
Switchback: Profile-Driven Recomputation for
Reverse Mode

Mike Fagan and Alan Carle

Department of Computational and Applied Mathematics
Rice University, 6100 Main Street, Houston, TX 77005–1892, USA

{mfagan, carle}@caam.rice.edu
http://www.caam.rice.edu

Abstract. Many reverse mode codes created by Automatic Differen-
tiation (AD) tools use too much storage. To help mitigate the storage
requirement, AD users resort to a technique called recomputation. Ac-
ceptable performance, however, requires judicious use of the recomputa-
tion technique. This work describes our approach to constructing good
recomputation for Adifor 3.0-generated reverse mode codes by using a
standard execution time profiler.

1 Introduction

Modern Automatic Differentiation (AD) tools have enabled scientists and engi-
neers to easily generate adjoint, or reverse mode programs for computation of
gradients. Many reverse mode computations suffer from overuse of both primary
and file system memory resources. Consequently, further development of reverse
mode codes frequently centers on using recomputation to reducing the amount
of storage required. Recomputation, however, trades time for space, and must
be used judiciously, or else the reverse mode computation will become too slow.
AD tools implementing the reverse mode include ADOL-C [1], Odyssée [2], and
TAMC/TAF [3].

While working on a shape optimization problem, we discovered that we
needed recomputation. We were using Adifor 3.0 [4], the successor of [5], to gener-
ate reverse mode code for the computation of geometric derivatives in CFL3D [6],
a fluid dynamics code. For the problem instances of interest to us, the reverse
mode log exceeded the bounds for the local disk storage. Even after using a
standard fixed-point technique to drastically reduce the storage, we still could
not fit our computation on the local disk. Ergo, we saw that we must use recom-
putation to compute the derivatives of interest. The recomputation technique
we designed for our problem employed the two main ideas: (a) the construc-
tion of local recomputation based on subprograms already present in the user’s
code and (b) the use of a standard program execution profiling tool to indicate
subprograms in which recomputation can be effectively applied.

The remainder of this paper describing our technique is organized as follows.
Section 2 gives some general background material on the reverse mode of auto-
matic differentiation, including some discussion of the storage problem. Section 3

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 1029−1038, 2002.
 Springer-Verlag Berlin Heidelberg 2002

gives a general overview of the recomputation mechanism, and how it is used to
reduce reverse mode storage problems. Section 4 gives the relevant details of the
specific Adifor 3.0 reverse mode technique, including the Adifor 3.0 “switchback”
recomputation mechanism. Section 5 details how we use a standard execution
profiler to select appropriate subroutines for recomputation. Section 6 describes
the derivative computation problem under study, including systemic constraints.
It also details how we used Adifor 3.0 recomputation to render the problem sol-
uble. Finally, Sect. 7 shows the results of our recomputation transformation, and
estimates the performance effect.

2 Background Material

The time cost for a (straightforward) reverse mode computation is proportional
to the number of “output”, or “dependent” variables, and does not depend on the
“design” or “independent” variables. This property is what makes reverse mode
nearly ideal for optimal control or optimal design applications. For example,
our shape optimization problem required the derivatives of each grid point with
respect to the lift-over-drag ratio. See [7] for a thorough description of reverse
mode resource cost, and a complete treatment of reverse mode mathematics.

The following simple example illustrates the reverse mode. Suppose we are
given a simple program

y = f(x1, . . . , xn)

z = g(y, x1)

that computes z given x1, . . . , xn. Let v := ∂z/∂v denote the derivative, or
adjoint, of the dependent variable z with respect to an intermediate variable v.
Then the reverse mode computation for the derivatives of z with respect to the
independent variables x1, . . . , xn is given by

Step 1: z = 1, y = 0, x1 = 0, . . . , xn = 0,

Step 2: y = y +
∂g

∂y
z, x1 = x1 +

∂g

∂x1
z, z = 0,

Step 3: x1 = x1 +
∂f

∂x1
y, . . . , xn = xn +

∂f

∂xn
y .

Note that the function computation order is y, then z, but the reverse mode
derivative calculation z, then y. This reversal of the function computation or-
dering is what gives “reverse mode” its name.

An AD tool accepts a user program as input, and outputs an augmented
program that computes specified derivatives via reverse mode computation in
addition to the original function computation. As illustrated by the preceding
example, reverse mode control flow is the reverse of the original function control
flow. For simple assignment statements, this control flow reversal is fairly simple.
When conditional and unconditional branches, subroutine calls, loops, and other

1030 M. Fagan and A. Carle

nontrivial program constructs are added to the statement mix, however, the code
implementing the reverse control flow can be quite complex. In most real world
codes, implementing the control flow reversal requires saving trace information.

In general, a reverse mode computation consists of two phases: a forward,
or logging phase, and a reverse, or derivative phase. During the forward phase,
some program state information is saved, but the control flow of the program
is unchanged. The forward phase computes the same function outputs as the
original unaugmented program. During the reverse phase, however, the control
flow of the program is reversed from the normal forward flow in order to com-
pute the derivative accumulations. Derivative accumulations require the partial
derivatives of the left hand side of the assignment statement with respect to each
variable used on the right hand side of the assignment statement. The respon-
sibility of the forward phase is to log sufficient information to both correctly
reverse the control flow and compute the necessary partial derivatives for the
assignment statements.

The quasi-mathematical model of assignment statements given in the pre-
ceding example oversimplifies a crucial characteristic of computer program as-
signment statements. The problem can be seen in another simple example where
the program fragment (line numbered for convenience)

(1) v1 = a ** 2 + b ** 2

(2) a = sin(z)

is given. Forward control flow proceeds from statement (1) to statement (2).
So, the reverse pass must assure that the derivative accumulations for (2) occur
before the derivative accumulations for (1). Also, note that for statement (1),
∂v1/∂a = 2a, where the value of a is the value it had before the statement (2)
assignment. The forward phase must ensure that the correct value of the partials
for statement (1) are computed.

Since assignment statements change the value of a variable, the fundamental
problem for reverse mode is saving enough information to compute the partials.
There are two primary saving strategies:

1. Compute partials for each assignment in the forward pass, and save them.
Use the saved partials during the derivative accumulation of the reverse pass.

2. Save the values of left hand sides of assignments during the forward pass. In
the reverse pass, restore the saved values as needed to compute the partials
for the given statement.

Clearly, either strategy entails a potentially huge amount of auxiliary storage.
In summary, the time cost of reverse mode computation is very favorable

for many problems, especially optimization problems. The space cost, however,
might be problematic.

3 The Recomputation Alternative

To avoid storing values for every single assignment, the reverse mode compu-
tation could instead store a checkpoint, and when partials are needed, restart

1031Switchback: Profile-Driven Recomputation for Reverse Mode

the computation using saved checkpoint, recompute the state of the computa-
tion [8]. The obvious drawback to such a scheme is the time cost for doing the
recomputation.

There are several technical problems associated with employing a recompu-
tation scheme:

– How do we determine what to save as a checkpoint?
– How do we arrange for derivative computation control flow to use the check-

point?
– How do we determine where to take the checkpoints?

When considering what information to save for checkpoints, we note that
the program itself has a natural level of granularity—the subprogram, i.e., sub-
routines and functions in Fortran. For a given subprogram call site, the natural
checkpoint is the input values for that routine. The input values for a routine
consist of the read values for routine arguments, as well as global variables that
are read by the routine. Given the input values, the subprogram intermediate
state can be restored by simply calling the subprogram with the same inputs
Consequently, if we focus on checkpointing at the level of a subprogram call,
then we need only save the input values to effectively checkpoint the call.

Similarly, the restart mechanism for a subprogram is relatively simple: just
call it. The differentiated subprogram components can also be called as needed.
An example of this will appear in the following section.

4 Adifor 3.0 Reverse Mode Particulars

In order to ensure reasonable computational time performance, Adifor 3.0 reverse
mode by default stores all left hand sides of relevant assignments, and restores
the prior values during reverse mode partial computation. More precisely, given
an assignment statement of the form

foo = bar * baz

Adifor 3.0 generates both forward phase code and reverse phase code. The for-
ward phase code is given by

call STORE_r(foo)

foo = bar * baz

and the reverse phase code is generated in the form

a_bar = a_bar + baz * a_foo

a_baz = a_baz + bar * a_foo

a_foo = 0.0

call LOAD_r(foo)

where the prefix a_ is used to denote an adjoint of the corresponding variable.

1032 M. Fagan and A. Carle

Adifor 3.0 handles subroutine call control flow by using a switch to select
either forward pass or reverse pass computation. To illustrate, suppose we have
the following routine with two inputs and two outputs:

subroutine SS(in1,in2,out1,out2)

! compute stuff

end

Then Adifor 3.0 generates an associated reverse mode subroutine that looks like
this:

subroutine a_SS(dir,in1,a_in1,in2,a_in2,out1,a_out1,

+ out2,a_out2)

if (dir .eq. FWD) then

! compute stuff and log intermediate stuff

endif

if (dir .eq. REV) then

! restore intermediates, compute partials,

! accumulate derivatives.

endif

end

Here, the parameter dir controls the forward phase, FWD, or the reverse phase,
REV, of the standard reverse mode computation which is driven by

call a_SS(FWD,...)

call a_SS(REV,...)

The Adifor 3.0 recomputation technique is called the “switchback” transform.
A routine that uses switchback uses the forward and reverse components from
conventional Adifor processing, but has a different schematic. The switchback
version of the preceding SS routine would be:

subroutine sb_a_SS(dir,in1,a_in1,in2,a_in2,

+ out1,a_out1,out2,a_out2)

if (dir .eq. FWD) then

call STORE_r(in1) ! save input arg 1

call STORE_r(in2) ! save input arg 2

call SS(in1,in2,out1,out2) ! make the (undiff) call

endif

if (dir .eq. REV) then

call LOAD_r(in2) ! restore arguments

call LOAD_r(in1)

call a_SS(FWD,...) ! invoke normal fwd pass behavior

call a_SS(REV,...) ! invoke normal reverse pass behavior

endif

end

Note that constructing a switchback routine uses both the undifferentiated sub-
routine as well as the differentiated routine.

1033Switchback: Profile-Driven Recomputation for Reverse Mode

The user selects routines to which the switchback transform will be applied,
and specifies the names in the Adifor control file. In addition, for each selected
switchback routine, the user must nominate the input values to be saved. This
user-based nomination of input values is admittedly crude and tedious, but it
will be automated in future Adifor releases.

An actual example of using the switchback mechanism is as follows. Suppose
that the following subroutine

subroutine flx(a, n, x, flxout)

double precision a, x(n,n), flxout(n), tmp, tmp1

integer n

integer ix(100),iy(100)

double precision z(100),zz(100)

common /flxcomm/ ix,iy,z,zz

tmp = flxx(a,x)

tmp1 = flxz(a,z)

call flxupd(flxout,tmp,tmp1,a,n,x,z)

end

is given as part of a larger program where the semantics of the routines flxx,
flxz, and flxupd is not known a priori.

After inspecting this routine, and the various calls made by it, we determine
that subroutine arguments a, x, and n are read by flx. The variable z is not
read prior to assignment by flxx or flxz, it is an output variable. Similarly,
flxout is an output variable, and zz is not used at all. Hence, the switchback
mechanism needs only save a, n, and x. This analysis is encoded in the Adifor
control script these statements:

Switchback

flx:

a,n,x

Adifor will then ensure that flx uses recomputation rather than logging to
compute the necessary partial derivatives for the flx routine.

5 Profiling for Recomputation

Selecting all routines for recomputation would result in exceptionally poor per-
formance. In addition, not all routines are good candidates for recomputation.
If the checkpoint is nearly as large as the amount of storage used, then nothing
has been gained. The ideal candidate for recomputation would be a routine that
uses a small number of inputs, but computes a large number of intermediate
results, resulting in a large amount of storage used.

1034 M. Fagan and A. Carle

To select candidate routines for conversion to switchback, we follow the time-
honored computer science paradigm of profiling a code to determine which rou-
tines are consuming the majority of the resource of interest. One then focuses in-
tellectual effort on the routines that would benefit the most. For Adifor-generated
derivative code, this is especially easy. Since Adifor-generated code stores by call-
ing subroutines, e.g., STORE_r, a standard execution profiler such as Unix gprof

will supply information on which routines make the most calls to the storage
routine. Sample gprof output for our problem appears in Sect. 6. By focusing
the inspection effort on the top “few” routines that use the most storage, some
good recomputation candidates can likely be found.

To use profile-driven recomputation for an Adifor-generated code, the follow-
ing steps are recommended:

1. Run Adifor in reverse mode to obtain default logging-based derivative code
2. Compile the derivative code with profiling support enabled (-pg option on

most Unix systems).
3. Run the profile-enabled derivative code on a sample problem.
4. Run the profile post processor to discover which routines call the storage

routines the most.
5. Inspect the top 10, say, of these to see if they use a “small” number of input

values.
6. Assuming you find some, apply the switchback transform to the candidate

routines.

The following section details our use of this recipe for our problem.

6 Reverse Mode Computation for CFL3D

The problem under study was an aerodynamic shape optimization for a wing
under steady state flow conditions. The entire application consisted of a custom
grid generator, a flow solver, and a single scalar objective function computation,
the lift-over-drag ratio. Of these components, only the flow solver presented any
difficulty in reverse mode gradient computation. The flow solver was CFL3D
version 4. CFL3D [6] is a thin-layer Navier-Stokes solver that supports multiple
zones, and uses MPI-based parallelism. CFL3D is approximately 126,000 lines
of Fortran 77 code. The code is maintained by NASA Langley.

The grid for this problem was divided into 10 zones of size 65 × 17 × 17.
The execution platform was an Origin 2000, with 32 processors, and a relatively
small local disk. The I/O system, however, required that all of the processor
specific I/O be written on the local disk. In particular, that meant that the logs
for the reverse mode gradient computation had to fit onto a small local disk of
500 megabytes. In addition, the disk did not perform well when it was almost
full. So, ideally, we would like to keep the logs well under the 500 megabyte limit.

The flow solution ran for 1000 steps, and, using the default reverse mode
computation of Adifor 3.0, our logging instrumentation revealed that the log for
all 1000 steps would be on the order of 500 Gigabytes per processor.

1035Switchback: Profile-Driven Recomputation for Reverse Mode

Our first move to reduce the log size was to take advantage of the steady state
nature of the computation, and reduce our logging requirements to a single step
of the flow solver. This derivative accumulation is iterated over this single step
until convergence. This technique is well known to AD users; see [9] for mathe-
matical details. Even when reduced to a single step, our logging instrumentation
revealed the following information:

blocks = 4129180

integers = 29942967

logicals = 232048

reals = 105

doubles = 46865895

This makes the total log size 512, 144, 360 bytes which is still too large to fit into
memory.

A sample portion of the profiling run for the CFL3D application shows:

20572643/46865895 a_flxt_[15]

18484228/46865895 a_fhat_ [22]

16314714/46865895 a_diagj_ [59]

16314714/46865895 a_diagk_ [60]

16314714/46865895 a_diagl_ [61]

14901631/46865895 vec_v_ [91]

[6] 78.2 39.15 0.00 46865895 store_d_ [6]

The gprof output is dense, but contains the data we want. Line 7, on
which store_d_ [6] appears indicates the total number of calls, in this case
46, 865, 895. The lines above the store_d_ [6] line indicate routines that call
store_d_, and indicate what fraction of the total calls to store_d_ are made
by the given routine. For example, line 1 of the sample output shows that rou-
tine a_flxt_ called store_d_ 20, 572, 643 times out of the 46, 865, 895 times
that store_d_ was called. Furthermore, gprof sorts this output so that the
most frequent callers of a given routine appear at the top of the list. In the
sample output, the top 6 callers of store_d_ are a_flxt_, a_fhat_, a_diagj_,
a_diagk_, a_diagl_, and vec_v_. Note that only the top 6 are listed in the
sample. The full gprof output lists all the routines, and took several pages of
output, as store_d_ is called by 247 routines.

By focusing our attention on the top 10 users of the STORE_d routine as
determined by gprof, we found 4 routines that had relatively small number
of input values, but consumed a relatively large amount of log. Specifically,
a_flxt_,a_diagj_, a_diagk_, and a_diagl_ as shown in the sample output.
The a_fhat_routine used a fair amount of common block reads, so it could not
be used in our recomputation scheme. We applied the switchback transform to
these 4 routines.

1036 M. Fagan and A. Carle

7 Results

By applying switchback to 4 routines, we were able to reduce the log size to
these values:

blocks = 1694684

integers = 15975367

logicals = 223940

reals = 105

doubles = 29520599

with total log requirements now 307, 741, 176 bytes, which fit comfortably on the
local disk. This reduction enabled us to compute our desired gradients using the
small local disk for log storage.

Since we could not actually compute derivatives for the given problem with-
out switchback, we cannot say what the performance cost of switchback was.
To estimate the performance cost of switchback for this code, we used a much
smaller problem, and compared the switchback version to the black box version.
NASA researchers generated a 17 × 9 × 9 grid and a 33 × 9 × 9 grid for our
experiment. We were able to run both grids on our platform. Table 1 shows
that the time penalty for switchback, on this particular problem appears to be
about 37%.

Table 1. Timings (sec) of the two versions using Unix system clock

Grid Black Box Switchback

17× 9 × 9 262.13 359.14
33× 9 × 9 556.63 773.57

8 Concluding Remarks

To eliminate excessive storage requirements in a reverse mode application, ap-
plication developers often resort to recomputation. Overuse of recomputation,
however, damages time performance. Consequently, a reverse mode application
developer must choose where to apply the recomputation technique. In the work
described here, we showed how the time-honored computer science principle of
profiling can be used to focus the developer’s efforts on the routines with the most
potential improvement. The specific AD tool used in the work was Adifor 3.0,
but the profiling idea should be generally applicable.

As a final note, our experience with this technique has guided our Adifor
development effort to include automatic detection of “read first” variables so
that the switchback mechanism can be applied more easily by users.

1037Switchback: Profile-Driven Recomputation for Reverse Mode

Acknowledgments

Thanks to Los Alamos Computer Science Institute, and NASA Langley for their
support of this research.

References

1. Griewank, A., Juedes, D., Utke, J.: ADOL-C, a package for the automatic differ-
entiation of algorithms written in C/C++. ACM Transactions on Mathematical
Software 22 (1996) 131–167

2. Rostaing, N., Dalmas, S., Galligo, A.: Automatic differentiation in Odyssée. Tellus
45A (1993)

3. Giering, R., Kaminski, T.: Recipes for adjoint code construction. ACM Transactions
on Mathematical Software 24 (1998) 437–474

4. Fagan, M., Carle, A.: Adifor 3.0 overview. Technical Report CAAM–TR00–03, Rice
University, Department of Computational and Applied Mathematics (2000)

5. Bischof, C., Carle, A., Khademi, P., Mauer, A.: ADIFOR 2.0: Automatic differenti-
ation of Fortran 77 programs. IEEE Computational Science & Engineering 3 (1996)
18–32

6. Rumsey, C.L., Biedron, R.T., Thomas, J.L.: CFL3D: Its history and some recent ap-
plications. Technical Report NASA Technical Memorandum 112861, NASA Langley
Research Center (1997)

7. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, Philadelphia (2000)

8. Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity
in reverse automatic differentiation. Optimization Methods and Software 1 (1992)
35–54

9. Christianson, B.: Reverse accumulation and attractive fixed points. Optimization
Methods and Software 3 (1994) 311–326

1038 M. Fagan and A. Carle

	1 Introduction
	2 Background Material
	3 The Recomputation Alternative
	4 Adifor 3.0 Reverse Mode Particulars
	5 Pro .ling for Recomputation
	6 Reverse Mode Computation for CFL3D
	7 Results
	8 Concluding Remarks

