
The Implementation and Testing of
Time-minimal and Resource-optimal

Parallel Reversal Schedules

Uwe Lehmann1 and Andrea Walther2

1 Center for High Performance Computing
Technical University Dresden, D–01062 Dresden, Germany

lehmann@zhr.tu-dresden.de
2 Institute of Scientific Computing

Technical University Dresden, D–01062 Dresden, Germany
awalther@math.tu-dresden.de

Abstract. For computational purposes such as the computation of ad-
joint, applying the reverse mode of automatic differentiation, or debug-
ging one may require the values computed during the evaluation of a
function in reverse order. The näıve approach is to store all information
needed for the reversal and to read this information backwards during
the reversal. This technique leads to an enormous memory requirement,
which is proportional to the computing time. The paper presents an ap-
proach to reducing the memory requirement without increasing the wall
clock time by using parallel computers. During the parallel computa-
tion, only a fixed and small number of memory pads called checkpoints
is stored. The data needed for the reversal is recomputed piecewise by
starting the evaluation procedure from the checkpoints. We explain how
this technique can be used on a parallel computer with distributed mem-
ory. Different implementation strategies will be shown, and some details
with respect to resource-optimality are discussed.

1 Introduction

For many applications nonlinear vector functions have to be evaluated by a com-
puter program. For several purposes, e.g. the calculation of adjoints, debugging
or interactive control, one may need to reverse the program execution. Through-
out this article we assume that the program execution to be reversed can be
split into parts, called steps. Furthermore, it is presumed that all steps need
the same computation time. Typical examples of such vector functions are iter-
ations or time-dependent evolutions as occur in crash tests and meteorological
or oceanographical simulations.

The computing resources needed for the reversal are computing time, mem-
ory and computing power, i.e. the number of processors used. The usual way to
implement the reversal of a program execution is the following approach. One
records a complete execution log, called trace, during the evaluation of the given
function [1]. For each arithmetic operation, this execution log contains a code

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 1049−1058, 2002.
 Springer-Verlag Berlin Heidelberg 2002



and the addresses of the arguments. Subsequently, the execution log is read back-
wards to perform the reversal of the program evaluation. Obviously this basic
method leads to a memory requirement that is proportional to the runtime of
the program execution. Hence, for real-world applications with several thousand
steps, the memory requirement can be too large to fit in any computer memory.

To avoid the enormous amount of memory required by the basic approach,
checkpoint strategies were proposed and developed for one-processor machines
[2, 3]. This checkpointing method naturally increases the computing time because
instead of storing all the information required, some of the data is recomputed
repeatedly. Using parallel computers, the increased runtime of the reversal can
be traded for an increase in computing power [3]. Here, more than one processor
is applied to perform the reversal. One important application of such a parallel
reversal is given by real time computation, because in this case any increase in
temporal complexity has to be avoided.

2 Theoretical Issues

2.1 Definitions and Assumptions

Suppose a given function F : IRn −→ IRm with x �−→ F (x) can be decomposed
into l parts Fi with 0 ≤ i ≤ l − 1, such that Fi : IR

ni −→ IRni+1 with xi �−→
xi+1 = Fi(xi). These parts Fi are called advancing steps, or steps for short. The
argument xi and the result xi+1 define states where i or i+ 1 is called the state
counter. The function F can be viewed as an evolution comprising l steps Fi.
Each xi represents an intermediate state of the evolution process. Usually, these
xi are quite large vectors of constant size.

The goal is to reverse the function F starting at state xl down to state x0 as
illustrated by Fig. 1. Performing the overall reversal, one would like to achieve
an optimal usage of time and computer resources. For every advancing step Fi, a
corresponding F̂i exists. This so-called preparing step not only evaluates Fi but
also assembles data needed for the later reversal during the computation of the
advancing step Fi. The data is stored in a special data structure called the trace.
The trace is needed by the sequential reversal function F̄i : IR

n̄i+1 −→ IRn̄i with
x̄i+1 �−→ x̄i = F̄i(x̄i+1, xi).

F

F0 F1 F2 F3 F4 Fl−2 Fl−1

x0 x1 x2 x3 x4 xl−1 xl

F

F0 F1 F2 F3 F4 Fl−2 Fl−1 xlxl−1x4x3x2x1x0

Fig. 1. The Reversal of the Function F

1050 U. Lehmann and A. Walther



The näıve way to reverse F is to store all information one needs for the
reversal onto a global trace. Thus the näıve reversing approach reads: Perform
l preparing steps and after that perform l reversing steps as shown in Fig. 1.
For real-world problems it may happen that the complete trace of F does not fit
into memory. However, it is probably possible to keep a few intermediate states
xi at any time. The states kept in memory can be used as checkpoints in order
to perform the desired reversal. In the remainder of this section, some basics of
such checkpointing strategies are presented.

As in [4], it is assumed that the time ti that one advancing step Fi takes
is equal to a constant number t ∈ IR that can be normalised to t = 1. Such
evolutions F with ti = 1 are said to have uniform step cost. Furthermore, let
the value t̂i be the time needed to perform one preparing step F̂i, and t̄i the
time needed to perform one reversing step F̄i. For simplicity it is assumed in
this paper that ti = t̂i, i.e. t̂i = t̂ = 1. If an evolution F has uniform step costs
and if there exists a number t̄ ∈ IN, such that t̄i = t̄ for all i, then the evolution
is called a uniform evolution. Using a parallel schedule, the minimal time to
reverse a uniform evolution that comprises l steps is given by

tmin = l + lt̄ = (t̄+ 1)l . (1)

Reversal schedules achieving this property are called time-minimal. Let � = c+p
be the number of resources where c is the maximal number of checkpoints that
can be stored at any time and p the maximal number of available processors.
Then the maximal number of steps l� that can be reversed in minimal time with
� resources satisfies

l� =

{
� if � ≤ 2

l�−1 + t̄ l�−2 else
. (2)

The proof for this formula is given in [4]. When t̄ = 1, the formula (2) recursively
yields the �-th Fibonacci numbers. The direct non-recursive approximation

l� ∼ 1

2

(
1 +

3√
1 + 4t̄

)(
1

2
(1 +

√
1 + 4t̄)

)�−1

shows the exponential behaviour of the maximal number of steps l� that can be
reversed for a given �.

Vice versa, the formula (2) can be used to determine the minimal resources
needed for the reversal of a given number of steps l. For example: Let the evo-
lution comprise l steps with l ∈ (f�, f�+1]. Here, f� denotes the �-th generalised
Fibonacci number. Then according to formula (2), the number of required com-
puter resources equals �. For that purpose, it is assumed that each resource can
perform an advancing, preparing or reversing step, or can act as a checkpoint.
This property is called processor-checkpoint-convertibility in [3].

2.2 Building optimal parallel reversal schedules

For l = 8 steps, an optimal reversal schedule is displayed on the left of Fig. 2.
The vertical axis in Fig. 2 can be thought of as the time or computational axis.

1051The Implementation and Testing



The horizontal axis denotes the state counter. All vertical solid lines denote
checkpoints. The diagonal lines from the top left to the bottom right represent
the execution of the step Fi if it is solid or F̂i if dotted. Both functions compute
the state xi+1 using the state xi as an input value (horizontal axis) within one
computational time step (vertical axis). The dashed lines represent the reverse
steps F̄i running from state xi+1 back to state xi within one time unit. The three
other diagrams show the resources needed. The value cj denotes the checkpoints,
pj the processors, and sj the computing resources, i.e. the sum of checkpoints
and processors. This function is also called resource profile because it describes
the resource requirement at any time of the reversal process.

x0 x5 x8

5

15

0

10

j

l cj

5

15

0

10

j

0 pj

5

15

0

10

j

0 sj

5

15

0

10

j

0 5

7F

6F

0F

7F

6F

0F

5F

0F

1F

1F

0F

Fig. 2. An optimal schedule for l = 8 steps with t̄ = t̂ = 1

The recursive construction instruction of an optimal reversal schedule can
be derived from the proof of (2) given in [4]. The first forward integration of
the l steps is divided into parts corresponding to the Fibonacci-numbers (left
hand diagram in Fig. 3). Hence, a schedule S0 for l steps with l ∈ (f�, f�+1]
will be built from the schedule S1 for f�−1 steps and from schedule S2 for
l − f�−1 steps as shown in Fig. 3. This is recursively done for all sub-schedules
down to trivial single step reversal. By inspection of Fig. 4 we note that, the
resources cannot be allocated statically to the various sub-schedule reversals,
but must migrate between them during the execution of these subtasks. First
the startup computation (dark grey area in the resource profile of Fig. 4) requires
two resources. Then as the right and left sub-schedules commence being executed
at j = 5 and j = 6, they both have increasing resource demands until the right
sub-schedule begins to wind down at j = 9. It then passes resources to the left
sub-schedule, which is still winding up. This behaviour is independent of the
resource type (checkpoint, processor).

1052 U. Lehmann and A. Walther



0 5 8

0

5

10

15

l

j

0 5 8

0

5

10

15

l

j

0 5 8

0

5

10

15

l

j

0 5 8

0

5

10

15

l

j

0 5 8

0

5

10

15

l

j

S 0

S 2

S 1

Fig. 3. Recursive construction of an optimal schedule for l = 8 steps and t̂ = t̄ = 1

3 Implementation Strategies

This section presents several possible strategies to implement reversal schedules
on parallel computers. Furthermore, the strategy used for the numerical example
introduced in Sect. 4 is discussed in detail.

3.1 Programming model

The programming model assumes a distributed memory. Here, each part of the
memory is assigned to a fixed processor. Hence, one has to worry about how to
transfer the data between the processors and how the transfer time influences
the algorithm. The most commonly used tools are message passing libraries such
as PVM or MPI. By implementing a reversal schedule using the distributed
memory model, one can distinguish critical and non-critical communication. If
a communication is classified as critical, the data written by one process at the
end of one advancing, preparing or reversing step at a time j is needed for the
beginning of the next advancing, preparing or reversing step by another process
at the same time j. This is independent of the type of data required. If the
communication is non-critical, the time between writing and reading of the data
set is at least as long as the minimum of the time of an advancing, preparing
or reversing step lasts. The data transfer can be carried out asynchronously.
Additional temporary memory for the communication might also be needed for
the distributed memory programming model since most message passing libraries
can only send connected memory regions.

3.2 User provided routines

To use the provided reversal schedule program skeleton, the user has to write
three major computing routines [5, 6]. First an advancing routine is needed,
which will be referred to as forward(..). This routine has to compute for a given
state i the next state i+1. The second user routine does the same, but addition-
ally stores all tracing data required for the reversing while it does the advancing.

1053The Implementation and Testing



0 5 8

0

5

10

15

l

t

0 5 8

0

5

10

15

l

t

0 5 8

0

5

10

15

l

t

0 5 8

0

5

10

15

l

t

0 5 8

0

5

10

15

l

t

Fig. 4. Recursive construction of the resource profile for an optimal schedule for l = 8
steps and t̂ = t̄ = 1

Hence, it computes the state i+1 for a given state i and the trace for this com-
putation. This routine is referred to as preparing(..). The third user function is
reverse(..), which carries out the reversing step. The input for this routine is the
trace for a computation from state i to state i+ 1. If reverse(..) is called for the
first time, i.e. it is called at state l, it carries out the required initialisation of
so-called adjoint values for the reversal computation. Otherwise, a second input
argument is required, namely the values of the reversal computed so far. These
values represent the reversal from state l down to state i+ 1.

3.3 Schedules for distributed memory programming models

There are two ways to implement a parallel reversal schedule in a distributed
memory style. In both cases it will be assumed that a pool of available processors
exists. For simplification t̄ is assumed to be 1.

First, one may assign each checkpoint to a fixed processor. This approach,
shown in Fig. 5(a), is called checkpoint oriented. A processor receives a check-
point, stores it and at a predetermined time the processor carries out the ad-
vancing up to the state where the next checkpoint has to be written. Once
it reaches the state, the processor writes the checkpoint and sends it to the
next available processor. Then the processor goes back, i.e. waits at its assigned
checkpoint, which it has received, until called upon to advance once more. The
number of steps in each advance monotonically decreases until the checkpoint
can be vacated after serving as starting point for the preparing step. When using
this implementation, all communication is critical. Because of the idle time, this

1054 U. Lehmann and A. Walther



�
�
�
���
��
��

��
��
��

�
�
�
���
��
��

��
��
��

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��
��
��
��

�
�
�
���
��
��
��

��
��
��
��

�
�
�
���
��
��

��
��
��

�
�
�
�

�
�
�
���
��
��

��
��
��

�
�
�
�

��
��
��

��
��
���
�
�
���
��
��

��
��
��

�
�
�
���
��
��

��
��
��

�
�
�
�

�
�
�
���
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��

��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

0 5

0

5

10

15

20

25

35

40

30

10 15 20
Pr Cp

0
Sum

0 0 5

�
�
�

�
�
�

�
�
�
�

��

��

��

��

��

0

13

5

18

8

8

8

3

11

16

��
��
��
��

����

��
��
��
��

tracing

idle

reversing

advancing

process 4

process 3

process 2

process 1

process 5

(a) checkpoint oriented

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 5

0

5

10

15

20

25

35

40

30

10 15 20
Pr Cp

0 0
Sum

50

�
�
�
�

�
�
�
�

�
�
�
�

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

0

0

0

0

0

0

13

13

13

13

18

18

16

8

8

8

8

11

5
5

5

3

process 4

process 3

process 2

process 1

��
��
��
��

����

��
��
��
��

tracing

idle

reversing

advancing

(b) process oriented

Fig. 5. General implementation strategies

scheme can not satisfy the optimal requirement profile [3] if more than three
steps have to be reversed.

The second way to assign the processes to the given schedules is shown in
Fig. 5(b). It is called process oriented. The computing process receives a check-
point and carries out the advancing until it reaches its final state. The final
state can be the state where the last advancing step ends and the preparing
step starts, the state where the preparing step ends and the reversing step starts
or the state where the reversing step ends. Along the way, the process writes,
stores and sends the needed checkpoints. After the processors have finished the
assigned computation they return back to the pool of available processors. Ex-
cept at the final state, all communication is non-critical. The process oriented
implementation fulfils the optimality if the following is true for all schedules
and sub-schedules: The checkpoint written at state i = 0 is needed before the
processor which does the advancing from state i = 0 up to state i = l reaches
the final state i = l. As already mentioned above, there are three ways to carry
out the preparing and the reversing step, namely the processor

– stops before the trace has to be written, stores the data in a checkpoint and
sends it to a special preparing process (Fig. 6(b));

– carries out the writing of the trace and sends it to a reversing process
(Fig. 5(b));

– carries out the writing of the trace and reversing by itself (Fig. 6(a)) and
sends the reversing result to the next reversing process.

In the first case, the task preparing and reversing can be assigned to fixed pro-
cesses or might be combined to one task and must be carried out alternately by

1055The Implementation and Testing



���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�

�
�
��
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

0 5

0

5

10

15

20

25

35

40

30

10 15 20
Pr Cp

0 0

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

0

0

0

0

0

0

13

13

13

13
8

8

8

8
5

5

5

3

11

16

18

18

process 4

process 3

process 2

process 1

���
���
��

��
��
��

������

���
���
��
��

tracing

idle

reversing

advancing

(a) Processes carry out the preparing
and the reversing by themselves

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

0 5

0

5

10

15

20

25

35

40

30

10 15 20
Pr Cp

0 0

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��

��
��
��

0

0

0

13

18

0

13
18

16

8

8 11

5

5

3

process 4

process 3

process 2

process 1

���
���
���

���
���
���

������

���
���
���
���

tracing

idle

reversing

advancing

(b) Two processes carry out prepar-
ing and reversing alternately

Fig. 6. General implementation strategies

two processes (Fig. 6(b)). The size of the data to be sent forms one criteria which
implementation strategy should be applied. For large traces, an implementation
where no trace segments are sent is preferable (Fig. 6(a) or Fig. 6(b)). If the
result of the reversing step is relatively large compared to the size of the result
of a preparing step, a fixed reversing processor reduces the communication cost
(Fig. 5(b)) This invalidates the previous approach if both trace and adjoint are
relatively large.

The decision about which approach is to be used, the checkpoint oriented or
the process oriented, depends on the properties of the problem to be reversed.
The checkpoint oriented approach might be easier to implement because the
writing and sending times of a checkpoint are identical. The disadvantage is
that more processors are needed than for an optimal schedule. On the other
hand, using a process oriented approach for implementing an optimal reversal
schedule, one processor has to store up to three checkpoints temporarily. This is
caused by the fact that the sub-schedule S1 starts before the sub-schedule S2.
The upper bound of three checkpoints is established in the following lemma.

Lemma 1. Suppose the number of steps to be reversed is l with l ∈ (f�, f�+1],
where f� is the �-th Fibonacci number. The schedule is implemented in a process
oriented manner. Any process may store as many checkpoints as required, i.e.
the checkpoints will be sent as late as possible. Then any processor has to store
at most three checkpoints at any time.

Proof. One only has to show that the process started first satisfies this property.
For all other processes, one applies the claim to the sub-schedules. To prove

1056 U. Lehmann and A. Walther



that lemma one defines the number r by r = l − f�−1, hence r ∈ (f�−2, f�]. As
shown in [3], the times tW (i), where the i-th checkpoint is written, are recursively
defined by tW (1) = 0, tW (2) = r and tW (i) = tW (i− 1)+ f�−2i+4. The maximal
number of checkpoints written is limited above by ��2	 + 1. The time when a
checkpoint is needed/read is defined by tR(i) = tW (i)+ 2f�−2i+1 [3]. Hence, the
lemma is proven if the inequality tR(i) < tW (i + 3) holds for any i. One has
tW (i+ 3) = tW (i) + f�−2i−2 + f�−2i + f�−2i+2. Furthermore, one obtains

tR(i) < tW (i+ 3)
⇐⇒ tW (i) + 2f�−2i+1 < tW (i) + f�−2i−2 + f�−2i + f�−2i+2

⇐⇒ 0 < 2f�−2i−2

which is true for all i ≤ ��2	+ 1. �


4 Example

The implementation of the reversal schedules was tested with the simulation of
a simple Formula 1 racing car model. As described in [6], the parallel reversal
schedule was used to compute the adjoint of the forward integration of an ODE
system with respect to a given road shape. The forward integration was carried
out using a four-stage Runge-Kutta scheme and for the adjoint calculation its
adjoint Runge-Kutta scheme was used [7]. The computations were measured on
a Cray T3E and on a SGI Origin3800. A parallel reversal schedule for l = 55
steps was and hence five processors were utilised. A sixth processor (master) was
used to organise the program run. In Table 1, the memory requirements and the
runtimes are listed for näıve approach and the parallel approach. Compared to
the näıve approach, only two percent of the initial memory was needed using the
parallel schedules. As the theory has shown, the runtime stays almost the same
in all test cases. The slight improvement in computing time may be due to less
memory traffic [8].

Table 1. Memory requirement and Runtime

Approach Values Memory Time (T3E) Time (Origin3800)

Näıve 266010 2128.10 kB =̂ 100.0% 20.27 s =̂ 100.0% 6.71 s =̂ 100.0%
Parallel 5092 40.70 kB =̂ 1.9% 18.91 s =̂ 93.3% 6.04 s =̂ 90.0%

5 Discussions, Conclusions and Further Work

The reversal of evaluation programs may cause problems due to the memory
requirement being proportional to the computation time. A theory to reduce

1057The Implementation and Testing



the memory requirement and time-minimal parallel reversal schedules were pre-
sented. Various possibilities for implementing these parallel reversal schedules
were discussed. Thereby, some pitfalls which may cause the loss of resource opti-
mality were shown. Furthermore, we discussed the problem characteristics that
determine the choice of the implementation strategy.

As shown by the numerical example, the parallelisation of the reversal process
was carried out in time. However, in addition the function may also be paral-
lelised in space. The parallel evaluation of the function has to be autonomous and
independent of external influences. In order to use a parallel computer efficiently,
the parallelisation in space has to distribute the computational work dynami-
cally between the processors. This is necessary because the number of available
processors for the function evaluation will change during the reversal. Thus a
repartitioning of the problem may occur, which is generally difficult. Therefore
the implementation effort for such two level parallelisation is significant larger.

The advantage of using a distributed memory programming model is that
one may apply a shared memory parallelisation within the user functions for the
parallelisation in space. Again, the user has to take care while implementing the
user functions. The reason for this is that most of the commonly used message
passing libraries (MPI, PVM) are not thread-safe by definition. Hence, the par-
allel execution of shared memory parallelised code can start after the function
was called and must end when leaving this function. Possibly improved message
passing libraries will remove such a restriction in future.

References

1. van de Snepscheut, J.: What computing is all about. Texts and Monographs in
Computer Science. Springer Verlag, Berlin (1993)

2. Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity
in reverse automatic differentiation. Optimisation Methods and Software 1 (1992)
35–54

3. Walther, A.: Program Reversal Schedules for Single- and Multi-processor Machines.
PhD thesis, TU Dresden, Fakultät für Mathematik und Naturwissenschaften (1999)

4. Walther, A.: An upper bound on the number of time steps to be reversed in parallel.
Technical Report IOKOMO–03–2001, Technische Universität Dresden (2001)

5. Benary, J.: DAP – Dresdener Adjugierten Parallelisierungsprojekt. Technical Report
IOKOMO–05–1995, Technische Universität Dresden (1995)

6. Walther, A., Lehmann, U.: Adjoint calculation using time-minimal program rever-
sals for multiprocessor machines. Technical Report IOKOMO–09–2001, Technische
Universität Dresden (2001)

7. Hager, W.: Runge-Kutta methods in optimal control and the transformed adjoint
system. Numer. Math. 87 (2000) 247–282

8. Seidl, S., Nagel, W.E., Brunst, H.: The future of HPC at SGI: Early experiences
with SGI SN–1. In Jesson, B.J., ed.: Proceedings of Sixth European SGI/Cray
Workshop, Manchester (2000)

1058 U. Lehmann and A. Walther


	1 Introduction
	2 Theoretical Issues
	2.1 De .nitions and Assumptions

	3 Implementation Strategies
	3.1 Programming model
	3.2 User provided routines
	3.3 Schedules for distributed memory programming models

	4 Example
	5 Discussions,Conclusions and Further Work
	References

