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Abstract. A smoothing technique is developed to calculate the inter-
face conditions of spectral element method for solving the incompressible
Navier-Stokes equations. The first derivative of spectral element solution
at the interface is calculated by using only the adjacent element infor-
mation. Numerical simulations of an incompressible laminar fluid flow
through a 2 : 1 planar contraction channel are presented for various
Reynolds numbers.

Keywords: Spectral element method, A least square method, Navier-Stokes
equations, Contraction channel flow

1 Introduction

Spectral element methods are high-order weighted residual techniques for the so-
lution of partial differential equations typically in computational fluid dynamics
[6]. Their success in the recent past in simulating complex flows derives from the
flexibility of the method in representing accurately non-trivial geometries while
preserving the good resolution properties of spectral method [1]. In the spectral
element simulations, both the geometry and the solution are described through
smooth functions so that the spectral element methods can obtain exponential
accuracy by fully exploiting that regularity [6]. There are numerous fluid dy-
namics applications, however, where either very steep gradient of solutions or
even discontinuous solutions are presented, e.g., a fluid through a channel with
abrupt symmetrical contraction, interfaces in multiphase flows, or free surfaces
in a die swell. A straightforward application of the spectral element methods
in these situations may cause numerical instability as large errors induced by
the discontinuous propagate in each element and eventually render the solution
with oscillations everywhere. One reason for this instability phenomenon is that
the spectral element method only enforces C0 continuity at interfaces between
each element. There have been methods proposed in which continuity of the first
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derivatives at the element interfaces is maintained [4], but they have the disad-
vantage that knowledge of a solution is required across the entire domain. When
used on a parallel computer this translates into inter-processor communication
which requires an extra amount of time.

In the current work we attempt to develop a spectral element scheme to
approximate the interface conditions for the Gauss-Lobatto-Legendre polynomial
approximations to the solutions of Navier-Stokes equations, and a smoothing
technique to calculate the interface conditions at each element. The main idea
presented here is to modify the Gauss-Lobatto-Legendre polynomial basis of
the spectral element formulation by using a least square reconstruct procedure
implemented on the first derivatives at interfaces of each element, in which the
interface values can be calculated by using only the information on the adjacent
elements. As a result the proposed interfacial smooth technique is implemented
on the Navier-Stokes equations based on a channel flow with a symmetric abrupt
contraction.

The paper is organized as follows: in Section 2 we introduce the basic idea
upon which the spectral element formulation is based. In Section 3 we describe a
smooth method to examine the accuracy between the numerical and analytical
solution for the first derivative of trigonometric periodic function. Finally, the
numerical simulation of the flow in a symmetric contraction channel is presented.
The size of the salient corner vortex and the shape of stream function contours
show a good agreement with the work of Dennis et al. [3] and Karageorghis
et al. [5]. The separation length and the strength of the vortex increase as Re
increases after Re > 50, and the downstream recirculations have been seen in
the streamlines.

2 Spectral element approximation

The spectral element method is high-order weighted residual technique for the
approximation of partial differential equations that combines the generality of
finite element method with the accuracy of spectral method. In this section
we will briefly describe the spectral element method based on a simple one-
dimensional Poisson equation defined by

−uxx = f, x ∈ I = [a, b], (1)

with homogeneous Dirichlet boundary conditions

u(a) = u(b) = 0, (2)

where f is a given function. Using the Galerkin technique, equations (1)-(2) can
now be characterized by the following variational problem:

Find u ∈ H1
0 (I), such that

a(u, v) = (f, v), ∀v ∈ H1
0 (I), (3)
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Fig. 1. Spectral element discretization in 1 D.

where

a(u, v) =

∫ b

a

ux(x)vx(x)dx, (f, v) =

∫ b

a

f(x)v(x)dx,

H1
0 (I) = {v|v ∈ L2(I), vx ∈ L2(I), v(a) = v(b) = 0},

L2(I) is the space of square integrable functions.
Following standard spectral element procedure, we begin, as usual, by intro-

ducing a family of partitions of I such that I = ∪Kk=1I
k, ∀k, l, k '= l, Ik∩Il = ∅,

where K denotes the number of elements. In the development, we use N as the
degree of the polynomial. Fig. 1 shows the spectral element discretization on
one dimensional geometry. On elements k− 1 and k the grid points are denoted
xk−1

0 , ..., xk−1
N and xk0 , ..., x

k
N , respectively. And then each element is mapped

onto the parent element I = [−1, 1] by using the equation

x =
Lk
2
ξk +

xkL + xkR
2

, (4)

where xkL and xkR denote the left and right coordinates of the elemental bound-
aries, Lk is the element length, and ξ ∈ I. The interpolant of u(x) in the kth
element is then represented as

uk(ξ) =
N∑
i=0

uki hi(ξ
k). (5)

Here uki are nodal values of u, and hi(ξ
k) are the basis functions corresponding

to element k and node i, with property hi(ξ
k
j ) = δij. Expressions for these

interpolants in terms of Chebyshev, Lengendre and other polynomials can be
found in [2]. In this paper we choose the basis functions are the Gauss-Lobatto-
Lengendre polynomials defined as

hi(ξ) = − 1

N(N + 1)LN(ξi)

(1− ξ2)L
′
N(ξ)

ξ − ξi
, ξ ∈ I, (6)

where LN(ξ) is the Legendre polynomial of degree N , L
′
N (ξ) = dLN (ξ)/dξ and

the ξi are the Gauss-Lobatto-Legendre collocation points. Furthermore, there
also exists a unique set of positive real numbers, ρi, corresponding with ξi,
(0 ≤ i ≤ N), such that the integration rule

∫ 1

−1

φ(ξ)dξ =
N∑
i=0

ρiφ(ξi), (7)

is exact for all polynomials φ(x) of degree ≤ (2N −1) on the interval [−1, 1]. We
follow the standard spectral element method [6], an expansion of the function
u(x) can be written in terms of elements as
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u(x) =
K∑
k=1

uk(x) =
K∑
k=1

N∑
i=0

uki hi(x), (8)

where uki are the point values for element k, and x refers to the local coordi-
nate. We require that the approximation function u(x) is continuous through
the interface of each element, i.e.,

uk(xN ) = uk+1(x0), 1 ≤ k ≤ K − 1, (9)

and also satisfies the essential boundary condition

u1(x0) = uK(xN ) = 0. (10)

Expansion (8) together with the boundary conditions (9) and (10) are now
inserted into the weak formulation (3) and the discrete equations are then gener-
ated by choosing appropriate functions v which are unity at a point ξi and zero
at all other Gauss-Lobatto-Legendre points. In matrix form the spectral element
procedure for equation (3) can be written as

Au = b, (11)

where A is the discrete Laplace operator and b is the right hand side vector
with the boundary conditions.

It is clear that the approximation by spectral element discretization u(x)
defined by formulation (8) is only C0 continuity and the first derivative may not
continuous across each element. There has been a method proposed by Gottlieb
et al. [4] in which continuity of the first derivatives at the sub-domain interfaces
is maintained for the domain decomposition method. Following the same idea in
[4], the element interfaces in the spectral element method can be calculated by
enforcing C1 continuity across each element interface, i.e., the first derivatives
are calculated directly from formulation (8)

d

dx
u(x) =

K∑
k=1

d

dx
uk(x) =

K∑
k=1

N∑
i=0

uki
d

dx
hi(x), (12)

and continuity of the first derivatives is enforced at each element interface

d

dx
uk(xN ) =

d

dx
uk+1(x0), ∀k ∈ {1, ...,K − 1}, (13)

Equation (13) implies that

N∑
i=0

uki
d

dx
hi(xN ) =

N∑
i=0

uk+1
i

d

dx
hi(x0). (14)
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Although the continuity of the first derivative at each element interface is
satisfied, the principal disadvantage of this enforcing method is that all of the
elements are coupled together, which results in a relatively large amount of
inter-processor communication and requires extra computer time to solve, in
particular, in the parallel computational programs. The goal of this paper is to
propose a simple modification for equation (14) so that the first derivative of
the function u(x) is almost continuous at each element interface but only using
information from the adjacent elements in the approximation.

3 Smoothing interface method

In this section, we present a smoothing interface method (SIM) based on one-
dimensional spectral element approximations. Let uk−1(x) and uk(x) denote
the approximations to the unknown variable u(x) on elements k − 1 and k,
respectively, and they can be represented as

uk−1(xk−1) =
N∑
i=0

uk−1
i hi(x

k−1), uk(xk) =
N∑
i=0

uki hi(x
k), (15)

where uk−1
i and uki are the values of u(x) in the grid points xk−1

i and xki , respec-
tively. Let dk−1(x) and dk(x) denote the first derivatives of uk−1(x) and uk(x),
they can be written as

dk−1(x) =
N∑
i=0

dk−1
i hi(x

k−1), dk(x) =
N∑
i=0

dki hi(x
k), (16)

where dk−1
i , dki are the values of the first derivatives of the variable u(x) at the

local nodes xk−1
i and xki , respectively. The idea of the smoothing method is to

find an alternative approach to calculate dk−1
i and dki by using the information

from the adjacent elements k − 1 and k only. We wish to determine the best
values for dki so that the deviations among dki and d

dxu(xki ) are minimized. It
turns out that to find a functional Φ such that

min Φ(dk−1
0 , dk−1

1 , ..., dk−1
N , dk0 , ..., d

k
N ,λ), (17)

where the functional Φ is given by

Φ =

∫
k−1

(
(dk−1(x)− d

dx
uk−1(x)

)2

dx +

∫
k

(
dk(x) − d

dx
uk(x)

)2

dx

+ λ(dk−1
N − dk0), (18)

and λ is a parameter. If we substitute dk(x) as defined by equation (16) and
duk(x)/dx as defined by equation (14) into equation (18), we get
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Φ =

∫
k−1

(
N∑
i=0

dk−1
i hi(x)−

N∑
i=0

uk−1
i

d

dx
hi(x)

)2

dx

+

∫
k

(
N∑
i=0

dki hi(x) −
N∑
i=0

uki
d

dx
hi(x)

)2

dx + λ(dk−1
N − dk0). (19)

We observe that Φ is an ordinary function of the unknowns dk−1
i and dki as re-

flected in our notation. To minimize Φ, we need only to take its partial derivatives
with respect to each unknown dk−1

i (as well as dki ) and set to zero. This implies
that, at the minimum, all the partial derivatives ∂Φ/∂dk−1

0 , . . . , ∂Φ/∂dk−1
N and

∂Φ/∂dk0, . . . , ∂Φ/∂d
k
N vanish. Writing the equations for these gives 2(N + 2)

equations:

∂Φ

∂dk−1
i

= 2

∫
k−1

(
N∑
i=0

dk−1
i hi(x)−

N∑
i=0

uk−1
i

d

dx
hi(x)

)
hi(x)dx = 0, i = 0, ..., N−1,

∂Φ

∂dk−1
N

= 2

∫
k−1

(
N∑
i=0

dk−1
i hi(x) −

N∑
i=0

uk−1
i

d

dx
hi(x)

)
hN(x)dx + λ = 0,

∂Φ

∂di
k

= 2

∫
k

(
N∑
i=0

dki hi(x)−
N∑
i=0

uki
d

dx
hi(x)

)
hi(x)dx = 0, i = 1, ..., N,

∂Φ

∂d0
k

= 2

∫
k

(
N∑
i=0

dki hi(x)−
N∑
i=0

uki
d

dx
hi(x)

)
h0(x)dx − λ = 0.

Solving these equations by using the integration formulation (7), we obtain

dk−1
i =

1

Jk−1

N∑
j=0

uk−1
j

d

dξ
hj(ξi), i = 0, ..., N − 1, (20)

dki =
1

Jk

N∑
j=0

ukj
d

dξ
hj(ξi), i = 1, ..., N, (21)

dk−1
N = dk0 =

1

Jk−1 + Jk

N∑
j=0

(
uk−1
j

d

dξ
hj(ξN ) + ukj

d

dξ
hj(ξ0)

)
, (22)

where Jk−1 and Jk are the values of Jacobian that come from mapping sub-
domains Ωk−1 and Ωk onto the parent element χ2 = [−1, 1]. With the above
equations (20)-(22), the interface of elements can be calculated in the sense of
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least-square approximations by using only information from the adjacent ele-
ments k − 1 and k. It is important to realize that the deviations squared of the
first derivatives should continually decrease as the degree of the polynomial is
raised. If the approach is implemented on a parallel computer the only commu-
nication that is required is between adjacent processors.

Before leaving this section, we show some numerical experiments which il-
lustrate the accuracy of the spectral element method with smoothing interface
strategy. We computed the first derivatives of the test function

f(x) = | sin(x)|, −π ≤ x ≤ π. (23)

Its first derivative is

d

dx
f(x) =

{− cos(x), −π ≤ x ≤ 0,
cos(x), 0 ≤ x ≤ π.

Clearly, the first derivative function df(x)/dx is discontinuous at x = 0.
How well does the smoothing interface method do on such a function? Fig.
2 shows the exact and numerical solutions for the first derivatives df(x)/dx
with different numbers of Gauss-Lobatto-Legendre collocation points as well
as different numbers of the elements. As illustrated in Fig. 2, the numerical
solutions agreed well with the exact solutions when the smoothing interface
technique is used. It is also important to note that the smoothing solutions do
not have any oscillations at x = 0 where the first derivative function df(x)/dx
is discontinuous. Table 1 shows that the numerical solutions calculated with
and without smooth interface technique by using four elements and twenty-
four collocation points on each element. The data show that both algorithms
performed well for the discontinuous function df(x)/dx. It is quite self-evident
that the smoothing solutions (SIM) are more accurate than the solutions without
smoothing technique (SEM). This can be seen in Table 1 when x = −π/2 and
x = π/2 the error for the SIM solutions is 10−13, but it is only 10−6 for the SEM
solutions.

x Analytical solution of f′(x) SIM solution of f′(x) SEM solution of f′(x)

− 3
4π .70710670E + 00 .70710670E + 00 .70710680E + 00

− 1
2
π −.75497900E − 07 −.75497890E − 07 .36091110E − 07

− 1
4π −.70710680E + 00 −.70710680E + 00 −.70710670E + 00

1
4π .70710680E + 00 .70710680E + 00 .70710690E + 00
1
2
π .75497900E − 07 .75497890E − 07 .18708690E − 06

3
4π −.70710670E + 00 −.70710670E + 00 −.70710660E + 00

4 Numerical results

In this section, numerical results are presented for the incompressible Navier-
Stokes flows in a 2 : 1 contraction channel by using the spectral element method
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Table 1. A comparison among the analytical, SIM and SEM solutions with 24 collo-
cation points and 8 elements.
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Fig. 2. Numerical solutions with the smoothing interface technique compare with the
analytical solutions by using different numbers of collocation points (Nx) and elements
(NE).

with smoothing interface technique. The incompressible Navier-Stokes equations
are given by:

∂u

∂t
+ u ·∇u− 1

Re
(u +∇p = f , (4.6)

−∇ · u = 0, (4.7)

where u = (u, v) is the velocity, p is the pressure, f is a given function, and
Re = ρUL/η is Reynolds number defined the properties of the fluid.

4.1 Planar contraction flow

The 2 : 1 contraction channel flow geometry is shown in Fig. 3. Here the fluid
enters upstream in the channel as a fully developed parabolic profile, and exits
far downstream as a flat liquid sheet. The 2 : 1 planar contraction channel is
chosen in order to compare with the results already published in Dennis et al.
[3] and Karageorghis et al. [5]. In such a geometrical channel, the height of the
inflow half channel is taken to be unit and the height of the outflow channel is
a = 1/2, and the total length of the channel is 4.

Two non-uniform different meshes shown in Fig. 4 were used in the numerical
simulations. Mesh 1 has three elements, twelve collocation points in the x direc-
tion and six collocation points in the y direction in each element, while there are
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Fig. 3. The 2 : 1 planar contraction flow geometry.

three elements, sixteen and eight collocation points in the x and y directions on
each element, respectively, in Mesh 2.

Nx=14, Ny=6, NE=3 Nx=16, Ny=8, NE=3

Fig. 4. Meshes for the 2 : 1 planar contraction channel problem.

Table 2 shows the length l1 and the width l2 of the salient corner vortex with
different Reynolds numbers on Mesh 1 and Mesh 2. We can see that the size
of corner vortex diminishes as Re increases from Re = 0 to Re = 50, and then
begins to grow slowly with Re > 50. In Table 3, we compare the values of l1 and
l2 for various Reynolds numbers on Mesh 2 with the results obtained by Dennis
et al. [3] and Karageorghis et al. [5]. Table 3 shows that our numerical results are
in good agreement with those results. Also, we find that l1 grows more quickly
than l2 when Re increases from 50 to 200, which implies that the corner vortex
grows in size along the upstream channel more quickly than up the wall at x = 0
as Re increases.

Re = 0 Re = 1 Re = 10 Re = 50 Re = 100 Re = 150 Re = 200

l1 Mesh 1 0.2548 0.2201 0.1477 0.1280 0.1379 0.1576 0.1870

Mesh 2 0.2610 0.2399 0.1545 0.1077 0.1389 0.1467 0.1825

l2 Mesh 1 0.3086 0.2793 0.1767 0.1215 0.1328 0.1474 0.1621

Mesh 2 0.3181 0.2954 0.1706 0.1396 0.1298 0.1494 0.1706

Table 2. Values of l1 and l2 for various Re numbers on the Mesh 1 and Mesh 2.

Contours of the stream function for Re =  0, 10, 50, 100, 150, 200 on Mesh 2
are plotted in Fig. 5. The streamline plots give a qualitatively satisfactory to
the flow solutions, we can see that the eddy of recirculation is happened for
the Stokes flow at Re =  0, and as Re increases from zero, the length of corner
vortex l1 initially decreases until at Re = 50. For higher value Re number, the
eddy length l1 increases monotonically with Re. This phenomenon shows that
the vortex develops as Re is increased.
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Re = 0 Re = 1 Re = 10 Re = 50 Re = 100 Re = 150 Re = 200

l1 (a) 0.2610 0.2399 0.1545 0.1077 0.1389 0.1467 0.1825

(b) 0.268 0.243 0.153 0.128 0.138 – –

(c) 0.285 – 0.150 0.129 0.143 0.160 0.183

l2 (a) 0.3181 0.2954 0.1706 0.1396 0.1298 – –

(b) 0.311 0.281 0.163 0.124 0.122 – –

Table 3. The length and the width of the salient corner vortex for (a) smoothing
interface spectral element method; (b) finite-difference scheme of Dennis et al. [3]; (c)
spectral collocation method of Karageorghis et al. [5].

Re=0Re=0Re=0Re=0 Re=10Re=10Re=10Re=10

Re=50Re=50Re=50Re=50 Re=100Re=100Re=100Re=100

Re=150Re=150Re=150Re=150 Re=200Re=200Re=200

              Fig. 5. Flow streamlines for various Re numbers on Mesh 2.
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