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Abstract. Clinical diagnosis environments often require the availability
of processed data in real-time, unfortunately, reconstruction times are
prohibitive on conventional computers, neither the adoption of expensive
parallel computers seems to be a viable solution.
Here, we focus on development of mathematical software on high perfor-
mance architectures for Total Variation based regularization reconstruc-
tion of 3D SPECT images. The software exploits the low-cost of Beowulf
parallel architectures.

1 Introduction

The problem of reconstructing a 3D image from a set of its 2D projections
from diÿerent angles of view arises in medical imaging for 3D tomography. 3D
tomography requires huge amount of data and long computational times. Indeed,
the reconstruction times are often prohibitive (of order of hours) on conventional
machines. Hence, parallel computing seems to be an eÿective way to manage this
problem, especially in a clinical environment.

However, there are still many barriers to an eÿective use of High Performance
Computing (HPC) technology in medical imaging. First it can be employed in
medical devices only to an extent which is determined by the overall cost of the
system. On the other hand, the development and set up of eþcient methods
is a complex task which requires the joint eÿort of researchers in the ýelds of
computing, industries, and medical communities.

This work is developed within a collaborative national project among compu-
tational scientists. Within this context, our focus is development of mathematical
software on high performance architectures for reconstruction of 3D SPECT im-
ages by using edge preserving regularization. The main contribution of the paper
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is, from one point, the introduction of the Total Variation-based edge preserving
regularization method in an accurate 3D SPECT imaging model, and from the
other point, due to the enormous computing requirements of the corresponding
deconvolution problem, the development of a scalable parallel algorithm for the
solution of the corresponding non-linear Euler Lagrange equation. Our algorithm
exploits the parallelism in terms of the number of projections (rows of the sys-
tem matrix). The proposed parallel algorithm and the experiments are based on
low cost architectures made of Pentium Processors connected by a Fast Switch
which could be really employed in a clinical environment

2 Regularized Image Reconstruction

Single photon emission computed tomography (SPECT) is a tomographic tech-
nique which gives the spatial distribution of radioactive tracers injected into
the patient's body for a variety of diagnostic purposes. Data are collected by
means of a small number of large detectors which provide a sequence of M 2D
projections evenly spaced over over 2ÿ around the patient.

The basic mathematical description of SPECT imaging relates the observed
data u0 with the original image u through a linear model:

u0(s; þ; z) =

Z Z Z
u(x; z0)K(sÿ x þ ý;x þ ý?; z ÿ z0)dxdz0 (1)

where x = fx; yg are plane coordinates where the body of the patient is rep-
resented by a disk centered at the origin, z-axis is the axis of rotation of the
detectors; ý = fcosþ; sinþg, þ being the projection angle of the detector plane
with respect to a ÿxed position, s is the radial distance and ý? = fÿ sinþ; cosþg.
The kernel ü models the physical structure of the measurement device which in-
troduce an unavoidable blurring eþect due to the fact that the rays pass through
the holes of a collimator. This model is called the Blurred Radon Transform [2],
in which the integration kernel ü, which is usually called Point Spread Function
(PSF), diþers from Radon's one for two reasons: the PSF is no longer an impulse
function, it is deÿned on the projection plane as a function of two variables, s
and z, and also depends on the source-detector distance t = x þ ý?.

In compact form the above mathematical model of 3D SPECT imaging can
be stated as follows:

u0 = K u+ û (2)

where û is assumed to be white noise, and K is a linear operator, the unknown
vector u represents the 3D image and u0 is the so-called 3D sinogram. By this
way it belongs to the class of linear inverse and ill posed problems. Indeed, due to
the compactness of the operatorK, the computation of Kÿ1 has the eþect of noise
ampliÿcation with the risk of obtaining unuseful solutions. These problem have
been widely investigated, and the regularization approach produces an estimate,
uÿ of u as the solution of

uÿ = argmin
u
fjjKuÿ u0jj+ úR(u)g (3)
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where R(u) serves as regularization functional and ÿ is a parameter controlling
the weight given to the regularization term relative to the residual norm.

The Total Variation (TV) norm, was ÿrst used by Rudin et al. [8], it is deÿned
as

TV (u) =

Z Z q
u2
x
+ u2

y
dxdy: (4)

The main advantage of the TV norm as regularization functional is that it does
not require the solution to be continuous, thus allowing the presence of \jumps"
in the solution, with a preservation of sharp edges. This is due to the fact that
the TV functional is deÿned over the space of Bounded Variation functions [5],
which can eventually contain step discontinuities. The solution of (3) with R
given by (4) corresponds to the solution of the Euler-Lagrange equation

Kÿ(Kuÿ u0)ÿ ÿr þ

ÿ
ru

jruj

þ
= 0;

du

dn
= 0 (5)

The main diþculty in solving (5) is related to the highly non-linear second order

elliptic term
ý
ru
jruj

ü
representing a diýusion operator with coeþcient given by

1

jruj . A number of approaches has been proposed for solving (5), which can be

classiÿed in three main categories

{ Time marching [8]
{ Fixed Point [9, 4]
{ Newton method [3].

In this paper we focus on the Fixed Point method as it provides the best com-
promise between robustness (dependence on the initial solution, parameters, ...)
and speed of convergence (it can be shown to be a quasi{newton method). In
particular, the solution is obtained by solving, until convergence, a sequence of
linear systems arising from the discretization of the following equation

ÿ
KÿK ÿ ÿr þ

ÿ
r

jrunj

þþ
un+1 = Kÿu0 (6)

starting with u0 = u0.
It can be shown, [4], that the sequence of solutions fungn2N converges as

n ! 1, to a global minimum of (3). The discretization of (6) leads to a linear
system

(KÿK ÿ ÿL(un))un+1 = Kÿu0 (7)

where L(u) represents the discretization of the operator r þ ( r
jruj ). In order to

solve (7) we adopt the iterative conjugate gradient (CG) method whose main
computational kernel is the multiplication of the system matrix (KÿKÿÿL(un))
with the approximate solutions. The subject of the next section is therefore
devoted to description of how parallelism has been introduced into solution of
such system.
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3 Parallel Reconstruction Algorithm

Our work has been essentially devoted to obtain a parallel version of the exist-
ing code by exploiting parallelism inside those modules representing the main
computational bottlenecks. Actually, the most intensive calculation is due to the
products which involve operators Kÿ and K respectively. Then in the following
we mainly focus on these operations.

The matrix K is a L ÿ L block Toeplitz matrix, where L is the number of
object slices. Let us introduce the vector fui0gi=1;:::;L, u

i
0 2 <JþM , M being the

number of angular projections, and J the number of beans. Moreover, let each
block u

i 2 <NþN represent the 2D slice, ÿnally [Ei] 2 <(MþJ)ý(NþN) represents
the projection matrix.

By this way, product Ku can be rewritten1 as:
0
B@

u
1
0
...
u
L
0

1
CA =

0
B@

[E0] : : : [ELü1]
...

...
...

[ELü1] : : : [E0]

1
CA

0
B@

u
1

...
u
L

1
CA (8)

Standard acquisition parameters are M = 120, J = 128 and L = 64.
The way in which concurrency has been introduced was strongly induced

by the physical meaning of the SPECT reconstruction process. Speciÿcally, we
observe that the Ej þ u

i products, i.e. the projection process of SPECT imaging
on each 2D slice, can be described as a set of distinct projections each one
corresponding to a projection angle. In this way the whole projection process
synthesized by equation (2) is obtained by repeatedly performing the projection
operation for each projection angle. Starting from this consideration, we can
distribute projection angles among processors. In other words, each processors
is assigned a set of projection angles ÿ over which the projection is performed. As
a consequence, the whole set of sinograms and image slices is shared among the
processors. The ÿrst phase of the reconstruction process performs a distribution
of the sinograms among all the processor. Then, each iteration of the algorithm
requires a global sum in order to keep updated the current solution of the system
(7).

Let us now state the parallel algorithm using a linear algebra setting. We
note that the most natural way to accomplish the parallelism as inspired by the
projection/retroprojection processes is to perform parallelization of products

f
i =

Lü1X
j=0

E(j+iü1) mod L þ u
j+1 i = 1; :::; L

in a row-wise fashion. In other words, concurrency has been introduced by using
a row-block cyclic distribution of the matrices E(j+iü1) mod L . By this way each

1 It is worth noting that the block representation of K as described in (10) is not
actually available. In practice, the matrix K is rather sparse with a sparsity between
5% and 10%. The coeÿcients of each row of the matrix K are given under form of
look-up tables [2].
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processor performs the product between a row-block of E(j+iÿ1) mod L and vector
u
j+1. In the same way, parallelization of the products

z
i =

Lÿ1X

j=0

Eþ

(j+iÿ1) mod L ÿ f
j+1 i = 1; :::; L

is exploited in a column-wise fashion. This means that each process acts a partial
update over the whole data, requiring a global sum at the end of each step.

As already underlined, the above choice was motivated by several reasons,
the ÿrst is due to the structure of the look-up tables for accessing the elements
of the projection matrix. Indeed, the look-up table containing the coeþcients
of K is given in a closed form in such a way that we can access independently
to each row of K corresponding to a given angular projection over the whole
data set. The second was due to the fact that a further colomnwise distribution
of the matrix K, from one hand could allow a distribution of the data, but, on
the other hand, it would require a further global communication step at each
computation of Ku. Considering the actual dimentions of the matrices, and the
obtained results, with the processors arranged as a ring, we believed this last
option the most suited for our application. In addition, this choice required minor
adjustment of existing projection code.

For what concerns the parallelization of the matrix product L(un)un+1, it is
important to point out that it requires about the 0:1% of the whole processing
time for each iteration, therefore since we adopted a global input data distribu-
tion, i. e. the input sinogram and the current solution are shared among all the
processors, we simultaneously perform this operation locally as it does not in-
ýuence the whole computing time. Other choices are of course possible, however
the parallelization of this operation would introduce a further communication
overhead without improving the processing time.

Fig. 1. The Hoÿman phantom used in the experiments
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Fig. 2. The MSE between the computed and ideal solution for the unregularized prob-

lem and for the regularized problem with various regularization parameters. Note the

semiconvergence property of the unregularized iterative algorithm.

4 Experiments and Results

The above algorithm was experimented by using a Hoÿman phantom depicted
in þgure 1. Projection data were generated in a 128x128 image array for 120
views over [0; ÿ), the fully 3D projector assumes a Gaussian model of collima-
tor blurr both in the 2D slices and along the staking direction of the slices
[1]. Figure 2 demonstrates the stability of the TV-based algorithm with respect
to the standard CG-based iterative algorithm [1], the þgure reports the Mean
Squared Error (MSE) between the computed solution and the ideal solution as
function of the iterations. Note that, in order to make the comparison homo-
geneous, the MSE measure for the TV-based algorithm was computed at each
inner iteration of the adopted CG algorithm for solving the linear system (7).
The behaviour of the MSE clearly shows the classical semiconvergence property
of iterative reconstruction algorithms, in particular the unregularized algorithm
has an optimal number of iterations after which the quality of the reconstruction
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a) b) c)

Fig. 3. The TV-regularized solutions. Figure a) is obtained with 1 TV iteration, b)
refers to 4 TV iteration and c) to 7 iterations. Note that each TV iteration requires 7
inner CG iterations.

Fig. 4. The unregularized solution after 60 CG iterations.
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Fig. 5. Cross-section of the solution for various iteration number of the regularize and
unregularized problem.
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degrades, such optimal number of iterations being typically chosen with exper-
imentation, depending on the amount of noise and the kind of images. On the
contrary, the TV-regularized algorithm oÿers the warranty to converge to an ac-
curate and stable solution for a wide range of regularization parameters. Neither
such regularization tends to destroy image features. We plot in þgure 3 the reg-
ularized solutions for diÿerent regularization parameters and iteration number.
The unregularized solution is reported in þgure 4. What it is evident here is the
property of the TV regularization to produce a stable solution while mantaining
the features of the images, i.e. the regularization is discontinuity adaptive [6] in
the sense that the sharp changes (edges) are preserved. As a further example,
þgure 5 reports several linear proþles of the regularized solution together with
the unregularized one, it shows how the TV-based reconstruction preserves the
stepwise behavior of the original image.

For what concerns the computing environment, we implemented the algo-
rithm on two Beowulf systems, available at CPS-CNR (Naples). The þrst, re-
ferred in the þgures as Beocomp has 32 nodes, each node being a 450 Mhz
Pentium II processor running Linux Red Hat 6.0. The second, referred as Vega,
consisting of 18 Pentium IV running Red Hat Linux 7.2. The program uses the
MPI and the Basic Linear Algebra Communication Subprograms (BLACS) com-
munication libraries. Figures 7 and 8 report respectively the achieved speedup
and the corresponding eýciency on both systems. Results show that the problem
of 3D SPECT imaging can be eýciently solved on high performance architec-
tures. The time reduction gained with the adoption of such parallel algorithm
is in accordance with diagnostic times, allowing the use of accurate iterative
reconstruction algorithms.

5 Conclusions

In conclusion the contribution of the paper is twofold:

{ introduction of the Total Variation-based edge preserving regularizationmethod
in SPECT imaging

{ development of a scalable parallel algorithm for the solution of the corre-
sponding non-linear Euler Lagrange equation. Our algorithm exploits the
parallelism both in terms of the number of projections (rows of the system
matrix) and 2-D slices (columns of the system matrix).
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