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Abstract. We present a new approach to modelling of foraminiferal
shells. Previous models referred to fixed reference axes and neglected
apertures, which play a crucial role in morphogenesis of shells. Our 2D
preliminary model applies the moving reference system based on intro-
ducing of apertures and minimization of the local communication path
(LCP). LCP defines the position of every final aperture. A formal de-
scription of simple analytical methods with some elements of randomness
is given in this paper. Selected examples of simulated shells are figured.

1 Introduction

The emergence of forms in the growth process of foraminiferal shells is the
essential problem in ontogenesis of these creatures. Foraminifera are single-
celled organisms (protozoans) that construct shells. They inhabit all marine
and marginal marine environments from very shallow to the deep ocean floor.
Depending on the group, the shell may be made of organic compounds, sand
grains and other particles cemented (agglutinated) together, or secreted from
crystalline calcium carbonates. Foraminifera are a unique group of autonomous
unicellulars reaching a size class (typically 0.1 mm to 1 mm in size, up to 20 cm)
which is characteristic of small metacellular organisms [1]. Foraminiferal shells
occur in an enormous variety of shapes (Fig.1). The majority of foraminifera
are built of chambers, which are cavities containing the protoplasm surrounded
(enveloped) by a firm wall [2]. The shape of a shell results from growth processes
and depends on a chamber form, location and the type of aperture as well as
the final chamber arrangement (Fig.1).

Modelling of foraminifera started very early with the classical work of Berger
[3]- Nevertheless, so far simple regular morphologies (e.g. planispiral, helicoidal,
uncoiled) that do not express complexity of foraminiferal shell patterns have
only been simulated. It is therefore necessary to find a new alternative approach
for further progress in theoretical morphospace of these organisms. The general
aim is to gain a better understanding of foraminiferal shell morphology and its
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incredible variability, and thus, to find essential geometric growth rules. Sys-
tematics of foraminifera is based on shell morphology (shell composition and
microstructure, chamber form and arrangement, aperture type etc.). Theoreti-
cal shell morphology can help to verify some taxonomic rules. This study briefly
summarizes previous foraminiferal models and presents a new approach to model
basic morphologies.

Fig. 1. Cross sections of foraminiferal shells; (a) Fissurina, unilocular shell; (b) Spir-
illina, non-septate bi-chambered; (¢) Pseudonodosaria, multilocular uniserial shell; (d)
Bolivina, biserial; (e) Globorotalia low helicoidal; (f) Ammobaculites, planispiral be-
coming uniserial; (g) Reticulinella, complex foraminifer with multiple apertures (not
expressed here); (h, i) Heterantyz, planispiral switching to biserial; first 12 chambers
rotate along the 'x’ axis, then (chambers 13-20) along the 'y’ axis, SEM view; (k)
Planorbulina low helicoidal to random coiling; (1) Miscellanea, planispiral with the
shortest global communication path (LC) via foramina (m) Lenticuling, planispiral
shell with the longest global communication path (LC). Not to scale, actual size range
from 0.1 to 1.3 mm.

2 Overview of foraminiferal modelling

Foraminiferal shells can be divided into 3 informal groups corresponding to
the trend of increasing complexity (Fig. 1): (i) unilocular shells (Fig. 1a); (ii)
multilocular shells (multichambered forms) (Fig. 1b-m); (iii) complex shells (mul-
tilocular shells with chambers divided into smaller chamberlets and/or having
complex wall structure) (Fig. 1g).

Multilocular foraminifera enlarge in discrete growth processes of serial cham-
ber additions successively united into the shell during ontogeny (Fig. lc-m).
The first usually globular chamber is called proloculus. The opening on every
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last chamber, through which pseudopodia (rhizopodia) extrude, is termed the
aperture. Adjacent chambers are separated by septa but connected by foramina
(Fig. 1c-m). Another type of foraminiferal morphology is produced by tubular
chambers (Fig. 1b), which show a different growth pattern closely related to
accretive growth of mollusks and/or branching system of plants (see [4], [5] for
overview).

Over three decades ago, Berger [3] in his pioneering work already created
the first theoretical morphospace of foraminifera. The theoretical morphospace
has three parameters which define simple step-by-step rotation of a circle with
a certain overlap and expansion of circle radius. This model simulates isometric
growth (all three parameters are held constant through ontogeny) and is con-
fined to planispiral and trochospiral shells composed of spherical chambers (Fig.
1le,]).

Signes et al. [6] designed a similar three dimensional theoretical morpho-
genetic model with two basic assumptions concerning foraminiferal growth: the
shape of the chambers in the shell remains constant with growth, and the vol-
ume of each new chamber increases in a constant proportion to the pre-existing
volume of the shell. This model produces isometric growth with coiling in a fixed-
reference frame, which is similar to Raup’s [7] and Berger’s [3] models. Webb
and Swan [8] partly extended this classical theoretical morphospace to uncoiled
morphologies based on the different definition of the angle between successive
chambers, which was not referred to the center of the shell.

Some other authors also simulated allometry of foraminiferal shells. Brasier
[9] who produced a working morphospace model of foraminiferal form using
four parameters, which actually correspond to Berger’s parameters expanded by
the degree of extension of growth along coiling axis and the degree of cham-
ber compression and overlap. This last parameter includes allometry into the
system. Another important difference is that chambers are not directly rotated
but translated. An interesting model was presented by De Renzi ([10], [11]) who
simulated allometric growth of some larger foraminifera based on the logistic
model applied in polar coordinates.

3 New approach

All the mentioned simulations use theoretical axes, which have no morpho-
genetic or physiological meaning. Chambers (circles or spheres) are only rotated
and translated along these artificial axes, which are fixed and serve as a reference
line for growth process. Therefore, these models can simulate plane planispiral,
trochospiral (helicospiral) or uniserial chamber arrangement, but cannot simu-
late more complex patterns. For instance, they cannot model gradual or abrupt
changes of coiling axis that cause different chamber arrangements (Fig. 1f, h, i,
k).

It seems to be clear that it is necessary to give up the fixed-reference frame
based on theoretical coiling axes in favour of moving-reference system. In general,
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the moving reference model is based on simple principles of motion and step-
wise growth [12]. At each growth step, the aperture migrates from its present
position to a new position, according to locally defined rules [12]. Such mod-
els have been developed for simulation of ammonites. Okamoto [13] proposed
a tube model for all types of shell coiling, including heteromorph forms with
abrupt changes of coiling pattern. His approach integrates accretional growth of
the aperture (opening of the shell) without defining any fixed coordinate system.
Similar moving-reference frame is used in simulating radiate accretive growth of
marine sessile organisms, such as corals and sponges, where growth axis is asso-
ciated with the local maximum of growth (e.g. [14]). A comparable approach is
also used in simulation of plant growth [15].

In order to define a moving-reference system for modelling of foraminifers,
it is also reasonable to use apertures, which seem to be essential for location
of a new growing chamber. Analyses of different modes of chamber growth in
foraminifera suggest that the position of the aperture controls local chamber
arrangement (see Fig. 1c-m). The problem is that although the processes associ-
ated with chamber formation are relatively well understood, we still know very
little of how foraminiferal apertures are formed in nature.

Hottinger [16] discerned, the foraminifer must devise methods to shorten
distances between the first and last compartments of its shell. Brasier [17] also
analysed the energetics of protoplasmic pathways through the organism and con-
cluded that foraminifers show the trend towards minimizing distance from the
back of the first chamber (proloculus) to the most proximal aperture in the fi-
nal chamber (Fig. 11). He standardized this cumulative distance and named it
MinLOC (minimum line of communication).

This 'rule’ seems to be valid for many foraminiferal architectures, but not for
all of them. Lenticulina and other coiled lagenids are curious exceptions to this
rule because the foramina are located at the outer margin of the chamber [16]
that creates the longest possible global line of communication (Fig. 1m). Never-
theless, local distances between adjacent foramina are in fact minimal. Thus, it
is a paradox that the shortest distance between adjacent chambers creates the
longest global line of communication between the first and last chambers. The
conclusion is that the "the growth programme" of a foraminifer does not directly
control cumulative arrangement of chambers. It does control formation of every
chamber itself and optimisation (minimization) of the local distance between the
last and the new-formed aperture of a new chamber. This minimization of the
local communication path (LCP) seems to be more general (even if it is not the
only rule) and should help to define simulated apertures.

4 Model

The model, we present in this paper, is significantly simplified. We have
limited our study to a 2D case only. The modelling in 3D is more complicated
and not necessary at this stage of work. The chambers are represented by regular
circles. Although, real chambers can have very diverse shapes, the shells with
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spheroidal chambers are relatively frequently occurring. Additionally, we can
apply simple analytical methods to compute the aperture location.

The modelling of development of foraminifera consists of discrete steps in
which successive chambers are added to the forming shell. The position of the
newly created chamber depends on the aperture location of the previous chamber
and so called "vector of growth" (see Fig. 2). "Vector of growth" is attached
at the aperture of the chamber ¢; and pointed at the center of chamber ¢;, .
Thus, in fact the aperture represents the moving reference point and the vector
indicates the current direction of growth. The aperture of the new chamber is
calculated according to the minimization principle. The distance between the
apertures of the two successive chambers must be as short as possible. The
apertures cannot be enclosed within any other already existing chamber. The
most exterior aperture must be connected with the first chamber (proloculus) by
a line of communication running through all the previous apertures (foramina).
Fig. 3 presents a few hypothetical successive steps of simulation of ontogenetic
shell development.

For convenience, calculations are made in circular co-ordinates. Instead of
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Fig. 2. Vector of growth
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Fig. 3. Modelling the development of foraminferal shell

euclidian z,y coordinators we use the length of vector |v;,1| and angle ¢; 1 (see
Fig. 2).
We define the two parameters, which control the development of shell:
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1. GF — chamber growth ratio: the ratio between the sizes (radius) of two
successive chambers,
2. V (@, R,) — vector of growth (¥ and R, stand for it polar coordinates).

All the previous models assume invariance of their parameters during the mod-
elling of the shell development. In our model, the foregoing parameters do not
have to be constant and they can fluctuate within the ranges, we specify. The
chamber growth ratio and growth vector are chosen at random within the given
range. In such a way we can model the natural susceptibility of some species to
forming a specific shell pattern. Specifying the exact values instead of the ranges
of fluctuations, let us partly track models delivered from the fixed reference sys-
tem.
Our algorithm works as follows:

Size and position of the aperture of the first chamber are set arbitrarily as the
starting parameters of the simulation. In loop, the following operations are per-
formed:

1. the position of the new chamber is calculated:
— the radius of the new chamber (r;y;) fluctuate within the given range
adjacent to the mean value estimated on real foraminifera.
— the growth vector v;;; is calculated at random.
2. the position of the new aperture is calculated (see Fig 4):
— we minimize the distance between the apertures of the two successive
chambers - min(|u;+1|) (see appendix A),
— the new aperture cannot be placed within any previously created cham-
ber.
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Fig. 4. Calculating the aperture location

The area, in which the aperture cannot be located, is determined by calculating
the points, in which the circle of the new chamber is crossing over all the previous
chambers.
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The simplifications we have made, let us solve the minimization problem in
an analytical way. Detailed description of the used mathematical methods can
be found in Appendix A.

5 Results

Fig 5 presents the forms generated by using our models. The three first pic-
tures have been supplemented by the numbering of successive chambers and the
communication line connecting its apertures. This line usually crosses every pre-
vious chamber, which is another simplification, not affecting our general model.

Simulated shells show either relatively stable growth pattern (Fig. 5a, b, d),

h

Fig. 5. Shells generated by computer; (a,f) biserial form; (b,d) spiral form; (c, e) ini-
tially spiral, after 7 chambers changes to biserial; (g,h) alternately biserial and spiral.

or abrubtly change the mode of coiling (Fig. 5c, e, g, h). Most of the simulated
shell forms do have real counterparts (compare Fig 1). Some forms mimic ab-
normal shells usually related to environmental stress (Fig. 5f, h). Another set
of generated shells is very chaotic and flexible to growth switch-overs (Fig. 5g).
These shells may resemble some real attached (adherent) foraminifera, as well
as some irregular (in 3D) agglutinated foraminifera.

We observe that ranges of fluctuations of the growth vector V (&, R,) are
crucial for generating forms. The narrow range of ¢ and longer R, results in
elongated, biserial forms (Fig. 5a,f), while wider range of ¢ and short R, lead to
formulation of spiral shells (Fig. 5b,d). Other combinations of these parameters
usually follows to mixed forms (Fig. 5c,e,g,h).
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6 Conclusions

A new approach to modeling of foraminiferal shells has been presented. Previ-
ous models referred to fixed axes and neglected apertures [3], [6]. Our 2D simple
model applies the moving reference system which has already been described to
simulate heteromorphic shells of ammonites [13], [12]. This system is based on
introducing of apertures as reference points, which in reality and in our model
are responsible for emplacement of every new chamber. Minimization paradigm
of the local communication path (LCP) helps to define an aperture in every
newly added chamber. LCP rule derives from previous studies [16], [17] suggest-
ing global shortening of the distance between the first and the last chamber via
internal foramina and an external aperture. This rule seems to be based on local
optimization during formation of a new chamber. Even if it does not explain
all the cases, it is a closer approximation of actual morphogenetic constraints
during the step-by-step growth of foraminiferal shells.

In order to imitate reality, some elements of randomness, as another novelty
in foraminiferal modeling, are applied. This approach seems to be very promis-
ing for further studies. It may mimic random genetic variability (mutations) and
influence of external (environmental) factors.

We are aware of numerous oversimplifications introduced into the model.
Some of them can be overcome based on the same analytical approach. Two-
dimensional simulations have only limited value, because foraminifera grow in
3D and most of the growth patterns cannot be reduced to two dimensions. Nev-
ertheless, the moving reference system and the minimization paradigm applied
here can be simply transferred to three-dimensional space.

Spherical shape of chambers also tremendously reduces variability of chamber
shapes in different taxa. Furthermore, many foraminifers change shape of cham-
bers during ontogenesis, their growth is often strongly allometric. It is clear
that we have to test other methods (under study) to incorporate chamber shape
into the model. A first approximation could be an introduction the implicit sur-
faces (blobs, metaballs)[18] to model chambers with irregular shapes. An overall
form of the whole specimen directly depends on cumulative succession of cham-
bers. Single apertures per chamber represent another simplification of real shell
variability. Multiple apertures will be essential for future attempts to simulate
complex foraminiferal shells.

Our model does not require high performance computing. An analytical
method of optimization makes that the most difficult calculations are made on
paper (see Appendix A). Moving our method to 3D with simple spherical cham-
bers would complicate the paper calculations, but the computational cost will
be kept on the same level. Thanks to this, we can implement presented model in
Java language as an applet (with Java 3D as a graphic library) and published it
on WWW page for broader audience of researchers interested in morphogenetic
studies. Models with chambers represented by implicit surfaces, will require ad-
vanced numerical optimization methods and they will be more demanding for
computational power.
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A Distance minimization

We minimize the length of the vector w; ;1 = v;41 + riy1 (see Fig. 4).

Uit1| = TVj41 T TTi41 YVip1 T Yri41)” =
wia] = V/( + )2+ ( + )?

\/IU?H + 2wvi i + o 4 Yot + 2y yric +yreg (1)

Let’s make the following assumption:

The coordinators of vector v; 1 are known therefore we can simplify our formula
by introducing variables a = xv; 11 and b = yv;41:

Lets express vector r;,1 in polar coordinators:

TTipl = Tit1COSYit1l, Yritl = Tit1SiNY41

The radius ;1 is also known, so we can introduce variable r: r;;1 = r.
The angle v;,1 must be calculated.
Now, the formula 1 has form:

Va? + 2ar cos i1 + 12 cos Y12 + b2 4 2brsiny; 1y 4 r2sin 4 (2)

We reduce this formula to the form:

Vet 2r(acosyip +asinyip1), where c¢=a®+b* +17 (3)

We can treat this formula as a function f(v;41). The first derivative of the
function is:

2r(bcos i1 — asiny41) (4)
2\/0 + 2r(acos~y;y1 + bsiny;+1)
The left side of the equation must be equated to zero.

£ (vigr) =

2r(bcos i1 — asiny;+1)
2y/c+2r(acosy;+1 + bsiny;41)

=0

The ;11 value must preserve the following conditions:

2r(bcos ;41 — asinvy;4q) =0 (5)

2v/c+ 2r(acos yip1 + bsinvyy1) # 0 (6)

Solving the equation 5 we obtain the points in which function f(v;1) achieve
extremal values:

b
~Yi+1 = arctan — + kw, where k=0,1,2... (7N
a
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Returning to the original nomenclature of variables, the ;11 can be calcu-
lated:

Yoit1 | km, where k=0,1,2... (8)
TVj4+1

Yi+1 = arctan

~i+1 € (0,2m). To calculate the angle in which the function achieve minima,
we examine the points: arctan 2 ““1 and arctan 2 ’+1 + .
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