daemon in a
scheduler when the job terminates normally, otherwise it sends a fault-signal. We use
‘1’ for a complete-signal and ‘0’ for a fault-signal in this paper.

649Workload Scheduler with Fault Tolerance for MMSC



5 Test Results

We built a test bed in order to compare the performance with the legacy MMS sys-
tem. So, we prepare five media servers, a scheduler and a client application for
playing parts in MMS Relay. We used a Pentium server for media servers and a
scheduler. We used windows 2000 compatible OS. Each media server and scheduler
was located in a local network. Also, we had to prepare MMS storages for various
media files. Each media server connected to MMS storage with a network drive of
supporting OS. Therefore, each media server operates as if the source media file for
conversion is in the same local drive. And we killed all the unnecessary processes in
the media server and scheduler for an accurate test. In order to measures the per-
formance, we have sent between 10 and 100 requests at a time to a media server for
message conversion, and then we calculated the average processing completion
times. The graph shows the results of this implementation.

Fig. 4. Using with 1Mbyte wav file

Fig. 5. Using with 500Kbyte wav file

650 J. Hong et al.



We measured the processing time by increasing the number of media servers in
order to compare the performance improvement resulting from our system. As for
the various performance tests, we calculated the processing time with changing the
file size of different media types. Figures, 4 through 7, show the result of the test.
Fig. 4 shows the test result with 1Mbyte audio file. Fig. 5 to Fig. 7 shows the test
result with 500Kbyte, 150Kbyte and 50Kbyte respectively. Clearly, the conversion
time is different as the number of media servers, and the media server can convert
very fast in case of small size of media files. In case of sending 10 requests, there are
not different between single media server and five media servers as the graphs show.
It spent more time for reaching requests rather than for converting a media file. The
increased performance can be seen as the converting requests increased. And the
bigger a media file size is, the greater the difference in converting time between a
single media server and five media servers. It seems to be obvious that the same
result applies to the image files and other audio format files.

Fig. 6. Using with 150Kbyte wav file

Fig. 7. Using with 50Kbyte wav file

651Workload Scheduler with Fault Tolerance for MMSC



As a result, we found that our system improves the performance dramatically than
the legacy MMS system.

6 Conclusions

In this paper, we designed and implemented a workload scheduler by applying a
least-connection algorithm in MMSC for MMS defined in our prototype system. The
workload scheduler distributes job processing by monitoring the weights of the jobs
in each media server to improve the system performance. We also implemented a
fault tolerance that is a function of media server of retransmitting the job fast when a
fault happens by monitoring the active or idle state of the media server and executing
the processes. Test results present clearly that our scheduler performs a fast conver-
sion and provides more stable and reliable system. Future work includes a test for
video file conversion and streaming service.

References

1. 3rd Generation Partnership Project.: Technical Specification Group Services and System
Aspects; Service aspects; Stage 1 Multimedia Messaging Service (Release 2000), 3G TS
22.140 v.4.0.1 (2000-07)

2. 3rd Generation Partnership Project.: Technical Specification Group Terminals; Multimedia
Messaging Service (MMS); Functional description; Stage 2(Release 4), 3G TS 23.140
v.4.2.0 (2001-03)

3. Wireless Application Protocol Forum.: WAP MMS Architecture Overview, WAP-205-
MmsArchOverview, Draft version 01-Jun-2000

4. Wireless Application Protocol Forum. : Wireless Application Protocol MMS Interworking
with Internet Email Specification, WAP-207-MmsInetlnterworking, Draft version 01-Jun-
2000

5. http://www.mobilemms.com
6. http://www.linuxvirtualserver.org/docs/scheduling.html
7. B. Ozdenm, R. Rastogi, P.J. Shenoy, A. Silberschatz.: Fault-Tolerant Architecture for Con-

tinuous Media Server, ACM SIGMOD, Montreal, Canada(1996)
8. Iwata. A, Ching-Chuan Chiang, Guangyu Pei, Gerla. M, Tsu-Wei Chen.: Scalable routing

strategies for ad hoc wireless networks, IEEE Journal, Vol. 17, Issue: 8(1999) 1369-1379
9. Golubchik. L, Muntz. R, Cheng-Fu Chou, Berson. Sm.: Design of fault-tolerant large-scale

VOD servers With emphasis on high-performance and low-cost, IEEE Transactions on,
Vol. 12,Issue: 4 (2001) 363-386

10. Sevanto. J.: Multimedia messaging service for GPRS and UMTS Wireless Communica-
tions and Networking, WCNC. IEEE, Vol. 3 (1999) 1422-1426

652 J. Hong et al.


	Introduction
	MMSC(Multimedia Message Service Center)
	Design of Workload Scheduler
	Implementation
	Modules
	Structure
	Fault Tolerance Mechanism

	Test Results
	Conclusions
	References

