Computation of Sensitivity Information for
Aircraft Design by Automatic Differentiation*

H. Martin Biicker, Bruno Lang, Arno Rasch, and Christian H. Bischof

Institute for Scientific Computing
Aachen University of Technology, D-52056 Aachen, Germany
{buecker, lang, rasch, bischof}@sc.rwth-aachen.de
http://www.sc.rwth-aachen.de

Abstract. Given a numerical simulation of the near wake of an airfoil,
automatic differentiation is used to accurately compute the sensitivities
of the Mach number with respect to the angle of attack. Such sensitiv-
ity information is crucial when integrating a pure simulation code into
an optimization framework involving a gradient-based optimization tech-
nique. In this note, the ADIFOR system implementing the technology of
automatic differentiation for functions written in Fortran 77 is used to
mechanically transform a given flow solver called TF'S into a new program
capable of computing the original simulation and the desired derivatives
in a simultaneous fashion. Numerical experiments of derivatives obtained
from automatic differentiation and finite differences approximations are
reported.

1 Introduction

The increasing aircraft traffic has led to a growing interest in maximizing take-off
and landing frequencies. A detailed knowledge of the wake flow field is essential
to estimate safe-separation distances between aircraft in take-off and landing.
However, the complex flow field around an aircraft is still not completely under-
stood and simulations are commonly used to advance the understanding of the
underlying physical phenomena. At Aachen University of Technology, a team
of engineers, mathematicians, and computer scientists is investigating the fluid-
structure interaction at airplane wings to further advance scientific knowledge of
the aerodynamics of cruise and high lift configurations. One of the projects aims
at optimizing an airfoil with respect to certain design parameters. Traditionally,
finding a suitable set of parameters is carried out by running the simulation
code over and over again with perturbed inputs. However, this approach may
consume enormous computing time and may also require an experienced user
to select suitable sets of parameters just to achieve improvement, even without
optimality. Here, numerical optimization techniques can help reduce the number

* This research is partially supported by the Deutsche Forschungsgemeinschaft (DFG)
within SFB 401 “Modulation of flow and fluid—structure interaction at airplane
wings,” Aachen University of Technology, Germany.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 1069-[[076, 2002.
© Springer-Verlag Berlin Heidelberg 2002

1070 H.M. Biicker et al.

of simulation runs, but in particular provide more goal-oriented computational
support for a design engineer.

When embedding a pure simulation code in an optimization framework, a
crucial ingredient to any gradient-based optimization algorithm is the derivative
of the output of the simulation with respect to the set of design parameters.
When the simulation is given in the form a high-level programming language
such as Fortran, C, or C++, the derivatives can be computed by a technique
called algorithmic or automatic differentiation (AD) [1]. Here, a given computer
program is automatically transformed into another program capable of evaluat-
ing not only the original simulation but also derivatives of selected outputs with
respect to selected inputs. In contrast to numerical differentiation, derivatives
computed by AD are free of truncation error.

The aim of this note is to demonstrate the feasibility of accurate derivatives
of a large-scale simulation in order to apply gradient-based optimization tech-
niques. More precisely, AD is applied to a computational fluid dynamics code
called TFS [2, 3] developed at the Aerodynamics Institute, Aachen University of
Technology. This simulation code consists of 236 subroutines totaling approxi-
mately 24,000 lines of Fortran 77. Other references where automatic differentia-
tion is applied to problems from computational fluid dynamics include [4-6]. The
procedure for applying the ADIFOR [7] system implementing the AD technol-
ogy is outlined in Sect. 3. The problems of a numerical differentiation approach
based on finite differences are reported in Sect. 4. The discussion starts with a
short review of the functionality of automatic differentiation in Sect. 2.

2 Automatic Differentiation

The term “Automatic Differentiation (AD)” comprises a set of techniques for
automatically augmenting a given computer program with statements for the
computation of derivatives. That is, given a computer program that implements
a function

F) = (f1(x), fo(%)s - (%) € R™

automatic differentiation generates another program that, at any point of in-
terest x € IR"™, not only evaluates f at a point x but additionally evaluates its

Jacobian
7= f1(%) .. 3= f1(%)
J(x) = : : e R™*"

at the same point.

AD technology is applicable whenever derivatives of functions given in the
form of a high-level programming language, such as Fortran, C, or C4++, are
required. The reader is referred to the recent book by Griewank [1] and the
proceedings of AD workshops [8-10] for details on this technique. The key idea
of automatic differentiation is that any program can be viewed as a—potentially
very long—sequence of elementary operations such as addition or multiplication,

Computation of Sensitivity Information for Aircraft Design 1071

for which the derivatives are known. Then the chain rule of differential calculus
is applied over and over again, combining these step-wise derivatives to yield the
derivatives of the whole program. This mechanical process can be automated,
and several AD tools are available for transforming a given code into the new
code that is called differentiated code. In this way, AD requires little human
effort and produces derivatives that are accurate up to machine precision.

3 Applying the ADIFOR System to the TFS Code

At the Aerodynamics Institute, Aachen University of Technology, engineers are
developing the TFS [2, 3] package for large-scale computational fluid dynamics.
The simulation code consists of 236 subroutines totaling approximately 24,000
lines of Fortran 77. The TFS package is capable of simulating incompressible
and compressible flows in two and three space dimensions on the basis of finite
volume discretization on block-structured grids. For the present study, a version
of TFS is taken to compute the two-dimensional flow field around a typical
benchmark airfoil known as RAE 2822. A part of the grid of the underlying
numerical simulation is depicted in Fig. 1 for the area close to the airfoil.

il Ui

Fig. 1. Detail of a grid for airfoil RAE 2822 employing 4 blocks and 22356 nodes

In this note, we start from a given simulation of the Mach number, M, and
the pressure, p, for a given angle of attack, . That is, there is an implementa-
tion using TFS that, for any input «, computes the outputs M and p. From a

1072 H.M. Biicker et al.

(LT T [T T T T T
M: 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64 0.72 0.80 0.88 0.96 1.04 1.12 1.20 1.28
1.5
1
>05-
ok
[L 1 T 1 T
0'50.5 0 0.5 1 1.5

Fig. 2. The Mach number M of the flow field computed by TFS for a = 2.79°

mathematical point of view, this TFS simulation evaluates some function

[Aj(fjg)} ~ f(a) . 1)

As an example of a TFS simulation, a plot of the Mach number M is depicted
in Fig. 2 evaluated at a = 2.79°.

Suppose that we are interested in the derivatives of the Mach number with
respect to the angle of attack, i.e., 9M/da. Since TFS is a computer program
written in Fortran 77, these derivatives can be computed in a completely me-
chanical way by using any AD tool for Fortran 77. Notice that a list of available
AD tools is currently being compiled at http://www.autodiff . org. In this note,
the AD tool ADIFOR is applied to transform TF'S into a differentiated version of
TFS capable of computing OM/d« in addition to the original simulation of M.

As a preprocessing step, a few non-standard programming techniques are
eliminated by hand in order to make TFS conforming to the Fortran 77 lan-
guage standard. As a second step, a top-level routine in TF'S implementing the
function represented by (1) is identified and the program variables correspond-
ing to Mand « are indicated to the ADIFOR system. In our specific example,
approximately 220 subroutines are fed into the ADIFOR system. ADIFOR recog-
nizes about 100 subroutines as contributing to the derivatives and thus requiring
additional code for the derivative computations. The code generated automati-
cally by ADIFOR consists of approximately 20,000 lines of Fortran 77. Finally, a
“driver” routine is implemented that initializes the derivative computations and

Computation of Sensitivity Information for Aircraft Design 1073

(LT T T T .
OM/do: -0.27-0.14 -0.07 -0.03 -0.02 0.02 0.03 0.06 0.10 0.20 0.37 0.69 1.28 2.40 4.49 8.40
15—
1
>05F ‘
= ‘f!
: |
B &= /
0 -
s 1 | 1 T
0'50.5 0 0.5 1 15

Fig. 3. AD-generated derivatives M /O« evaluated at a = 2.79°

invokes the differentiated top-level routine. This driver routine is then capable
of computing the desired derivatives together with the original simulation. The
AD-generated derivatives of the Mach number are depicted in Fig. 3. Here, the
dark areas show the largest positive change of Mwith respect to changes in «.
Note that the largest changes occur at the vertical shock and in the wake.

4 Problems with Divided Differences

Automatic differentiation is based on successively applying the chain rule to
elementary operations leading to derivative values accurate up to machine pre-
cision. In contrast, a traditional alternative for the computation of derivatives is
the numerical approximation by divided differences. For the sake of simplicity,
we consider a first-order finite difference scheme where the derivative OM/da of
the Mach number M («) is approximated by

M(a+h) — M(a)
h

involving a step size h. Besides the truncation error, the crucial disadvantage of
divided differences (DD) is the need to find a suitable step size.

For the TFS simulation, it turns out that an appropriate step size for the
derivatives OM /O« is extremely hard to determine. When varying the step size h
from 1072 to 1078, the corresponding DD approximations §(h) differ so signif-
icantly that a quantitative prediction for dM/da using DD is not feasible. In

6(h) =

1074 H.M. Biicker et al.

1.0E-04 2.3E-04 5.4E-04 1.2E-03 2.9E-03 6.7E-03 1.6E-02 3.6E-02 8.4E-02 2.0E-01
15—

>05

T
===

-0.5 1=

Fig. 4. The difference |6(107°) — §(107°)|/8.446 at a = 2.79°

Fig. 4, the difference of two DD approximations resulting from two different
step sizes is given. More precisely, a normalized absolute difference of the DD
approximations 6(107°) and §(107%) is shown. The normalization is obtained
from dividing the absolute difference by the largest absolute derivative value,
8.446, generated by AD. Recall from Fig. 3 that this scaling factor occurs in the
region of the vertical shock.

The difference depicted in Fig. 4 is less than 10~* in the outer region, meaning
that, there, the two DD approximations §(107°) and §(107%) agree rather well.
However, in the areas next to the vertical shock and the wake flow field the
difference is large reaching a value around 0.2. Thus, the DD approximations of
the derivatives are not accurate in these interesting areas.

5 Concluding Remarks

To use a large-scale flow field simulation within a Newton-type optimization
framework, derivatives of the flow field with respect to simulation parameters
are necessary. Automatic differentiation is a technique for transforming a given
simulation code, written in a high-level programming language such as Fortran
or C, into another computer program capable of computing not only the given
simulation but also some user-specified derivatives. The technique is not only
applicable to fairly small programs but scales to large computer codes such as
computational fluid dynamics solvers. As opposed to numerical differentiation,

Computation of Sensitivity Information for Aircraft Design 1075

automatic differentiation does not involve any truncation error. Therefore, au-
tomatic differentiation is currently the only option whenever exact derivatives
of functions given in the form of complex computer programs are required.

In this note, the automatic differentiation tool ADIFOR is applied to the TFS
package. This simulation package consists of approximately 24,000 lines of For-
tran 77. The flow field around the RAE 2822 airfoil is computed using TFS. The
derivative of the Mach number with respect to the angle of attack is accurately
computed using automatic differentiation whereas an approximation of the same
derivatives using a divided difference approach results in reliable derivative val-
ues only at regions far from the airfoil. However, in the areas of interest, for
instance in the vicinity of the shock, the derivative values produced by divided
differences vary significantly with the actual step size being used and, in any
case, do not deliver reliable derivative values. At best, divided differences give a
qualitative prediction of the derivative field, but they do not permit a detailed
understanding of the underlying phenomena.

Work is in progress to further increase the computational efficiency of the
code generated by automatic differentiation. Moreover, the integration of the
differentiated TFS code into several gradient-based optimization algorithms is
currently under investigation.

Acknowledgments

The authors would like to thank Jakob Risch for his notable contribution during
the initial phase of this project and Emil Slusanschi for completing the auto-
matic differentiation framework. We would also like to thank the Aerodynamics
Institute, Aachen University of Technology, for making available the source code
of the flow solver TFS. In particular, Matthias Meinke and Ehab Fares deserve
special recognition for their help with the RAE 2822 airfoil. This research is par-
tially supported by the Deutsche Forschungsgemeinschaft (DFG) within SFB 401
“Modulation of flow and fluid—structure interaction at airplane wings,” Aachen
University of Technology, Germany.

References

1. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, Philadelphia (2000)

2. Fares, E., Meinke, M., Schroder, W.: Numerical simulation of the interaction of
flap side-edge vortices and engine jets. In: Proceedings of the 22nd International
Congress of Aeronautical Sciences, Harrogate, UK, August 27-September 1, 2000.
ICAS 0212 (2000)

3. Fares, E., Meinke, M., Schroder, W.: Numerical simulation of the interaction of
wingtip vortices and engine jets in the near field. In: Proceedings of the 38th
Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, January 10-13, 2000.
ATAA Paper 20002222 (2000)

1076 H.M. Biicker et al.

4.

10.

Bischof, C., Corliss, G., Green, L., Griewank, A., Haigler, K., Newman, P.: Auto-
matic differentiation of advanced CFD codes for multidisciplinary design. Journal
on Computing Systems in Engineering 3 (1992) 625-638

Bischof, C., Green, L., Haigler, K., Knauff, T.: Parallel calculation of sensitivity
derivatives for aircraft design using automatic differentiation. In: Proceedings of the
5th ATAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, ATAA 94-4261, American Institute of Aeronautics and Astronautics
(1994) 73-84

Aubert, P., Di Césaré, N., Pironneau, O.: Automatic differentiation in C++ using
expression templates and application to a flow control problem. Computing and
Visualization in Science 3 (2001) 197-208

Bischof, C., Carle, A., Khademi, P., Mauer, A.: ADIFOR 2.0: Automatic differ-
entiation of Fortran 77 programs. IEEE Computational Science & Engineering 3
(1996) 18-32

Griewank, A., Corliss, G.: Automatic Differentiation of Algorithms. SIAM,
Philadelphia (1991)

Berz, M., Bischof, C., Corliss, G., Griewank, A.: Computational Differentiation:
Techniques, Applications, and Tools. SIAM, Philadelphia (1996)

Corliss, G., Faure, C., Griewank, A., Hascoét, L., Naumann, U., eds.: Automatic
Differentiation of Algorithms: From Simulation to Optimization. Springer (2002)
(to appear).

	1 Introduction
	2 Automatic Di .erentiation
	3 Applying the ADIFORSystem to the TFS Code
	4 Problems with Divided Differences
	5 Concluding Remarks
	References

