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Abstract. There is a continuously growing demand for mobile commu-
nication. With the limited frequency spectrum, the problem of channel
assignment becomes increasingly important. This problem is known to
belong to a class of very difficult combinatorial optimization problems.
In this paper, we apply the formulation of Ngo and Li with genetic algo-
rithms to ten benchmarking problems, for some of which interference-free
solutions cannot be found but the approach is able to minimize the in-
terference effectively.

1 Introduction

In recent years, there is a continuously growing demand for mobile communi-
cation. The rate of increase in the popularity of mobile usage has very much
outpaced the availability of the usable frequencies which are necessary for the
communication between mobile users and the base stations of cellular radio net-
works. This restriction constitutes an important bottleneck for the capacity of
mobile cellular systems. Careful design of a network is necessary to provide ac-
ceptable quality of service.

An important issue on the design of a cellular radio network is to deter-
mine a spectrum-efficient and conflict-free allocation of channels among the cells
while satisfying both the traffic demand and the electromagnetic compatibil-
ity (EMC) constraints. This is usually referred to as a channel assignment or
frequency assignment problem (CAP1). There are basically three sources of con-
straints [5][21], namely, co-channel constraint (CCC), where the same channel
cannot be assigned to certain pairs of radio cells simultaneously; adjacent chan-
nel constraint (ACC), where channels adjacent in the frequency spectrum cannot
be assigned to adjacent radio cells simultaneously; and co-site constraint (CSC),
where channels assigned in the same radio cell must have a minimal separation
in frequency between each other.

This channel assignment problem is equivalent to a graph-coloring problem
and is thus NP-hard. Over the recent years, several heuristic approaches have
been used to solve various channel assignment problems, including simulated
annealing [18], neural networks [6][7][16], tabu search, and genetic algorithms
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(GAs) [11][14][19][20][22]. The existing approximative algorithm can be divided
into two main groups. One group first determines ordered lists of all calls in the
whole system [17] and then assign frequencies to the calls following a determin-
istic assignment strategy. In particular, Ngo and Li [20] developed an effective
GA-base approach that obtains interference-free channel assignment by mini-
mizing interference in a mobile network. They demonstrated that their approach
efficiently converges to conflict-free solutions in some benchmarking problems.

As demand for mobile communications grows further, interference-free chan-
nel assignments often do not exist for a given set of available frequecies. Mini-
mizing interference while satisfying demand within a given frequency spectrum
is another type of channel assignment problem (CAP2) [7].

In this paper, we apply Ngo and Li’s approach to several benchmarking
channel assignment problems where interference-free solutions do not exist. The
organization of this paper is as follows. section 2 states the channel assignment
problem (CAP). In section 3 summarizes Ngo and Li’s approach to solving CAP
with genetic algorithms. section 4 describes the tests carried out and results
obtained. Finally, section 5 concludes the paper.

2 Channel Assignment Problem

The channel assignment problem arises in cellular telephone networks where
discrete frequency ranges within the available radio frequency spectrum, called
channels, need to be allocated to different geographical regions in order to
(CAP1) minimize the total frequency span, subject to demand and interference-
free constraints, or to (CAP2) minimize the overall interference, subject to de-
mand constraints. In this paper, we are interested in CAP2.

There are two kinds of channel allocation schemes - fixed channel allocation
(FCA) and dynamic channel allocation (DCA). In FCA the channels are perma-
nently allocated to each cell, while in DCA the channels are allocated dynam-
ically upon request. DCA is desirable, but under heavy traffic load conditions,
FCA outperforms most known DCA schemes. Since heavy traffic conditions are
expected in future generations of cellular networks, efficient FCA schemes is
becoming more and more important [20]. The cellular network is assumed to
consist of N arbitrary cells and the number of channels available is given by M.
The number of channels required (expected traffic) for cell j is D;. Assuming
that the RF propagation and the spatial density of the expected traffic have al-
ready been calculated, the non-interference constraints can be determined. The
electromagnetic compatibility (EMC) constraints, specified by the minimum dis-
tance by which two channels 7 and j must be separated in order to guarantee
an acceptably large signal-to-interference ratio S/I within the regions to which
the channels are assigned, can be represented by an N x N symmetric matrix
called the compatibility matrix C'= {C;}.

The solution space is represented by F' as an N x M binary matrix, where N
is the total number of radio cells and M is the total number of available channels
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[20]. Each element fj; in the matrix is either one or zero such that

Fir = 1, if channel k is assigned to cell j ;
3% 77 0, otherwise .

The cellular network is expected to meet the demand of the traffic and to min-
imize all forms of interference. The first requirement is the demand constraint,
i.e., for cell i, a total of D; channels are required. This implies that the total
number of ones in row ¢ of F' must be D;. If the assignment to cell ¢ violates the
demand constraint, then

M
O fia—Di)#0 . (1)

The second requirement depends on the compatibility matrix C. It is made up of
CSC, CCC and ACC. In order to satisfy the CSC, if channel p is within distance
Cy; from an already assigned channel ¢ in cell ¢, then channel p must not be
assigned to cell 4. This can be seen from the equation below:

p+(Cii—1)
> fig>0 . (2)
q=p—(Cii—1),q#p,1<q<m
To satisfy the requirements for CCC and ACC, if channel p in cell i is within
distance C; from an already assigned channel ¢ in cell j, where C;; > 0 and
i # j, then channel p must not be assigned to cell i. This is represented as

follows:
N p+(Cii—1)

o fi > fig >0 . 3)

J=1,j#1,C;;>0 q=p—(Cii—1),q#p,1<g<m

Therefore, the cost function of CAP can be expressed as

N p+(Cii—1)

N M
CEY=3>( > > fia)fin

i=1p=1 j=1,j#i,Cs; >0 g=p—(Ci; —1),q#p,1<q<m

N M p+(Cii—1) N M
+O‘ZZ( Z fzq)f1p+62(z qu *Dz) ) (4)
i=1p=1 ¢=p—(Cii—1),q#p,1<q<m i=1 ¢=1

where o and (3 are weighting factors. It is noted that C(F’) achieves its minimum
of zero when all constraints are satisfied. So, the objective of our problem is to
find an F' such that C'(F') is minimized.

3 Solving Channel Assignment Problem with Genetic
Algorithm by Ngo and Li

In the encoding scheme by Ngo and Li [20], a p-bit binary string represents an
individual with ¢ fixed elements and the minimum separation between consecu-
tive elements is represented by d,,;n. The concept of this scheme is to represent
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the solution in a way such that a one is followed by d,,;» — 1 zeros encoded as a
new ”one”, denoted as I. Using the minimum separation scheme, the cost func-
tion can be simplified by exploiting the symmetry of the compatibility matrix
C. Hence, the final cost function is represented by

N—1 N Cij—1p—1

C(F) = Z ( Z ijqfip

j=i+1,C;;>0 p=1 g¢=1

M p— 1 M
T Z Z fiafin + 5 21 fiafip) (5)
-

p=Cij q=p—Cli;j+1

The mechanism of genetic algorithms start with randomly generating a popula-
tion of chromosomes (suitable solutions for the population). The solution space
represented by F', a N x M matrix, is treated as a chromosome in the population.
This means that if a population is to contain n chromosomes, there will be n
F solution matrixes in the population, each representing a chromosome. These
n F solution matrixes or arrays are randomly generated and are all possible
solutions for the channel assignment problem. The number of chromosomes in
a population is stated by the population size, which is a parameter that should
be manipulated to obtain an optimized solution. The setting of population size
is generally quite ad hoc but nevertheless, a relatively small population size is
suggested [20].

After randomly generating a population of chromosomes, the fitness of each
chromosome should be evaluated. Therefore, all F' solution arrays in the popu-
lation are evaluated for their fitness values [20][20][20], by using the final cost
function eq.(5). The lower the cost function value, the fitter the chromosome.

The next step in genetic algorithm is to generate a new population, using
genetic algorithm operators, such as selection, crossover, and mutation. The
selection process consists of selecting 2 parent chromosomes from a population
according to their fitness (the better fitness, the bigger chance to be selected).
The selected chromosomes have to undergo minimum-separation encoding, to
ensure that the CSC satisfaction in them will continue to be satisfied even after
crossover and mutation.

After selection and encoding, the selected parent chromosomes, or selected F'
solution arrays (encoded), will undergo crossover, with a probability of crossover,
and mutation with a probability of mutation. Crossover probability and mutation
probability are parameters that should be manipulated to obtain an optimized
solution. The settings of these parameters, like the population size parameter,
are generally quite ad hoc but a high crossover probability and low mutation
probability are suggested [20]. Therefore, after crossover and mutation, the new
offspring of the parent chromosomes are placed in the new population. For par-
ents whereby no crossover or mutation is performed, they will be placed in the
new population too. The selection, crossover and mutation processes will be re-
peated till the new population, which has the same size of the old population, is
formed. After which, all new F' solution arrays, or chromosomes, will be used for
a further run of the entire genetic algorithm till an optimized solution is found.
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4 Application of the Ngo-Li GA Approach to
Benchmarking CAPs

The data sets used to test the performance of the approach were taken from [7].
Ten benchmarking problems were examined. Table 1 lists the problem specifica-
tion and Table 2 lists the demands of those problems. The CPU time taken

Table 1. Problem specifications of the ten benchmarking problems used. [Ds]; stands
for the first ¢ elements of matrix [Ds].

Problem | No. Cell | No. Channel | Demand
EX1 4 11 D,
EX2 5 17 Do

HEX1 21 37 D3
HEX2 21 91 D3
HEX3 21 21 Dy
HEX4 21 56 Dy

KUNZL | 10 30 [Ds]o

KUNZ2 15 44 [Ds]15

KUNZ3 | 20 60 [Ds]20

KUNZ4 25 73 Ds

Table 2. Demand constraints of the benchmarking problems.

Demand
DT (1,1,1,3)
Dj (2,2,2,4,3)

DT (2,6,2,2,2,4,4,13,19,7,4,4,74,0,14,7,2,2.4,2)
Dr (1,1,1,2,3,6,7,6,10,10,11,5,7,6,4,4,7,5,5,5,6)
DT [(10,11,9,5,9,4,5,7,4,8,8,9,10,7,7,6,4,5,5,7,6,4,5,7,5)

for each problem was dependent on the number of the size of the population
used. A bigger population would take a much longer time for the minimum cost
function to be found. Figure 1 shows the typical rate of convergence trajectory
based on CPU time. Figure 2-3 shows the typical rate of convergence trajectory
based on number of generations. Figures 4-7 show the sub-optimal solutions of
channel assignments obtained from GA. Each dot represents a traffic demand for
a particular cell and this demand would be allocated to a channel in a manner
such that all the interferences are minimized. During the simulation, several
parameters, such as crossover probability, mutation probability and population
size, need to be set. The number of generations for different problems also needs
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Fig. 1. A typical rate of convergence trajectory based on CPU time.
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Fig. 2. A typical rate of convergence trajectory based on number of generations for
KUNZ1 and KUNZ2.

Oy

==NNWE BANNINNNNDOOOO==NINWERA
OUIOUIONIOUIOUIOMICUICYICUIOUIO OUIOUIOUNIO
NN NN R

Kunz 3

Kunz 4

Cost Function

Generations

Fig. 3. A typical rate of convergence trajectory based on number of generations for
KUNZ3 and KUNZ4.
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Fig. 4. Channel assignment for Hex 1 with interference value 39
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Fig. 5. Channel assignment for Hex 2 with interference value 13.5
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Fig. 6. Channel assignment for Hex 3 with interference value 46.5
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Fig. 7. Channel assignment for Hex 4 with interference value 0

to be taken into account. For example, for larger problems like Kunz 4, the num-
ber of generations needed to obtain a satisfactory result is 100000 as compared
to 50000 for a smaller problem Kunz 3. For any genetic algorithms, the settings
of these parameters are generally by trial-and-error. One general rule was kept
throughout the simulation as suggested in [4]. That is to use relatively small pop-
ulation size, high crossover probability, and low mutation probability. We have
systematically tested various choices of these parameters. For example, when we
set the population size as 20 and the mutation probability as 0.004, the following
tables show how the cost function changes with the cross-over probability:

5 Conclusion

In this paper, we applied Ngo and Li’s GA-based approach to CAP2, i.e., channel
assignment problems in which the total interference is minimized while traffic
demands are satisfied within a given set of available channels. This approach
permits the satisfaction of traffic demand requirement and co-site constraint. It
is achieved by the use of a minimum-separation encoding scheme, which reduces
the required number of bits for representing the solution, and with unique genetic
operators that kept the traffic demand in the solution intact. This allowed the
search space to be greatly reduced and hence shorten the computation time.
The simulations done on benchmark problems showed that this approach could
achieve desirable results.

Although we have tested a variety of choices of parameters, such as mutation
rate, cross-probability, and population size, more such test with other choices of
parameters should be carried out. Implementations of GAs for DCA will also be
studied in future work.
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