
Improved Interval Constraint Propagation for

Constraints on Partial Derivatives !

Evgueni Petrov and Frédéric Benhamou

IRIN — Université de Nantes
2 rue de la Houssinière BP 92208
44322 Nantes Cedex 03 France

{evgueni.petrov, frederic.benhamou}@irin.univ-nantes.fr

Abstract. Automatic differentiation (AD) automatically transforms pro-
grams which calculate elementary functions into programs which calcu-
late the gradients of these functions. Unlike other differentiation tech-
niques, AD allows one to calculate the gradient of any function at the
cost of at most 5 values of the function (in terms of time). Interval con-
straint programming (ICP) is a part of constraint programming focused
on representation and processing of nonlinear constraints. We adapt AD
to the context of ICP and obtain an algorithm which transforms ele-
mentary functions into constraints specifying their gradient. We describe
some experiments with implementation of our algorithm in the logic pro-
gramming language ECLiPSe.

1 Introduction

Automatic differentiation (AD) automatically transforms programs which calcu-
late real functions into programs which calculate the gradients of these functions
[7, 5]. Unlike other differentiation techniques, AD allows one to calculate the gra-
dient at the cost of at most 5 values of the function (in terms of time).

Interval constraint programming (ICP) [1] is a part of constraint program-
ming [6, 2] focused on representation and processing of nonlinear constraints. One
of classical concepts of ICP is interval constraint propagation which means in-
cremental calculation of multidimensional rectangles bounding solutions to non-
linear constraints.

Applications of AD in ICP are limited to fast calculation of the first coeffi-
cients of interval Taylor series of nonlinear constraints [8, 4].

We adapt AD to the context of ICP and obtain an algorithm which transforms
elementary functions into constraints specifying their gradient. With respect
to the techniques of näıve symbolic differentiation, our algorithm generates a
smaller number of constraints which are more effectively processed by interval
constraint propagation.

" Financially supported by Centre Franco-Russe Liapunov (Project 06–98), by Euro-
pean project COCONUT IST–2000–26063.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 1097−1105, 2002.
 Springer-Verlag Berlin Heidelberg 2002

The paper is structured as follows. Section 2 introduces basic notions of the
paper. Section 3 describes our transformation technique. Section 4 states its
properties (complexity and accuracy of interval constraint propagation). Section
5 contains the data of experiments with an implementation of our technique in
the logic programming language ECLiPSe [3]. Section 6 concludes the paper.

2 Definitions, notation

We give some definitions first. Real intervals are closed convex subsets of the set
R of real numbers. Real relations are subsets of points of R2, R3, etc. Symbol
R∞ denotes the set of countable sequences of real numbers. A projection function
is a function which returns a specific component of these sequences.

Symbols v0, v1, v2, etc. denote the formal variables. Constraints are pairs
consisting of a relation and an ordered set of variables. A constraint is primitive,
if it relates its variables by the graph of some “basic” function. We assume that
(1) every basic function has one or two arguments, (2) the arithmetic operations,
the trigonometric functions, the functions exp, log are basic functions. Sequence
p ∈ R∞ is a solution to constraint ((vi, vj , . . .), f), if it satisfies (pi, pj , . . .) ∈ f .

Real terms are terms constructed of the formal variables, real numbers, and
the basic functions. Real terms specify real functions of the sequences from R∞.
The variables specify the projection functions, real numbers specify the constant
functions, compound real terms f(t), f(t, t′) specify the composition of basic
function f and the functions specified by the real terms t, t′.

Symbol D! denotes differentiation operator which maps every real function
to its partial derivative with respect to argument !.

Templates of real terms are terms which are constructed of the formal vari-
ables, variables 1, 2, real numbers, the basic functions, and which do not contain
multiple occurrences of 1, 2.

Let F , t, t′ be a template of real term and two real terms. Expression F 〈t, t′〉
denotes the result of replacing 1, 2 with t, t′. If F does not contain 2, then
t′ is omitted. Partial derivatives of basic function f are expressed by templates
f ′x, f ′y, i.e., real terms f ′x〈v0, v1〉, f ′y〈v0, v1〉 specify non-zero partial derivatives of
the real function specified by real term f(v0, v1). The derivative of unary basic
function f is expressed by template f ′.

3 AD in terms of constraints

Before going into details, we explain our idea informally in terms of program
analysis. Linear blocks are sequences of assignments. Single assignment programs
are programs in which every variable is assigned a value only once. As a pro-
gram transformation technique, AD has an important property: it transforms
linear blocks into linear blocks, single assignment programs into single assign-
ment programs. The class of single assignment programs consisting of a signle
linear block is equivalent to the class of sets of primitive constraints (because,

1098 E. Petrov and F. Benhamou

in such context, every assignment is a valid equation). Thus, AD can be made
applicable to functions specified by primitive constraints. In what follows, we
give a more detailed description of this idea.

Given a real term which specifies some function h and does not contain other
variables than v0, v2, . . . , v2n, our algorithm generates such set C of primitive
constraints that the projection of the set of solutions to C onto the first 2n + 2
coordinates is the following subset of R2n+2 (see theorem 1):

{(p0, . . . , p2n+1) | ∀! ∈ [0, n] p2!+1 = (D2!h) (p)} .

3.1 Decomposition algorithm

The following rules define function ad which implements our decomposition al-
gorithm. The rule to be applied should be selected in the “top down” fashion.
Because rule 1 does not commute with rules 3, 4, this assumption is essential.
Rules 1 through 4 assume that 2i is greater than the subscript of any variable
occurring in their left hand sides (v2i must be a “free” variable). Function dec
maps real terms to sets of primitive constraints. It returns primitive constraints
whose solutions annihilate the real function specified by its argument (see im-
plementation in section 4).

Rule 1 (Elimination of multiple occurrences)

adF 〈v2j , v2j〉 = adF 〈v2i, v2i+2〉 ∪ {v2j = v2i, v2j = v2i+2, v2j+1 = v2i+1 + v2i+3}

Rule 2 (Elimination of constants) adF 〈c〉 = adF 〈v2i〉 ∪ {v2i = c}

Rule 3 (Composition-1)

adF 〈f(v2j)〉 = adF 〈v2i〉 ∪ {v2i = f(v2j)} ∪ dec (v2j+1 − v2i+1f
′〈v2j〉)

Rule 4 (Composition-2)

adF 〈f(v2j , v2k)〉 = adF 〈v2i〉 ∪ {v2i = f(v2j , v2k)} ∪
dec (v2j+1 − v2i+1f

′
x〈v2j , v2k〉) ∪ dec

(
v2k+1 − v2i+1f

′
y〈v2j , v2k〉

)

Rule 5 (Termination) adv2j = {v2j+1 = 1}

In the ECLiPSe implementation of ad, in order to reduce the number of
generated primitive constraints, we simplify the right hand side of rules 3, 4 for
the basic functions exp, sqrt, arctan and replace rule 2 with four additional ones
which process the cases where one or two arguments of some basic function are
real numbers (one instance of rule 3 and three instances of rule 4).

Real terms specify real functions. Our rules reduce calculation of the gradient
of one real function (specified by a real term) to calculation of the gradient of
some other (specified by some other term). Figures 1, 2, 3 illustrate how our
rules change the graphs of these functions in some particular cases.

1099Improved Interval Constraint Propagation for Constraints on Partial Derivatives

−4

−2

0

2

4

−4

−2

0

2

4

0

50

100

150

200

250

−4 −2 0 2 4
0

50

100

150

200

250

(v
0
 v

0
)2

(v
2
 v

4
)2

Fig. 1. Application of rule 1 to (v0v0)
2.

We conclude this section by calculation of ad
(
v2
0 + (v0 + v2)2

)
(Schwefel func-

tion 1.2 in 2 dimensions):

ad
(
v2
0 + (v0 + v2)

2
)

R1= {v0 = v4, v0 = v6, v1 = v5 + v7} ∪ ad
(
v2
4 + (v6 + v2)

2
)

ad
(
v2
4 + (v6 + v2)

2
)

R4= {v8 = v6 + v2, v7 = v9, v3 = v9} ∪ ad
(
v2
4 + v2

8

)

ad
(
v2
4 + v2

8

) R3= {v12 = v2
4 , v5 = 2v11, v11 = v4v13} ∪ ad

(
v12 + v2

8

)

ad
(
v12 + v2

8

) R3= {v16 = v2
8 , v9 = 2v15, v15 = v8v17} ∪ ad (v12 + v16)

ad(v12 + v16)
R4= {v18 = v12 + v16, v13 = v19, v17 = v19} ∪ ad(v18)

ad(v18)
R5= {v19 = 1}

4 Properties of the decomposition algorithm

Let H be a real term which contains variables v0, v2, . . . , v2n only.

Theorem 1 (Correctness). Let h be the real function specified by real term
H. The following statements are true:

1100 E. Petrov and F. Benhamou

−4

−2

0

2

4

−4

−2

0

2

4

0

2

4

6

8

10

12

14

16

18

−4

−2

0

2

4

−4

−2

0

2

4

0

2

4

6

8

10

12

14

16

18

v
0
2+(sin v

2
)2 v

0
2+v

4
2

Fig. 2. Application of rule 3 to v2
0 + (sin v2)

2.

1. Every solution p to ad(H) satisfies the equation p2!+1 = (D2!h) (p) for each
variable v2! from H.

2. If all the derivatives (D2!h) (p)’s exist for some p, then the constraints ad(H),
{v2! = p2! | 0 ≤ ! ≤ n}, {v2!+1 = (D2!h) (p) | 0 ≤ ! ≤ n} have a common
solution.

Theorem 2 (Number of primitive constraints). Let function Di map real
terms specifying real functions to real terms specifying their partial derivatives
with respect to argument i.

Let functions dec (see section 3), Di be defined by the following rules:

decF 〈vj〉 = {vj = 0} D! c = D! vj = 0
decF 〈c〉 = decF 〈vi〉 ∪ {vi = c} D! v! = 1
decF 〈f(vj)〉 = decF 〈vi〉 ∪ {vi = f(vj)} D! f(t) = f ′〈t〉 · D! t
decF 〈f(vj , vk)〉 = decF 〈vi〉 ∪ {vi = f(vj , vk)} D! f(t, t′) = f ′

x〈t, t′〉 · D! t + f ′
y〈t, t′〉 · D! t′

 Let symbol || · || denote cardinality. Let real term H contain N basic functions.
 The following statements are true:

 1. ||dec(H)|| = N ,
 2. ||ad(H)|| ≤ constN ,
 3. ||dec(D0(cos(cos(. . . cos(︸ ︷︷ ︸

cos occurs N times

v0) . . .))))|| = N(N + 3)/2.

1101Improved Interval Constraint Propagation for Constraints on Partial Derivatives

−4 −2 0 2 4
0

2

4

6

8

10

12

14

16

−4

−2

0

2

4

−4

−2

0

2

4

0

50

100

150

200

250

(v
0
 v

2
)2 v

4
2

Fig. 3. Application of rule 4 to (v0v2)
2.

Theorem 3 (ad and interval constraint propagation). Let C! be the set
of constraints generated from dec(v2!+1 − D!(H)) by renaming variables so that
different C!’s share variables v0, v2, . . . , v2n only.

Let intervals I0, . . . , I2n+1 be calculated by the interval constraint propagation
algorithm HC3 [1] for the variables v0, . . . , v2n+1 and the constraints ad(H). Let
intervals J0, . . . , J2n+1 be calculated by the same algorithm for the same variables
and the constraints

⋃
! C!.

Then I0 × I1 × . . . × I2n × I2n+1 ⊆ J0 × J1 × . . . × J2n × J2n+1.

5 Experiments

We have applied our decomposition algorithm to minimization of generalized
Schwefel function 1.2 and 3.2, Rosenbrock function in different dimensions. Each
of these functions is specified by a polynomial of low degree and has exactly one
local minimum. Consequently, there are no contraindications for minimization
of these functions by interval constraint propagation.

We have run the ECLiPSe implementation [9] of interval constraint propa-
gation algorithm HC3 [1] on the primitive constraints generated by function ad
and by näıve symbolic differentiation D!.

1102 E. Petrov and F. Benhamou

For each objective function, we give a table showing the results of our exper-
iments. Its columns indicate the dimension (column 1), the number of the con-
straints and the reduction of the initial multidimensional rectangle when HC3 is
applied to these constraints for the constraints generated by our transformation
technique (columns 2, 3) and by näıve symbolic differentiation (columns 4, 5).
The content of columns 3, 5 describes how HC3 changes the initial rectangle.
The output rectangles of a diameter comparable with the machine precision are
denoted by “exact”. The large output rectangles which differ from the initial one
at least in one dimension are denoted by“partial”. The output rectangle identical
to the initial one is denoted by “no reduction”.

5.1 Schwefel function 1.2

Generalized Schwefel function 1.2 in n dimensions is specified by real term H =∑n
i=1

(∑i
j=1 vj

)2

. The minimum is achieved at the point (0, . . . , 0) ∈ Rn. The
standard initial rectangle is [−5, 10]n.

AD Näıve
n ||ad(H)|| Reduction ||dec(H)|| + ∑

! ||dec(D!(H))|| Reduction
1 6 exact 2 exact
2 17 exact 9 exact

3, 4, 5 24, 36, 50 exact 23, 46, 80 partial
6–80 66–6800 exact 127–180280 no reduction

Minimization of Schwefel function 1.2 in the rectangle [−5, 10]n.

The number of primitive constraints generated by AD (column 2) grows
quadratically with respect to n (and linearly with respect to ||dec(H)||). The
number of primitive constraints generated by näıve symbolic differentiation (col-
umn 4) grows cubically with respect to n. Besides that, HC3 is more effective
on the constraints generated by AD (cf. columns 3, 5).

5.2 Schwefel function 3.2

Generalized Schwefel function 3.2 in n dimensions is specified by real term H =∑n
i=2

(
v1 − v2

i

)2 + (vi − 1)2. The minimum is achieved at the point (1, . . . , 1) ∈
Rn. The standard initial rectangle is [−10, 10]n.

AD Näıve
n ||ad(H)|| Reduction ||dec(H)|| + ∑

! ||dec(D!(H))|| Reduction
2 12 exact 20 partial

3–10 26–124 partial 40–180 partial
11–80 138–1104 no reduction 200–1580 no reduction

Minimization of Schwefel function 3.2 in the rectangle [−10, 10]n.

1103Improved Interval Constraint Propagation for Constraints on Partial Derivatives

The number of primitive constraints grows linearly for AD as for näıve sym-
bolic differentiation (columns 2, 4). However, AD is generates fewer primitive
constraints. As far as effectiveness of HC3 is concerned, there is no significant
difference between the constraints generated by AD and by näıve symbolic dif-
ferentiation (cf. columns 3, 5).

5.3 Rosenbrock function

Generalized Rosenbrock function in n dimensions is specified by real term H =∑n−1
i=1 100

(
vi − v2

i+1

)2 + (1 − vi+1)2. The minimum is achieved at the point
(1, . . . , 1) ∈ Rn. The standard initial rectangle is [−2.048, 2.048]n. We give also
the data for the rectangle [0.1, 2.048]n.

AD Näıve
n ||ad(H)|| Reduction ||dec(H)|| + ∑

! ||dec(D!(H))|| Reduction
in rectangle [−2.048, 2.048]n

2 15 exact 20 partial
3–80 32–1341 partial 40–1580 partial

in rectangle [0.1, 2.048]n

2–80 15–1341 exact 20–1580 partial

Minimization of Rosenbrock function in different rectangles.

AD generates a smaller number of constraints. With respect to effectiveness
of HC3, there is no big difference between the constraints generated by AD
and by näıve symbolic differentiation (cf. columns 3, 5). However, this situation
changes, if we start interval constraint propagation in the rectangle [0.1, 2.048]n.

6 Conclusion

Automatic differentiation is successfully used in computational mathematics for
more than twenty years (as of year 2002). However, applications of AD in interval
constraint programming were limited to fast calculation of the first coefficients
of Taylor series of nonlinear equations. Up to now, the only means of working
with the gradient in optimization problems of ICP was näıve symbolic differen-
tiation in combination with this or that symbolic transformation method. As we
have seen in section 4, this approach cannot guarantee an acceptable size of the
symbolic expressions for the gradient.

In this paper, we have introduced a technique which allows one to involve
the gradient into interval constraint propagation at a low cost in terms of num-
ber of constraints. Our experiments indicate that a valuable by-product of our
technique is a certain increase in accuracy of interval constraint propagation.

Acknowledgements We thank the referees N◦ 26 and N◦ 27 for their comments.

1104 E. Petrov and F. Benhamou

References

1. F. Benhamou. Interval Constraint Logic Programming. In A. Podelski, editor, Con-
straint Programming: basics and trends, volume 910 of Lecture Notes in Computer
Science, pages 1–21. Springer-Verlag, 1995.

2. R. Dechter. Principles and Practice of Constraint Programming — CP 2000.
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2000.

3. ECRC. ECLiPSe 3.5: ECRC Common Logic Programming System. User’s Guide,
1995.

4. L. Granvilliers and F. Benhamou. Progress in the solving of a circuit design problem.
Journal of Global Optimization, 2001.

5. A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM Publications, 2000.

6. K. Marriott and P. J. Stuckey. Programming with Constraints. An Introduction.
The MIT Press, 1998.

7. L. B. Rall. Automatic differentiation: techniques and applications. volume 120 of
Lecture Notes in Computer Science. Springer, 1981.

8. P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: a Modelling Language for
Global Optimization. The MIT Press, Cambridge, MA, 1997.

9. T. M. Yakhno, V. Z. Zilberfaine, and E. S. Petrov. Applications of ECLiPSe: Interval
Domain Library. In Proc. Int. Conf. Practical Application of Constraint Technology,
pages 339–357, Westminster Central Hall, London, UK, 1997.

1105Improved Interval Constraint Propagation for Constraints on Partial Derivatives

	1 Introduction
	2 Definitions, notation
	3 ADintermsofconstraints
	3.1 Decomposition algorithm

	4 Properties of the decomposition algorithm
	5 Experiments
	5.1 Schwefel function 1.2
	5.2 Schwefel function 3.2
	5.3 Rosenbrock function

	6 Conclusion
	References

