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Abstract. We introduce a proposal to theoretically characterize Infor-
mation Retrieval (IR) supporting metadata. The proposed model has its
foundation in a classical approach to IR, namely vector models. These
models are simple and implementations are fast, their term-weighting ap-
proach improve retrieval performance, allow partial matching, and sup-
port document ranking. The proposed characterization includes docu-
ment and query representations, support for typical IR-related activities
like stemming, stoplist application or dictionary transformations, and a
framework for similarity calculation and document ranking. The classical
vector model is integrated as a particular case in the new proposal.

1 Introduction

Metadata are traditionally defined as data about data, information about infor-
mation. Metadata facilitate querying over documents by providing semantic tags.
Interpreted this way, they could be introduced in the IR domain to improve the
relevance of the documents retrieved as a response to a user query. IR systems
may be provided with this higher level, structured information about document
contents for users to query the system not only about existing document data,
but also about these higher level descriptions. This poses the question of how to
utilize the provided semantic tags.

Besides, due to the Web’s inherent redundancy, lack of structure and the
high percentage of unstable data, IR systems for the Web (e.g. search engines)
is and will be a hot research topic in the next years. Although some promising
results are already available [3] [4], as typically happens in other emerging fields
metadata-based IR is far from being stable.

In this line, we feel that a theoretical characterization of metadata-enabled
IR will contribute to a solid foundation of the field, which will facilitate the de-
velopment of tools and methods to analyze existing systems and new proposals,
and eventually improve the performance and features of IR systems. This char-
acterization should be abstract enough to be fully independent from metadata
models.
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In this paper we propose a framework to represent metadata-enabled Infor-
mation Retrieval that supports relevance calculation. Our proposal is based on
the classical vector model for information retrieval [7]. Despite its simplicity, it
is generally accepted that this model is either superior or at least as good as
known alternatives (c.f., for example, [2], pages 30 & 34).

2 Basic Concepts and Notation

N and R represent respectively the set of natural numbers and the set of real
numbers. A matrix over R is a rectangular array of real numbers. These real
numbers are named matriz components. The symbol My, «»(R) denotes the col-
lection of all m x n matrices over R. The symbol M(R) denotes the collection
of all matrices over R.

Matrices are denoted by capital letters, and A = [a;;] means that the element
in the i-th row and j-th column of the matrix A equals a;;. Operations on
matrices and particular types of matrices are defined and denoted as usual (see
for example [8]). AT = [a;;] represents the transpose of matrix A. This notation
is extended to vectors (i.e. row vector & is the transpose of x).

We define the unit vector u} = (u;) € R™ as an n-dimensional vector such
that

=i
YiTl0j#£i1<i<n

We define u™ = >"7" | u?. We omit the superscript n if the dimension of these
vectors is clear from the context.

Matrices are associated with particular types of functions called linear trans-
formations. We associate to M € M, xn(R) the function Tp; : R* — R™
defined by Th(x) = M« for all x € R".

A subset V C R" is called a subspace of R* if 0 € V, and V is closed
under vector addition and scalar multiplication. Vectors i, ..., T, belonging
to a subspace V' C R™ are said to form a basis of V if every vector in V is a
linear combination of the x; and the x; are linearly independent. Every vector
in V is expressible as a linear combination of the x;. Vectors v}, i = 1,...n
form a basis for R™”. We name this basis the canonical basis of R*.

3 The Classical Vector Model for Information Retrieval

Basically, an Information Retrieval model (IR model) defines a document and
query representation and formalizes users’ information needs, that is, it states
how documents should be stored and managed, and which information about
documents should be kept to efficiently fetch the most relevant documents as a
response to a user query. An IR model also defines how and from which infor-
mation the relevance of a given document should be estimated. In our context,
classical IR models are those that do not support metadata information.
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Definition 1 (IR model). Given a collection of documents, an Information
Retrieval model is a quadruple IR = (D, Q,F, R(g,d;)) where

1. D is the set of document representations.

2. Q is the set of queries (i.e. representations of users’ information needs).

3. F is a framework for modeling document representations, queries and their
relationships.

4. R(gi,d;) is a ranking function that returns a real number for every query ¢ €
Q and document representation d; € D. This function defines an ordering
among the documents with respect to the query g.

We have chosen the vector model as our foundation because it is simple
and implementations are fast, its term-weighting approach improves retrieval
performance, allows partial matching, and permits document ranking. The vector
model assigns positive real numbers (weights) to index terms in queries and
documents. Weights will be eventually used to compute the degree of similarity
between documents stored in the IR system and user queries. By sorting the
retrieved documents according to their similarity, the vector model [2] supports
partial (query) matching.

Definition 2 (Vector Model). Let t be the number of index terms in the
system and k; a generic index term. Let d; be a generic document, and q a user
query. For the vector model, we associate a positive real number w; ; to each pair
(ki,dj;) called weight of term k; in document d;. We also associate a positive real
number w; 4 to each pair (k;,q) called weight of term k; in query g.

The document vector for d; is defined as d;‘.r = (wi,...wj), and the query

vector for q as q¥ = (wi,q,. .. Wtq)

Queries trigger the calculation of a similarity function sim(q, d;) that tries
to estimate the degree of similarity between the query and the documents in the
collection. This similarity is estimated from a measure of the distance between
the two vectors, and is typically based on the scalar product (e.g. the cosine
of the angle between d; and q). The results from the query, a set of relevant
documents, is ranked according to their similarity and presented to the user.

The w; ; (w;,q) are defined from a set of statistic functions whose domain is
IR and return a real number. We can use statistics computed for single terms
in the database (e.g. idf; = log(N/n;), where N is the number of documents in
the system, and n; the number of documents where term i appears, describes
the discrimination power of term i), computed por single documents (e.g. the
number of distinct terms in document j) or global statistics (e.g. N).

The best known term-weighting schemes for the vector model (#f-idf) are
given by (variations of):

i df,

Wig = max;{n;}

where n;; is the frequency of index term k; in document d;[2].
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4 The Metadata Matrix Model for Information Retrieval

We have to define a representation for documents and queries, a framework to
define the relationships among documents, queries and representations, and a
ranking function. We start from a collection of ¢ metadata documents. In our
context, metadata documents are documents composed by a set of nodes, where
each node has a tag and a content.

Definition 3 (Metadata document). Let T' and M be two sets known respec-
tively as term dictionary and tag dictionary. A metadata document is composed

by a set of pairs (m, By,), where m is a tag from M and B, a list of terms from
T.

In the definition above, B,, is the list of terms bound to tag m. This struc-
ture results, for example, from the parsing of an XML document (DOM tree
[6]). However, different representations may be produced from a single XML
document, depending on the model selected to label nodes or the value equality
chosen.

Document 1 Document 2

<List> <List>
<Title>things to do </Title> <Item><Abstract>do</Abstract></Item>
<Item>read</Item> <Item>write</Item>
<Item>write</Item> </List>
<Item>read</Item>

</List>

(List.Title, things to do) (List.Item.Abstract, do)

(List.Item, read write read) (List.Item, write)

Fig. 1. Example metadata documents

Ezxample 1. In figure 1 appear two XML documents belonging to a simple collec-
tion. In a given application they may be converted into the metadata documents
appearing below the corresponding XML documents in the figure. In this exam-
ple, tags correspond to Label Path Expressions [1].

4.1 Metadata Documents in a Matrix Model
In our proposal, documents and queries will be represented as matrices:

Definition 4 (Metadata Matrix Model). Let ¢ be the size of the term dic-
tionary and k; a generic index term. Let m be the size of the tag dictionary
and l; a generic tag. Let d, be a generic document, and q a user query. For the
matriz model, we associate a positive real number w; j i to each triplet (k;,l;, di)
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called weight of term k; in document dj, when bound to tag l;. We also associate
a positive real number w; ;4 to each triplet (k;,l;,q) called weight of term k; in
query ¢ when bound to tag l;.

The document matriz for dy is defined as Dy, = [w; j x|, and the query matriz
for q as Q = [w; jq].

From the classical point of view, this model is based on a t x m-dimensional
real subspace, where both queries and documents are elements from My, (R).
For a given document matrix Dy = (dg,1,-..,dk,m), each column is a vector
dp,; containing the weights of the terms bound to tag j in the corresponding
document . The same applies to user queries: a query matrix @ = (g1, ...,qm)
is composed by m vectors qf = (W1,j.qs--- Wt jq), and the w; ; , represent how
much the user is interested in documents containing term 4 bound to tag j.

We can see that the proposed matrix model extends the classical vector
model: the vector model is a matrix model where m = 1.

Example 2. At the bottom of figure 1 appear two metadata documents belonging
to a simple collection (c.f. example 1). Let us assume that w; j i = n;jx, where
niji is the raw frequency of term ¢ in document k for tag j. Some examples
about the information managed for this IR system are presented below:

- Dictionaries: T' = {things, to, do, read, write}; t = 5;
M = {List.Title, List.Item, List.Item.Abstract}; m =3

- Example queries: ¢, = {Retrieve docs. containing read at tag List.Item };
q» = {Retrieve docs. containing write or do in any tag at or below List.Item

}

- Matrices: Dy = ( (1, 1, 1,0, 0)T, (0, 0, 0, 2, 1)7, (0, 0,0, 0, 0)T")
Dy = ( (Ov 07 Oa O, O)Ta (Oa Oa 07 0’ 1)T7 (07 07 17 07 O)T )
Qo = ((0,0,0,0,0)7, (0,0,0,1,07, (0,0,0,0,07)
Qy,=((0,0,0,0,07, (0,0,1,0, )T, (0,0, 1,0, 1)T)

4.2 Documents as Linear Transformations

Document representations are ¢ X m matrices. Matrix algebra states that these
matrices can be seen as the representation of a linear transformation between
two subspaces. These subspaces will be defined as the tag subspace and term
subspace.

Definition 5 (Tag subspace, content profile). Let m be the number of dis-
tinct metadata tags in the collection. We define Vi C R™ as the subspace whose
vectors define content profiles. The i-th coordinate of a vector v € V| defines
the weight of tag l; in the corresponding content profile. Null coordinates in v
represent tags not participating in the profile.

A canonical base for V| is composed by the set of content profiles ur, 1<j<
m. Each uj™ represents a profile with a single tag. This canonical base represents
the tag dictionary.
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Content profiles represent the relative weights of metadata tags in a given
context. For a given collection, they define how relevant is a given tag or set of
tags with respect to the others, and characterize the tag dictionary.

Definition 6 (Term subspace, content suit). Let t be the number of distinct
index terms in the collection. We define Vi C Rt as the subspace whose vectors
define content suits. The i-th coordinate of a vector v € Vi, defines the weight of
term k; in the corresponding content suit. Null coordinates in v represent terms
not participating in the suit.

A canonical base for Vi is composed by the set of content suits us., 1<5<
t. Fach ug represents a content suit with a single term. This canonical base
represents the term dictionary.

Content suits represent sets of index terms and their relative weight for a
given context. They characterize the term dictionary for a collection. Then, we
can associate a linear transformation Tp, : V; — Vi to a document represen-
tation Dy € My, (R). This transformation assigns content suits to content
profiles, that is, given a content profile, the linear transformation associated to
a document representation Dj returns the content suit corresponding to that
content profile for that document.

As stated in definition 4, a document matrix defines the weights of terms
when bound to a given tag. Given a content profile defining the relative relevance
of tags, a document matrix defines the corresponding content according to that
content profile.

Additionally, for a given collection content profiles can be used to obtain
new representations of documents where metadata information is filtered out
according to the profiles. As a consequence, this interpretation of document
matrices as linear transformations formalizes the generation of classical vector
models from matrix ones.

Ezample 3. Let us consider matrix D; in example 2 (c.f. also figure 1). This
matrix corresponds to the linear transformation Dix = y where & € V; and
y € Vi. Content profile T = (1 0 0) defines a context where we are only
interested in terms bound to tag List. Title. The corresponding content suit is
yT = (1110 0), which represents the raw frequencies of the terms bound to
that tag in the original document.

For content profile T = (1 1 1) (i. e. a profile where all tags are equally
relevant), we get yT = (1 112 1), that is, a content suit having all terms in the
original document. Term weights in this suit correspond to the raw frequencies
of index terms in the original document.

Note that T = (1 0 0), when applied to all documents in the collection, will
generate a classical vector model where documents will only retain information
bound to tag List. Title, whereas T = (1 1 1) will generate a classical vector
model where documents have the same index terms and all structure provided
by metadata is lost.
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4.3 Queries and Ranking as Linear Transformations

Content profiles and content suits also apply to queries. Query matrices can
also be considered linear transformations from the profile subspace to the suit
subspace. In this case, a content profile represents at what extent users are
interested in terms bound to a given set of tags, whereas content suits represent
the relative relevance of a set of index terms for a given query.

On the other side, in section 3 we defined a ranking function that returns a
real number for each query ¢; €  and document representation d; € D. This
function defines an ordering among the documents w.r.t. the query ¢;. Besides,
queries can be interpreted as functions that take as a parameter a query matrix
and return a ranking vector. This idea can also be formalized using subspaces
and linear transformations:

Definition 7 (Ranking subspace, ranking). Let N be the size of the collec-
tion. We define V,, C RN as the subspace where vectors in V, define rankings.
The i-th coordinate of a vector v € V. defines the relative position of document
d; in a ranking of documents. Null coordinates in v represent documents not
participating in the ranking.

A canonical base for V. is composed by the set of rankings u;.v, 1<j7<N.
Each u;V represents a ranking with a single document.

Example 4. For the collection in example 2, ranking vT = (1,0) represents a
ranking for query g, whereas vT = (0.1714,0.5) is a ranking for query g3 (c. f.
section 5)

5 Relevance analysis in a matrix model

Relevance analysis will based on the same principles as the classical vector model.
In our case, queries trigger the calculation of a similarity function sim(Q, D;)
to estimate the degree of similarity between a query and the documents in the
collection.

Classical vector-based similarity functions are now calculated from document
and query matrices. Similarity is based on a measure of the distance between
a document matrix and a query matrix in the corresponding ¢ x m subspace.
Retrieved documents are ranked according to the corresponding results.

The statistics available to compute similarities can now be enriched with new
ones that take into account metadata information, like statistics computed for
single tags (e.g. the number of documents containing tag j), computed for single
tags in a given document (e.g. the number of terms bound to tag j in document
k), or computed for single tags for a given term (e.g. idf;; = log(IN;/n;;) repre-
sents the discrimination power of term ¢ for contents bound to tag j). Obviously,
other combinations are possible. As far as we know, the evaluation of useful
metadata-dependent statistics is an open problem.

Existing results for the vector model can be translated to the matrix model
if we note that queries and documents are elements from a ¢ x m subspace.
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Similarity functions based on the scalar product of vectors are typically used in
the classical vector model. For example

sim(q,d) = <gqg,d> _ qdr + ...+ qndy
’ lq||d| lq||d|

measures the similarity of document d with respect to query ¢ as the cosine of
the angle between d and gq.

For the matrix model, we can also define a similarity function having the
properties of a scalar product:

<Q, D> tr(QTD) tr(QPT) >2;22;%jdi;
|Q[| D] |Q[| D] Q[ D] Q[ D]
where tr represents the trace of a matrix. In the new scenery, this approach has

further advantages due to the properties of the scalar product combined with
those of the product of matrices.

sim(Q, D) =

Proposition 1. Let D and @ be respectivelty a document matriz and a query
matriz. Let Tr be a transformation in the term subspace and Typs a transforma-
tion in the tag subspace. Then

<Q, DTr >=<QT}, D> ; <Q, TyD >=<T{Q, D>
< Q, TannTv2DTriTro > = < T, T, QTETE, D >

The proof is based on the algebraic manipulation of the expressions above.

Property 1 establishes a relation between transformations on queries and
documents insofar similarity calculation is concerned, which opens the door to
the methodical characterization of transformations and their influence on the
computed similarity in a metadata-enabled world. Besides, as the vector model
is a particular case of the matrix model, available results for the former can be
systematically adapted to the latter.

Example 5. Let us take the collection in figure 1. Transforming documents using
uT = (11 1) generates classical vector models where all metadata information
is lost. For each index term k;, the resulting vector dp = Dyu has as weights
Wik = D Wijk-

Assuming in this example that weights correspond to raw frequencies, all
text bound to any tag will be equally relevant. After this transformation being
applied to all documents, we get a classical IR vector model where metadata-
specific information will not be considered for relevance calculation. Vectors for
the transformed model are

di =(1,1,1,2,1), d3 = (0,0,1,0,1), g7 =(0,0,0,1,0), g5 = (0,0,2,0,2)

To calculate the similarity between documents and queries we can now apply
known results for this classical model. Let sim(d;,q) = cos(Zw;wq), where
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wq = ¢q, and w;; = n;j/n;, n; being the number of documents where term ¢
appears.

For query q = gy We have Nthings = Nto = Nread = 1; Ndo = Nwrite = 2; and
therefore n] = (1121 2). Then, w] = (110.520.5), wa = (00 0.500.5),
and the corresponding values for the similarity function are sim(dy, gp) = 0.277,
sim(de, q) = 1.

We conclude that dy is more relevant to the query ¢g,. Note that all metadata
information was lost, and ds is composed only by the terms in the query.

Ezample 6. A unit vector u; generates classical IR systems whose documents
contain only the information bound to tag j. For a given tag dictionary T' of
size m, we can generate m classical IR systems projecting the original IR system
using uj, j = 1...m. Then, m similarity results can be calculated for a given
query. We have to select a procedure to combine these values into a single one
for ranking purposes. For this example, the procedure selected is based on the
similarity estimation for the extended boolean model[2]. We will assume that
the query string is composed by a set of or-ed subqueries, each bound to a tag.

’
For the extended boolean model simpooi—cat = =71/ D Sim?2,, where m’

is the number of non-null similarities. For the query ¢ = ¢, we have:

Projection dT qT sim;(di, q)
wy List. Title (11100)(00000) 0
wug List.Item (00021)(00101) 0.1714
ug List.Item.Abstract (00000) (00101) 0
Document 1: sim:(dy,q) = 0.1714
Projection dl qT sim;(dz, q)
wy List. Title 00000)(00000) 0
ug List.Item (00001) (00101) 0.707
ug List.Item.Abstract (00100) (00101) 0.707

Document 2: simy(ds,q) = 0.5

If we compare the results above with those from example 5, we see that the
relevance of both documents to the query g, decreases. This is due to the role
played by metadata. We see that the term do is not bound to tag List.Item in
the first document. For the second document we see that, although both query
terms are relevant to the query, they are bound to different tags.

6 Concluding remarks

The need for efficient information retrieval an management tools for the Web,
and the introduction of advanced markup, determined the evolution of Infor-
mation Retrieval techniques to take into account metadata. As a consequence,
research is necessary to study the real contribution of metadata to the perfor-
mance of IR systems. A suitable theoretical framework to formally characterize
the different aspects of this problem may be helpful.



Modeling Metadata-Enabled Information Retrieval 87

In this paper we have introduced a matrix-based characterization for meta-
data-based IR where documents, user queries, and document and term transfor-
mations are modeled as matrices. This proposal is independent of the metadata
model as long as metadata documents can be represented as a collection of
tag-value pairs. Therefore, it can be easily applied to several metadata and tag
(meta)language proposals, like XML or XML-derived languages. Furthermore,
it seamlessly integrates previous results from classical IR.

The proposal can also be seen as an extension of the vector model for IR.
It is complete in the sense that it provides a document and query representa-
tion framework and a ranking function. We hope that this characterization will
contribute to construct a solid foundation for metadata-enabled IR.

Presently, we are using the proposal discussed in this paper to evaluate differ-
ent relevance calculation methods for metadata IR using DelfosnetX[5]. Indeed,
the first aim of DelfosnetX was to provide a workbench to validate our proposal,
so it was designed to easily test the performance of different configurations for
the matrix model. The system automatically fetches and (re)calculates a com-
prehensive set of statistics to be used to compute and test different similarity
functions and relevance analysis methods. This approach also allows to study the
relative performance of classical and metadata-oriented IR systems. An Applica-
tion Programmer Interface (API) is also provided to easily customize DelfosnetX
for particular applications.
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