
Reducing the Memory Requirement in
Reverse Mode Automatic Differentiation by

Solving TBR Flow Equations

Uwe Naumann

Mathematics and Computer Science Division
Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA

naumann@mcs.anl.gov

http://www.mcs.anl.gov

Abstract. The fast computation of gradients in reverse mode Auto-
matic Differentiation (AD) requires the generation of adjoint versions
of every statement in the original code. Due to the resulting reversal of
the control flow certain intermediate values have to be made available
in reverse order to compute the local partial derivatives. This can be
achieved by storing these values or by recomputing them when they be-
come required. In any case one is interested in minimizing the size of this
set. Following an extensive introduction of the “To-Be-Recorded” (TBR)
problem we will present flow equations for propagating the TBR status
of variables in the context of reverse mode AD of structured programs.

1 Introduction

The work presented here is a continuation of the results published in [1, 2]. Our
aim is to motivate a more formalized view on the problem of generating adjoint
code using the reverse mode of AD [3] that requires a minimal amount of memory
space when following a “store all” taping strategy, which will be explained below.

We consider a single subroutine F : IRn → IRm for computing a vector
function y = F (x). The values of m dependent variables yj , j = 1, . . . ,m, are
calculated from the n independent variables xi, i = 1, . . . , n. The subroutine F
represents an implementation of the mathematical model for some underlying
real-world application and it will be referred to as the forward code. The forward
code is expected to be written in some high-level imperative programming lan-
guage such as C or Fortran. More generally, it should be possible to decompose F
into a sequence of scalar assignments of the form

vj = ϕj(vk)k≺j , j = 1, . . . , p+m , (1)

such that the result of every intrinsic function and elementary arithmetic opera-
tion is assigned to a unique intermediate variable vj , j = 1, . . . , p+m. m out of
these intermediate variables are set to be dependent. Whenever some variable vj

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 1039−1048, 2002.
 Springer-Verlag Berlin Heidelberg 2002



depends directly on another variable vk we write k ≺ j. It is assumed that the
local partial derivatives

cji =
∂ϕj

∂vi
(vk)k≺i (2)

of the elemental functions ϕj , j = 1, . . . , p +m, exist and that they are jointly
continuous in some open neighborhood of the current argument (vk)k≺i. In this
case an augmented version of the forward code can be implemented that com-
putes F itself and the set of all local partial derivatives as defined in (2).

The reverse mode of AD [3, Sect. 3.3] uses these local partial derivatives to
compute adjoints

v̄k =
∑
j:k≺j

cjk · v̄j , j = p, . . . , 1− n . (3)

“Transposed Jacobian matrix times vector” products x̄ = F ′(x)T · ȳ are com-
puted by initializing the adjoints of the dependent variables ȳj ≡ v̄p+j , j =
1, . . . ,m. The Jacobian F ′(x) can be accumulated by reverse propagation of the
Cartesian basis vectors in IRm at complexity O(m). In particular, gradients of
single dependent variables with respect to all independent variables can be ob-
tained at a computational cost that is a small multiple of the cost of running
the forward code; see the cheap gradient principle in [3].

Considering (3) we observe that in reverse mode AD the adjoints of all inter-
mediate variables are actually computed in reverse order, i.e. for j = p, . . . , 1−n.
This implies that the local partial derivatives cjk have to be made available in
reverse order as well. This can be ensured (a) by storing the arguments of all
local partial derivatives on a so-called tape before their values get overwritten
during the execution of the augmented forward code and by retrieving these
values whenever required in the adjoint code [1] or (b) by simply recomputing
them “from scratch” [4] when they become required in the adjoint code. Gener-
ally speaking, the arguments of all local partial derivatives have to be recorded.
We will use this term as a place holder for either (a) or (b). Obviously, the
former approach may lead to enormous memory requirements for large-scale
application programs whereas the latter results in a quadratic computational
complexity. Often a mixture of both strategies is employed to achieve reasonable
trade-offs between memory requirements and the number of floating-point oper-
ations. However, even the efficiency of these checkpointing schemes [5] depends
on the knowledge about whether some value is actually required or not.

2 TBR Problem

The generation of the adjoint model is done by associating adjoint components v̄
with every active variable v. In particular, both the independent variables x
and the dependent variables y are active. Here, the term variable should be
understood as a scalar component of some program variable that is actually
declared in the forward code. An intermediate variable v is active at a given point

1040 U. Naumann



within the program if ∃x ∈ x : x ≺∗ v and ∃y ∈ y : v ≺∗ y. Here, ≺∗ denotes the
transitive closure of the operator ≺, i.e. x ≺∗ v if there exist v0, v1, . . . , vk−1, vk
such that x = v0 ≺ v1 ≺ . . . ≺ vk−1 ≺ vk = v. In the following, we assume that
the information on the set of active variables is available at every single point in
the program. A variable that is not active is called passive.

We investigate reverse mode AD of structured programs [6, Sect. 10] by
concentrating on the following four different types of statements:

– s := [v = f(u)] – scalar assignments with f : IRk → IR as they occur in most
imperative programming languages; this restriction helps to keep the nota-
tion simple; all results can be generalized for general (vector) assignments
f : IRk1 → IRk2 as they exist for example in Fortran 95 [7];

– s := [s1, s2] – cascades of statements;
– s := [if (c) then s1 else s2 fi] – branches where the boolean value c

determines whether s1 or s2 is executed;
– s := [while (c) do s1 done] – loops where c determines if s1 is executed

followed by another evaluation of c.

u will be considered as a set of scalar variables, i.e. we will write w ∈ u whenever
the scalar variable w occurs on the right-hand-side of an assignment v = f(u).
c is the value of a scalar boolean function g : D → {true, false} over elements
of arbitrary data types, i.e. c = g(v) and the values of the arguments of the g
determine the value of c and therefore the control flow.

In order to generate a correct adjoint code one has to do the following:

1. The control flow of the forward code has to be reversed.
2. Adjoint versions of every single assignment have to be built.

The former can be achieved in various ways. An exhaustive discussion of these
issues is out of the scope of this paper. In the example presented in Sect. 3 we
have chosen the following approach:

– Loops s := [while (c) do s1 done] are reversed by counting the number ITER
of iterations performed when running the forward code and by executing the
adjoint of the loop body s1 exactly ITER times.

– For branches s := [if (c) then s1 else s2 fi] we push the values of all
arguments of c onto the tape whenever they get overwritten during the
execution of the forward code. When running the adjoint code these values
are popped at the appropriate time to decide whether to execute the adjoint
version of s1 or s2. If such an argument is overwritten inside s1 or s2 then
its value has to be retrieved before the execution of the adjoint branch. This
is automatically the case if the overwriting takes place after the execution
of s in the forward code.

We do not claim this solution to be optimal. However, for structured programs
it is a simple method for ensuring a correct reversal of the control flow.

In this paper we will concentrate on the second crucial ingredient of an adjoint
code, namely the generation of adjoint versions for all assignments in the forward

1041Reducing the Memory Requirement in Reverse Mode Automatic Differentiation



code. Consider v = f(u) where u = {u1, u2, . . . , unf
} denotes the set of scalar

arguments of f. Reverse mode AD transforms this assignment into the set of
adjoint statements

ūi = v̄ · ∂f

∂ui
(u) , i = 1, . . . , nf .

Three types of values are required for evaluating them correctly:

1. args(f ′(u)) – the arguments of the local partial derivatives ∂f
∂ui

(u) for i =
1, . . . , nf ;

2. idxargs(u) – arguments of indices of array-type ui, i ∈ {1, . . . , nf};
3. idxargs(v) – arguments of indices of v should v be an array element.

A more detailed characterization of args(f ′(u)) has been given in [1] as follows:
The TBR status of w ∈ u has to be activated if

1. w is a non-linear active argument, e.g. v = sin(w);
2. w is a passive argument in an active term, e.g. v = w ·a where a is an active

variable;
3. w is the index of some active element of an array a which occurs non-linearly

on the right-hand-side, e.g. v = a(w + 1) · a(w);
4. w is the index of some passive element of an array p which occurs in an

active term, e.g., v = p(w) · a where a is some active variable;

For a better understanding of this rule it is useful to notice the following com-
ments:

– The decision whether some individual element of an array is active is impos-
sible to make in general. Both static and dynamic array region analysis [8]
can help to compute some conservative estimate. Without it the activity of
one element implies the activity of the whole array.

– 3. actually describes a subset of idxargs(u). The correct value of the array
index is required for the adjoint as well as for restoring the original value
that enters the computation of the local partial derivative.

– The indices of passive array elements are only required for restoring the
correct arguments of the local partial derivatives. No adjoints are associated
with passive variables.

In the following the expression TBR(s) is used to denote the set of variables
whose TBR status is activated as the result of the execution of a statement s.
In particular, we define

TBR(s) = args(f ′(u)) ∪ idxargs(u) ∪ idxargs(v)

for scalar assignments s := [v = f(u)]. Naturally, this definition can be extended
to cover general assignments. Moreover, following the control flow reversal strat-
egy introduced above TBR(s) is exactly the set of all arguments of the condi-
tion c for branches s := [if (c) then s1 else s2 fi]. Knowing how to compute
TBR(s) for all statements of F we are able to decide whether the value of some
variable has to be recorded. Such variables will be referred to as “tbr-active”.

1042 U. Naumann



3 Example

Consider the following code fragment (original forward code in lower case on the
left-hand-side) which has been augmented by instructions for storing the tape on
the right (new statements in upper case). It can be wrapped into a subroutine F
computing new values for the elements of a vector x from the corresponding
input values.

forward code augmented forward code

i=0; j=10

while (check(j)) do

if (max(i,j)>7) then

x(i)=j+sin(x(i))

else

x(j)=j*cos(x(j))

fi

i=i+1

j=j-1

done

i=0; j=10

ITERS=0

while (check(j)) do

ITERS=ITERS+1

if (max(i,j)>7) then

STORE(x(i))

x(i)=j+sin(x(i))

else

STORE(x(j))

x(j)=j*cos(x(j))

fi

STORE(i)

i=i+1

STORE(j)

j=j-1

done

The variables i and j are assumed to be integers. The control flow is determined
by the two boolean values c1 := check(j) and c2 := max(i, j) > 7 where check
is some boolean function over the integers and max computes the maximum of
two numbers. STORE(w) puts the current value of the variable w onto the top of
the stack implementing the tape for variables of the same type as w.

Let us have a closer look at the augmented version of the forward code. The
integer variable ITER is introduced to count the number of iterations performed
by the while loop. Both the values of i and j are required to generate the
adjoint version s̄ of the if-statement s and therefore TBR(s) = {i, j}. Notice,
that neither i nor j is overwritten inside s1 or s2. Consequently, their values do
not have to be restored before the execution s̄ in the adjoint code which is shown
below. The fact that they are is a consequence of both i and j being overwritten
immediately after the if-statement in the forward code.

For the assignment s1 := [v1 = f1(u1)] ≡ [x(i) = j+ sin(x(i))] we observe
that

TBR(s1) = args(f ′
1(u1)) ∪ idxargs(u1) ∪ idxargs(v1)

= {x(i)} ∪ {i} ∪ {i} = {x(i), i} .

1043Reducing the Memory Requirement in Reverse Mode Automatic Differentiation



Similarly,

TBR(s2) = args(f ′
2(u2)) ∪ idxargs(u2) ∪ idxargs(v2)

= {x(j), j} ∪ {j} ∪ {j} = {x(j), j}
for s2 := [v2 = f2(u2)] ≡ [x(j) = j ∗ cos(x(j))]. In both statements the TBR
status of the variable written is activated on the right-hand-side which results
in the corresponding STORE instructions preceding the statement itself. Notice,
that both i and j are stored as a result of being arguments of max(i,j) and as
array indices of x. Moreover, j is recorded as an element of args(f ′

2(u2)).
We assume joint program reversal mode [3, Chap. 12] meaning that the ad-

joint computation is performed immediately after the execution of the augmented
forward code. A possible implementation of the adjoint model is given by

adjoint code

while (ITERS>0) do

RESTORE(j)

RESTORE(i)

if (max(i,j)>7) then

RESTORE(x(i))

adj_x(i)=cos(x(i))*adj_x(i)

else

RESTORE(x(j))

adj_x(j)=-j*sin(x(j))*adj_x(j)

fi

ITERS=ITERS-1

done

RESTORE(w) puts the value from the top of the stack matching the data type
of w into w. The RESTORE statement is always executed before the adjoint version
of the statement in front of which the matching STORE statement was performed
in the augmented forward code. In certain situations it can be advantageous to
store the result of an assignment instead of its arguments; see [1].

Given values for x and adj x the program consisting of the augmented for-
ward code followed by the adjoint code computes the “transposed Jacobian ma-
trix times adjoint vector” product

adj x = F ′(x)T · adj x .

Alternatively, we might have recomputed the values of i, j, x(i), and x(j)

which would have led to repeated executions of the forward code within the
adjoint section while not requiring a tape.

4 TBR Status Flow Equations

In analogy to the approach in [6, Sect. 10] we will consider the following sets:

1044 U. Naumann



– Inp(s) – variables having property p before the execution of a statement s;
– Outp(s) – variables having property p after the execution of s;
– Genp(s) – variables gaining property p as the result of executing s;
– Killp(s) – variables loosing property p as the result of executing s;

In particular, we are interested in the case p = tbr (tbr meaning “has to be
recorded”), i.e. in Intbr(s), Outtbr(s), Gentbr(s), and Killtbr(s).

The decision to be made is whether the value of a variable v overwritten by
some assignment s := [v = f(u)] is required for the evaluation of the adjoint
program. If so, it has to be recorded. Below we consider assignments and basic
blocks, cascades of statements, branches, and loops – each of them interpreted
as a single statement s – under two aspects:

1. Which variables have to be recorded before the execution of s (for assign-
ments only)? Under the restriction to scalar assignments the question is
whether the value of the variable on the left-hand-side should be recorded
or not.

2. The TBR status of which variables is active after the execution of s (for all
statements)?

Assignments. For scalar assignments s := [v = f(u)] the setKilltbr(s) is either
empty or it contains the single element v. The latter is the case if the TBR status
of v is activated before the execution of s or by s itself. Thus,

Killtbr(s) = (Intbr(s) ∪TBR(s)) ∩ v (4)

is exactly the set of values that would have to be saved before the execution
of s as part of the augmented forward code if we were following a “store all”
strategy. For sets containing a single element v only we write v instead of {v}.
Intuitively, we can state that a variable v belongs toGentbr(s) if it is in TBR(s)
but neither in Intbr(s) nor in Killtbr(s), i.e.

Gentbr(s) = TBR(s) \ Intbr(s) \Killtbr(s) .

Which can be simplified to get

Gentbr(s) = TBR(s) \ Intbr(s) \ v . (5)

Sequences of set differences are evaluated from left to right. Notice, that this
operation is not associative. Both the expressions forKilltbr(s) and forGentbr(s)
are required for the resolution of

Outtbr(s) = Gentbr(s) ∪ (Intbr(s) \Killtbr(s)) . (6)

This standard data flow equation (see for example [6]) says that a variable is
tbr-active after the execution of a statement s if its TBR status became acti-
vated by s or if it was tbr-active before s and was not made tbr-passive by s.
Substituting (4) and (5) in equation (6) results in

Outtbr(s) = (TBR(s) ∪ Intbr(s)) \ v . (7)

1045Reducing the Memory Requirement in Reverse Mode Automatic Differentiation



Under the restrictions imposed by us assignments s are the only statements for
which we are actually interested in Killtbr(s). For the remaining types of state-
ments we need to be able to compute Outtbr(s) from Intbr(s). Both Gentbr(s)
and Killtbr(s) can be computed recursively from the underlying assignments.

Equation (7) can be generalized to become

Outtbr(s) =
⋃

i=1,...,l


TBR(ui) \


 ⋃

j=i,...,l

vj




 ∪ Intbr(s) \


 ⋃

i=1,...,l

vi


 (8)

for cascades of l assignments, i.e. for basic blocks s := [si, i = 1, . . . , l] where
si := [vi = fi(ui)] and i = 1, . . . , l. Assuming that Intbr(s) is known equation (8)
allows us to compute Outtbr(s) using structural information on all assignments
which is readily available.

Cascades of Statements. The standard data flow equations apply for cascades
of statements s := [s1, s2], i.e. Intbr(s1) = Intbr(s), Intbr(s2) = Outtbr(s1), and
Outtbr(s) = Outtbr(s2). Outtbr(si) = Gentbr(si) ∪ (Intbr(si) \Killtbr(si)) for
i = 1, 2 leads to

Outtbr(s) = Gentbr(s2) ∪ (Gentbr(s1) ∪ (Intbr(s) \Killtbr(s1))) \Killtbr(s2)

which results in the requirement for explicit expressions for Gentbr(si) and
Killtbr(si) (i = 1, 2). For example, if both s1 and s2 are scalar assignments
then (4) and (5) can be used to derive more specific expressions. In fact, (8) was
derived this way.

Branches. Static TBR analysis is conservative, i.e. for a conditional branch
statement s := [if (c) then s1 else s2 fi] we have

Gentbr(s) =Gentbr(s1) ∪Gentbr(s2)

Killtbr(s) =Killtbr(s1) ∩Killtbr(s2)

Outtbr(s) = Outtbr(s1) ∪Outtbr(s2) .

Loops. Consider a loop s := [while (c) do s1 done] where s1 is a cascade of
statements as in Sect. 4. We are interested in two types of information:

1. Knowing Intbr(s) we would like to compute Outtbr(s).
2. For every assignment s′ ∈ s1 we need to determine Killtbr(s

′).

Both 1. and 2. should be obtained with a minimal computational effort. Below we
show that for the TBR status information within structured programs at most
two traversals of the code inside loops are required. We will specify the index
of the traversal as a superscript, i.e. for example Outtbr(s1)

1 denotes the set of
tbr-active variables after a single analysis of s1. Furthermore, we assume that
the control flow is reversed by counting the number of loop iterations performed
by the forward code as in the example in Sect. 1.

1046 U. Naumann



Proposition 1 Outtbr(s) = Outtbr(s1)
1.

Proof. Under what circumstances is a variable v in Outtbr(s)?

1. If it is in Intbr(s) and if it is not overwritten inside s1, i.e. if v ∈ Intbr(s1)
1∧

@s′ ∈ s1 : v ∈ Killtbr(s
′)1 or

2. if it becomes tbr-active as a result of executing some assignment s′ ∈ s1 and
if it is not overwritten by any assignment s′′ ∈ s1 such that s′′ > s′, i.e. if
∃s′′ ∈ s1 : s′′ ∈ Gentbr(s

′′)1 ∧ @s′ > s′′ ∈ s1 : v ∈ Killtbr(s
′)1.

We use the notation s′′ > s′ to indicate that the statement s′ is executed before
s′′ when running the forward code. Obviously, both 1. and 2. can be checked by
performing a single analysis of the loop body. ��
A major consequence is that in order to determine Intbr(s) for some statement
within the forward code we have to analyze each statement preceding s only
once, even if it is part of a (possibly nested) loop.

In general, for s′ := [v = f(u)] we will know whether to record v only after
the second traversal of s1.

Proposition 2 ∀s′ ∈ s1 : Killtbr(s
′) = Killtbr(s

′)2

Proof. Consider s′ ∈ s1 where s′ := [v = f(u)].

1. If v is tbr-active during the first traversal, i.e. if

(v ∈ Intbr(s1) ∨ ∃s′′ < s′ : v ∈ Gentbr(s
′))∧

(@s′′′ : (s′′ < s′′′ < s′ ∧ v ∈ Killtbr(s
′′′))) ,

then the decision can be made during the first traversal.
2. If v is tbr-passive

(a) because there exists an assignment s′′ < s′ which overwrites v and @s′′′ :
s′′ < s′′′ ∧ v ∈ Gentbr(s

′′′) then the decision can be made during the
first traversal;

(b) because v is not in Intbr(s) then due to Intbr(s1) = Intbr(s)∪Outtbr(s1)
1

we need a second iteration to cover the case v ∈ Outtbr(s1)
1.

��

5 Summary, Preliminary Results, Outlook

The generation of adjoint code is based on the reversal of the control flow of the
forward code. Adjoint versions of every single assignment contained within the
latter have to be generated. The reversed control flow leads to the requirement
to access the values of certain intermediate variables in reverse order. In general,
due to intermediate variables being overwritten in the forward code, this can
only be ensured by storing the corresponding values or recomputing them.

In this paper we have presented some flow equations for propagating the
information on whether the value of an intermediate variable has to be recorded,

1047Reducing the Memory Requirement in Reverse Mode Automatic Differentiation



i.e. whether the current value is required for the generation of a correct adjoint
code. Implementations of these ideas showed promising reductions of the memory
requirement when following a pure “store all” strategy. In [1] the ideas presented
in this paper were applied to a large industrial thermal-hydraulic code developed
at EDF-DER in France (70 000 lines, 500 sub-programs, 1 000 parameters). Using
the TBR analysis the tape size could be decreased by a factor of 5. The size of
the standard tape generated by Odyssée version 1.7 [9] is 213 920 · 106 scalar
values (or 1 711 360 MBytes if every value is a double), whereas the optimized
tape contains only 40 486 · 106 scalar values (or 323 888 MBytes).

Our next step will be the generalization of the results presented here to
interprocedural TBR analysis and general unstructured programs. In collabora-
tion with colleagues working at INRIA Sophia-Antipolis, France, these ideas are
currently being implemented in TAPENADE [10], the successor of Odyssée. A
general discussion of optimizing the memory requirements in reverse mode AD
is in work.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, U.S. Department of Energy, under Contract W-31-109-ENG-38.

References

1. Faure, C., Naumann, U.: The taping problem in automatic differentiation. [2] (to
appear).

2. Corliss, G., Faure, C., Griewank, A., Hascoët, L., Naumann, U., eds.: Automatic
Differentiation of Algorithms: From Simulation to Optimization. Springer (2002)
(to appear).

3. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, Philadelphia (2000)

4. Giering, R., Kaminski, T.: Towards an optimal trade-off between recalculation and
taping in reverse mode AD. [2] (to appear).

5. Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity
in reverse automatic differentiation. Optimization Methods and Software (1992)
35–54

6. Aho, A., Sethi, R., Ullman, J.: Compilers. Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA (1986)

7. International Organization for Standardization: Fortran standard (1997–2000)
ISO/IEC 1539, Parts 1–3.

8. Rugina, R., Rinard, M.: Symbolic bounds analysis of pointers, array indices, and
accessed memory regions. In: Proceedings of the ACM SIGPLAN’00 Conference
on Programming Language Design and Implementation, ACM (2000)

9. Faure, C., Papegay, Y.: Odyssée user’s guide. Version 1.7. Technical Report 0224,
INRIA (1998)

10. Tapenade: http://www-sop.inria.fr/tropics/. (URL)

1048 U. Naumann


	1 Introduction
	2 TBR Problem
	3 Example
	4 TBR Status Flow Equations
	5 Summary,Preliminary Results,Outlook
	References

