
A Distributed Cellular Automata simulations on
cluster of PCs

Institute of Computer Sciences, University of Mining and Metallurgy, al. Mickiewicza
30, 30-059 Krakbw, Poland

emazl: topa0uci. agh . edu . pl

Abstract. Inherent parallelism of Cellular Automata as well as large
size of automata systems used for simulations makes their parallel im-
plementation indispensable. The purpose of this paper is to present a
parallel implementation of two sequential models introduced for mod-
elling evolution of anastomosing river networks. Despite the both mod-
els exploit the Cellular Automata paradigm, the nontrivial application
of this approach in the second model involves defining a mixed parallel-
sequential algorithm. The detailed description of the two algorithms and
the results of performance test are presented.

1 Introduction

Cellular Automata (CA) [I] have gained a huge popularity as a tool for mod-
elling problems from complex dynamics [2]. They can simulate peculiar features
of systems that evolve accordingly t o local interactions of their elementary parts.
CA can be represented by n-dimensional mesh of cells. Each cell is described by
a finished set of states. The state of the automaton can change in successive
time-steps according to defined rules of interactions and the states of the near-
est neighbours.

This paper introduces two Cellular Automata models implemented on cluster
system. The detailed description of their sequential versions and results obtained
can be found in [3]. The short review is presented below.

The presented models simulate evolution of anastomosing river networks.
Anastomosing rivers develop on flat, wide areas with a small slope. The main
reason of creation and existence of such the systems is a plant vegetation. Plants
receive necessary resources (nutrients) from water. Products of their decay is
accumulated in the interchannel areas as peatbogs and follows t o rising up of
the banks.

The rate of plants vegetation is controlled by the nutrients. The gradient of
nutrients saturation, which appears perpendicularly to the channel axis, results
in faster accumulation of peats near banks and slower accumulation on distant
areas. The water plants vegetating in the channels can block the flow. In such
the situation, a new channel have t o be created. It starts above the jam zone and
its route is determined by the local topography. Such the channel may join back

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2329, pp. 783−792, 2002.
 Springer-Verlag Berlin Heidelberg 2002

to the main river bed downstream. The evolution of the newly created branch
proceeds in similar way as the evolution of the main stream. Finally, such the
processes results in creating of complex, irregular network of interconnecting
channels having hierarchical and fractal structure.

First model, applied for simulating anastomosing rivers, was called SCAM AN
(Simple Cellular Automata Model of Anastomosing Network) [3]. It exploits the
Cellular Automata paradigm in a classical way. The system is represented by
a regular mesh of automata. The state of each automaton is described by the
following parameters: (1) the altitudes resulting from the location of the cell on
terrain mesh, (2) the amount of water, (3) the amount of nutrients and (4) the
thickness of peat layer. Defined rule of water distribution simulates superficial
flow. The cells containing water are the sources of nutrients, which are dissemi-
nated among surrounding cells in such a way which is able t o provide expected
gradient of nutrient saturation. The thickness of peat layer is updated accord-
ingly t o the amount of nutrient in the cell.

Due t o limitations of SCAMAN model, another model was proposed. In
MANGraCA (Model of Anastomosing Network with Graph of Cellular Au-
tomata), a network of river channels is represented by the directed graph of CA.
The graph is constructed on the classical, regular mesh of Cellular Automata by
establishing additional relationships between some neighbouring cells.

The state of each automaton in the regular mesh is described by three pa-
rameters: (1) the altitude, (2) the amount of nutrient and (2) the thickness of
peat layer. Their meaning are the same as in SCAMAN model. Also their values
are calculated by using similar algorithms.

When a new cell is added t o the graph, its state is additionally described
by two parameters: (a) the throughput and (b) the flow rate. These param-
eters describe local state of a part of the channel. The flow rate in the first
cell (source) is initialized t o an arbitrary value and then propagated to other
cells currently belonging t o the graph. Overgrowing of the channel is modelled
by slowly decreasing of the throughput value. Occasionally, in randomly chosen
cell, the throughput is suddenly decreased below the flow rate. This corresponds
to creation of flow jam in the channel. Such the event leads to creation of a new
channel, which starts before the blocked cell. The route of the new channel is
determined by a local topography of the terrain.

The cells which belong to the graph are the sources of nutrients. Nutrients
are spread to other cells in the mesh by using the same algorithm as in SCAMAN
model. This way, the graph stimulates changes in terrain topography, which con-
sequently influences development of the network.

Neither SCAMAN nor MANGraCA are able model entirely the anastomosing
river. MANGraCA produces global pattern of anastomosing network, but with-
out any information about local distribution of water in the terrain. SCAMAN
simulates flow of water in terrain but in order t o obtain more complex network a
very large mesh has t o be applied and several thousands of time-steps of the sim-
ulation must be performed. The models work in different spatio-temporal scales.
Basing on this observation a hybrid multiresolution model have been proposed in

784 P. Topa

which MANGraCA model produces global river pattern, while SCAMAN, bas-
ing on generated network, calculates the local water distribution and simulates
the growth of the peat layer.

MANGraCA can be also applied t o modelling other network structures. It
can be useful to modelling the evolution of transportation network immersed in
consuming environment such as vascular system, plant roots, internet.

Parallel computers are the most natural environment for Cellular Automata
simulation [4], [5]. In fact, sequential simulation of real phenomena using CA,
where a huge number of automata are employed t o represent the system, are
impossible in practice. For a long time, such the simulations required access
to massively parallel processors (MPP) located in supercomputer centers. The
breakthrough has been brought by Beowulf [6], the first low cost parallel com-
puter built in NASA laboratory. The Beowulf was constructed using only low
priced COTS (commodity of the shelf) components. Regular PC computers with
Intel 486 processors were deprived of floppy disks, keyboards and monitors and
connected using 10Mbit Ethernet. The system worked under Linux operating
system. Some large computations were successfully performed on this machine.
At present, the Beowulf name relates to the certain class of clusters, followed by
the example of the machine built at NASA.

Simple recipe [7] of cluster assembling and low cost of components (software
is mostly public domain) enables parallel computing for institutes with limited
financial resources. Low cost of maintenance and homogeneity of the environ-
ment simplify computations. Allocating the whole or part of node for exclusive
use is easy and allows to neglect the load balancing problems.

Clusters share many features with MPP architecture. Application of popu-
lar paralellel computing libraries (like MPI and PVM) makes easy t o port the
algorithms from clusters t o MPP machines. Clusters can be used as developing
and testing platforms.

The next two sections contain detailed description of Parallel-SCAMAN and
Parallel-MANGraCA. Some results of performance tests on cluster of PCs are
presented. Conclusions are discussed at the end.

In Parallel-SCAMAN the mesh of cells is geometrically decomposed onto
domains which are processed independently on different nodes. Mesh can be di-
vided on blocks or stripes. The striped partitioning is preferred due to simplified
communication and load balancing implementation.

The nodes in parallel machine are ordered in one-dimensional array: PI, . . . , PN,
where N stands for number of nodes participating in computation. Processor PI
processes columns from 1 to m, P2 - from m + 1 to 2m and so on (m = N / M
where M stands for total number of columns in the mesh). Each node store two
additional columns, which are not processed by this node (see Fig. l a - dark
grey marked cells). These columns contain copy of the border cells (light gray

785A Distributed Cellular Automata Simulations on Cluster of PCs

marked cells in Fig. l a) from the adjacent processors. Such the copy is necessary
on Pi node to update its own border cells. After each time-step Pi exchanges the
border columns to its neighbours: Pipl and Pi+l. The exceptions are Po and PN,
which exchanges data with only one neighbour. Such the scheme applies only to
calculating the nutrients distribution and the thickness of peat layer.

The algorithm, which calculates the water distribution consist of two stages.

Fig. 1. Exchange of data in Parallel-SCAMAN: a) nutrients and thickness of peat layer,
b) flows.

First, for each cell in the mesh the flow rate from this cell t o each of its neigh-
bours is calculated. This means, that two border columns with flow rates must
be exchanged between neighbouring nodes (see Fig. lb). On Pi node light greyed
column updates the copy of water data on the adjacent processor (Pi+1). The
second column (dark greyed) contributes to the total flow rates for the border
cells on Pi+1 processors. In the following step of the algorithm, current amount
of water is calculated for each automaton basing on the flow rates.

On a single Pi processor the following operations are executed:

loop:
update-water();
update- nutrients();
update- peatso;
excha nge-data (Pi+l) ; {flow, nutrients, peats)
exchange data(P;-I);

In Parallel-SCAMAN the Master node is required only to gather current data
from worker in order to store them or for visualization. The changes in state of
cells, propagate very slowly through the mesh, especially for very large meshes.
The performance can be improved if the Workers do not communicate with
master in every time-step of simulation. Data can be gathered only every 10,
100 or more time-steps. The interval value depends on the size of system and
quality required producing images or animation for inspection.

786 P. Topa

In MANGraCA model, the number of cells participating in graph compu-
tation is significantly less than their total number. The structure of the model
allows for separating the computations connected with graph structure from the
processing of the regular mesh.

Fig. 2 presents the general Parallel-MANGraC A architecture. The distinct
processor (Po) performs sequentially all operations concerned the graph i.e.
throughput updating and flow propagation. It also handles the changes in graph
topology caused by newly created branches.

The algorithm, which trace the route of a new branch requires the most up-
to-date data about the terrain topography. It means that the altitude data and
thickness of peat layer must be also stored on this node.

Distribution of nutrients and updating of the thickness of peat layer are

nutrients \ eat / nutrients \d
Fig. 2. General Parallel-MANGraCA architecture

performed on a regular mesh of automata. It can be easily implemented in par-

787A Distributed Cellular Automata Simulations on Cluster of PCs

allel, similarly as it is in SCAMAN model. The mesh is distributed between
the nodes of clusters (PI . . . PN). The algorithm, which calculates the nutrients
distribution, requires information, which cells are the sources of nutrients (i.e.
which automata currently belongs to the graph). Therefore, the three types of
communication must be provided:

1. Po sends information to all Pi (i = 1 , 2 , . . . , N), about which automata
currently belongs t o the graph.

2. Each Pi sends t o Po information about the changes in the landscape, i.e.,
current thickness of the peat layer.

3. In every time-step, each Pi exchange the information about the state of
boundary cells (the nutrient distribution and the thickness of the peat layer)
with its neighbours: Pi+1 and Pipl.

In Fig. 3 the diagram of the Parallel-MANGraCA algorithm is presented.
The time, which processor spends on graph calculations, is incomparable

PO]
loop :

update-throughputs();
recalculate-flows 0;
gatherpeat (Pi, N) ;

update-nutrients () ;
update peats 0 ;

scatterwater (Pi,N) ;
exchange-nutrients (P (i+l)) ;
exchange-peat (P (i+l)) ;
exchange-nutrients (P(i-1)) ;
exchange-peat (P (i -1)) ;
send-peats (PO) ;
receive-water(P0);

Fig. 3. Basic Parallel-MANGraCA algorithm

shorter than processing of the whole mesh. The Parallel-MANGraCA can be
easily improved by allocating the part of the mesh t o Po. This processor will
be more loaded than the other, especially when the graph will grow. The load
balancing for this node can be provided by allocating smaller portion of mesh
at startup.

A substantial problem which is generated by the approach presented consists
of large amount of data, which has to be exchanged between Po and Pi in each
step of simulation. The mesh with current peat thickness is gathered on Po,
which next broadcast the graph to the all Pi. In fact, such the communication
is necessary only when a jam has just been occurred and the route of newly
created branch must be calculated. In such the situation Po sends a request to
all Pi nodes. The Pi processor, in each time-step looks for such the request and
in case of such the event, it sends to Po their parts of mesh with the thickness of
peat layer. Then Po node, basing on the new terrain topography, calculates, the
route of the new branch. The reconfigured graph is broadcasted t o all Pi nodes.

Processing of the graph structure and regular mesh can be performed more

788 P. Topa

independently. In the approach presented above, Po node processes one part of
the mesh so it is synchronized with Pi. In Asynchronous Parallel-MANGraCA,
mesh and graph are processed independently. Mesh computations are executed in
parallel (e.g. on cluster), while the graph is processed sequentially on a separate
machine. Communication occurs only when the graph is reconfigured.

4 Results

Parallel-SCAMAN and Parallel MANGraCA have been implemented in C
language, using MPI (mpich 1.2.0) library. The models implement at ion have
been running and testing on the Beowulf-like cluster of PCs, consisting of up-to
8 uniprocessors Intel Pentium I11 Celeron Coppermine 600 MHz (cache L2 128
kB) computing nodes with 64 MB of memory per node plus one Intel Pentium
I11 Katmai 500 MHz (cache L2 512 kB) as a front-end node. The nodes are
connected with Fast Ethernet (100 Mbit/s) .

Fig. 4 and 5 show the results of speedup measurements. Parallel algorithms
have been compared with its sequential equivalents. Thus, we can see real ben-
efits from porting models t o the parallel architecture.

As shown Fig. 4 the Parallel-SCAMAN scales linearly with increasing num-
ber of processors and the job size (see Fig. 4). In this algorithm, practically there
is no serial fraction. The only factor, which worsen the speedup is communica-
tion. As it was expected the best performance is obtained when the nodes are
fully loaded. Otherwise, the communication will take more time than comput a-
tion. The algorithm scales better for larger problems. If a small job is computed,
speedup closes to linear only for 2-3 nodes. When more node are applied, the
speedup is decreasing. The same result will appear if the faster processor is ap-
plied.

Fig. 5 presents the results of tests with Parallel-MANGraCA. In these tests
the front-end node was exploited as Po machine. Basic algorithm of Parallel-
MANGraCA has very poor efficiency (diamonds). Allocating the part of mesh
for processor Po gives insignificant profits (triangles). The real improvement have
just gave Parallel-MANGraCA with reduced graph-mesh communication (square
and circle).

The development of anastomosing network (represented by the graph) is a
stochastic process. The creation of a new branch occurs in randomly chosen mo-
ment of time. For the tests, the parameter Tb describing the mean time between
the events of creation of new branches, has been introduced. Its value is depen-
dent on parameters of graph processing i.e. the rate of throughput decrease and
the probability of jam occurrence. The greater value of Tb means less frequent
formation of new branches, which results in the reduction of time spent fo com-
munication between Po and Pi nodes. In Fig. 6a we present the influence of Tb
on the Parallel-MANGraCA efficiency. Fig. 6b shows, how the algorithm scales
with the mesh size.

Unlike the Parallel SCAMAN, Parallel-MANGraCA has a significant serial
fraction which influence badly the speedup. Also communication overhead worses

789A Distributed Cellular Automata Simulations on Cluster of PCs

Parallel-SCAMAN speedup

nr of processors

Fig. 5. Comparison of three Parallel-MANGraCA algorithms (see text for details)

790 P. Topa

the efficiency. An improvement of processor performance will result in the same
issue as it is in SCAMAN model.

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9

-T~=IO -cTb=50 +T~=IOO nr of processors I+ linear -c 200 t 400 + 800 - 1600 1 nr of processors

Fig. 6. Parallel-MANGraCA with reduced mesh comunication: a) speedup vs. T b (400 x
400 cells, b) speedup vs. mesh size (Tb = 50)

5 Conclusions

The two parallel Cellular Automata models implemented on cluster architec-
ture has been introduced. Their conception base on sequential SCAMAN and
MANGraCA model introduced for modelling anastomosing river network. This
paper presents general architecture of these models and preliminary results of
performance tests. Homogenous architecture of cluster environment as well as
exclusive availability of necessary numbers of nodes allows to neglect some criti-
cal aspects of parallel algorithms such as load balancing. The works presented is
concentrated rather on designing, implementing and testing general model struc-
ture than on maximizing performance on a specific architecture. In the future,
when the Parallel-SCAMAN, Parallel-MANGraCA will be ported t o high per-
formance MPP architecture, the procedures of load balancing will be provided.

Parallel-SCAMAN was designed in a classical way. Its algorithm base on
simple division of processed mesh between the nodes of clusters. The results of
performance tests show clearly the benefits of parallel computing especially for
large and very large tasks.

The concepts tested in Parallel-SCAMAN were applied in Parallel-MANGraCA.
Due to the nontrivial application of Cellular Automata paradigm, the original
parallel-sequential architecture have been implemented t o obtain satisfactory
efficiency. Furthermore, this approach gives an interesting issue in studies on
mutual interaction of two coupled systems. Some of the future works should
concentrate on Asynchronous Parallel-MANGraCA. The another area of studies

791A Distributed Cellular Automata Simulations on Cluster of PCs

on Parallel-MANGraCA may concern the choice of computer architecture, on
which the model can be implemented in more efficient way. Separation of the
graph and the mesh computations allows to perform the simulations in non-
homogenous environment, e.g., the mesh can be computed on inexpensive PC
cluster, while the graph may be processed and visualized on fast workstation
with enhanced graphical capabilities.

Basing on the results presented in this paper, the hybrid model will be also
implemented. Its framework will be based on Parallel-MANGraCA, but with
larger participation of the parallel code coming from Parallel-SCAMAN model
(i.e. calculating of water distribution, nutrient distribution and peat layer up-
date). This should result in better overall efficiency.

6 Acknowledgments

Author is grateful to Drs Witold Dzwinel and Krzysztof Boryczko from AGH,
Institute of Computer Sciences for valuable discussions. This project was par-
tially supported by The Polish State Committee for Scientific Research (KBN)
under grant 7TllC00521.

References

[I] S. Wolfram, Cellular Automata and Complexity: Collected Papers,1994,
[2] B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems, Cam-

bridge University Press 1998,
[3] P. Topa, M. Paszkowski, Anastomosing transportation networks, In Proceedings

of PPAM '2001 Conference, Lecture Notes in Computer Science, 2001,
[4] D. Talia, Cellular Automata + Parallel Computing = Computational Simulation,

Proc. 15th IMACS World Congress on Scientific Computation, Modelling and Ap-
plied Mathematics, vo1.6, pp.409-414, Wissenschaft&Technik Verlag, Berlin, Au-
gust 1997,

[5] G. Spezzano, D. Talia, Programming cellular automata algorithms on parallel
computers, Future Generations Computers Systems, 16(2-3):203-216, Dec. 1999,

[6] http://www.beowulf.org,
[7] T.L. Sterling, J . Salmon, D.J. Becker, D.F. Savarese How to build a Beowulf?,

MIPT Press, 1999,

792 P. Topa

	Introduction
	Parallel-SCAMAN
	Parallel-MANGraCA
	Results
	Conclusions
	Acknowledgments
	References

