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Abstract. This paper reviews current approaches to plane loci genera-
tion within dynamic geometry environments. Such approaches are classi-
þed as interactive, when just a plot of the locus is shown, and symbolic,
if, in addition to plotting the locus, its equation is also given. It is shown
how symbolic approaches outperform the interactive ones when dealing
with loci which are algebraic curves. Additionally, two experimental im-
provements are reported: i) an eýcient computer algebra system allows
symbolically generated loci to behave as dynamic objects, and ii) a gen-
eral purpose computer algebra system is used to remove spurious parts
of some loci.

1 Introduction

Dynamic geometry software refers to computer programs where accurate con-
struction of geometric conÿgurations can be done. The key characteristic of this
software is that unconstrained parts of the construction can be moved and, as
they do, all other elements automatically self{adjust, preserving all dependent
relationships and constraints [13]. An inmediate consequence of this behavior
allows us to keep track on the path of an object that depends on another object
while this one is dragged. If the dependent object is a point, its trace gives a
locus, whereas if it has higher dimensionality, the path can be used to suggest
related geometric elements, such as envelopes. Most dynamic geometry software
implements loci generation just from a graphic point of view, returning them
as states of the screen. The loci obtained in this way are restricted by the al-
lowed transformations in the system, no algebraic information about them is
known, and, sometimes, they become aberrant for particular positions of the
construction. On the other side, the application of symbolic methods for loci
generation, although restricted to algebraic curves, generalizes the class of ob-
tainable loci, returns their algebraic expression, and behaves in a uniform way
for all construction instances.

The structure of the paper is as follows. Section 2 describes current ap-
proaches to loci generation in classic dynamic geometry environments and in
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two more recent programs. Symbolic methods for the problem are brieÿy re-
called in Section 3, and a successful implementation of one of such methods
into a dynamic geometry program is reported. Finally, some ways for further
development in this þeld are proposed.

2 Interactive Approaches

The introduction, in the late eighties, of The Geometer's Sketchpad [9] and
CABRI [16] marked the birth of dynamic geometry software. The Geometer's
Sketchpad, GSP, was a project developed by Jackiw, whereas CABRI, called to-
day Cabri Geometry, was designed by an interdisciplinary team led by Laborde.
Both programs share the strategy for tracing loci: selecting an object, the driver

object, with a predeþned path, the locus of another object depending on the
former is drawn by sampling the path and plotting the locus object for each
sample. The driver object, in both GSP and Cabri, must be a point, whereas
the path can be any linear object, arc, or even a locus, containing the driver
object.

Fig. 1. Conchoid of Nicomedes in Cabri (left) and GSP (right)

If the locus object is a point (other options are linear objects and arcs), an
option allows the user to þt a curve, by linear interpolation, to the locus points,
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thus returning the locus as a usually continuous curve. Nevertheless, the uniform
division of the path can produce anomalous loci. For the sake of illustration, let
us consider the conchoid of Nicomedes as a locus. Given a point O and another
point P lying on a line, the conchoid of Nicomedes is the locus of points X such
that X;O and P are collinear, and the distance between X and P is constant.
Both GSP and Cabri easily ÿnd the curve (Fig. 1). But note that if O is close

to the line, the linear interpolation fails to return a correct locus, even setting
the number of samples to its maximum value. Some contiguous positions of P
on its path, the horizontal line, produce successive not{near positions of X .

Geometry Expert [7] tries to avoid this problem returning loci only as se-
quences of points and widening the range of sampling (Fig. 2). But this behavior
cannot be corrected within this graphic approach, since small changes of some
elements in a construction can sometimes produce sudden jumps of dependent
objects.

Fig. 2. Conchoid of Nicomedes in Geometry Expert

Using complex analysis, Cinderella [14, 18] has solved the problem of conti-
nuity, but, with regard to loci generation, it shares the problems of the inter-
polating approach of GSP and Cabri, as illustrated with the conchoid in Fig.
3. Furthermore, its strategy of returning loci as the positions only accessible
by real continuous moves [14, p. 137] sometimes avoids their correct generation.
Fig. 4 shows, in Cinderella, the locus of a point whose product of distances to
F1 and F2 is constant (the similar triangles ABC and DBE in the left are used
to multiply). The program ÿnds just one of the pair of Cassinian ovals for this
conÿguration.

Fig. 3. Conchoid of Nicomedes in Cinderella
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Fig. 4. Cinderella ÿnds just a Cassinian oval

3 Symbolic Approaches

The main claim in this paper is that the above ways for generating loci are
outperformed by a new class of methods from algebraic geometry. Although
they apply only to algebraic curves, the amount and ubiquity of such curves
would justify using these methods. Furthermore, there exists another reason to
support their use. Up to now, no dynamic geometry software could obtain the
locus of a non{dependent object, thus excluding a huge class of them. Symbolic
approaches deal with locus points in a uniform way: it does not matter whether
the point is dependent or there are other objects that depend on it.

Symbolic generation of loci can be seen as a subÿeld of geometric discovery,
which is also related to automatic theorem proving. Constructive methods such
as Groebner bases [4] or Wu's method [23] have been much more successful in
automatic proving than earlier attempts based on logical approaches.

On the one hand, the method of Wu has been used for loci discovery by
Chou [6], where Steiner theorem is rediscovered, and by Roanes and Roanes in
the plane [19] and the space [20]. Both uses are purely algebraic in the sense that
no graphical environment for diagram construction is provided, and they require
human intervention, mainly when setting the order of algebraic operations. Ge-
ometry Expert, which incorporates the method of Wu among its impressive set
of automatic provers, has not been designed for automatic generation of loci
using its symbolic capabilities. The use of Wu's method for a true automatic
generation of loci within a dynamic geometry environment remains unexplored.

On the other side, Groebner bases have been widely used for automatic the-
orem proving [10{12,15]. A recent work due to Recio and Vþelez [17] emphasizes
using Groebner bases for automatic discovery, rather than for automatic prov-
ing. It proposes linking Cabri with the Groebner basis method for automatic
discovery in an intelligent program for learning Euclidean geometry. Prelimi-
nary steps in this direction, with a new dynamic geometry environment, have
been reported in [1, 2]. Narrowing the goal of automatic geometry discovery to
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loci discovery, Groebner bases allow the easy obtaining of equations and plots
of algebraic curves that are the locus of a point. Lugares [21] links a dynamic
geometry software with Mathematica [22] and CoCoA [5]. Basically, it allows
the user to draw a geometric construction and it returns the locus of a point on
which some extra conditions are stated. In this way, the locus point can con-
strain some other elements of the construction. The construction and the locus
point conditions are translated into polynomial equations, and an elimination
process, using Groebner bases, is carried out on them. The geometric{dependent
variables are eliminated, leaving a set of polynomials in the independent vari-
ables. This set, seeing the locus point variables as indeterminates and all of the
rest as parameters, is the locus searched for (see [3] for a technical description).
Let us consider, for example, the locus of a point such that its perpendicular
projections on the sides of a triangle determine another triangle whose oriented
area is k. There is no way to ÿnd this locus with the interactive approach taken
in most dynamic geometry systems, whereas Lugares ÿnds, in no appreciable
time, that the locus is a circle (the circumcircle for k = 0 {Simson theorem{,
and a concentric circle for k 6= 0 {Steiner theorem), as shown in Fig. 5 for Simson
theorem.

Fig. 5. The locus of X such that M;N; P are collinear is the circumcircle

Despite the doubly exponential computational cost of Buchberger's algo-
rithm, most loci in elementary geometry are quickly computed by CoCoA, thus
allowing their dynamic behavior when dragging any other element. Fig. 6 il-
lustrates this assertion with a particular case of a recent extension of Simson
theorem [8]: Given a triangle ABC and three directions, the locus of points X
such that its projections on the sides are collinear is a conic. For a certain in-
stance of the construction, the conic is an ellipse, while dragging C it becomes
a hyperbola. Although the elapsed time between both drawings cannot be gen-
erally stated (it depends on the actual coordinates of the construction points),
empirical ÿndings show that the time between successive drawings moves be-
tween 0 and 2 seconds on a conventional PC.

In turn, Mathematica is considerably slower than CoCoA when dealing with
Groebner bases, hence it is not used to show dynamic loci. Nevertheless, being
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Fig. 6. Dynamic behavior of a locus

a general{purpose symbolic system, it allows to move a step forward in loci
obtaining. As is well known, geometric relations such as between can not be
expressed through polynomial equations. Let us take into account, for example,
the task of separating triangles, that is, given a triangle ABC and a point P on
segment AB, ÿnd all possible positions of C such that triangles APC and PCB
are isosceles (Fig. 7).

Fig. 7. Two conÿgurations for separable triangles: AP = PC = PB, AP = PC = CB

While discovering that C lies on a circle centered in P with radius PA for the
ÿrst conÿguration (where P is AB midpoint) is trivial, the answer to the second
one is not so easy. Note that the locus we are searching for is a case where the
locus point imposes conditions on other construction elements, so interactive
approaches will generally fail when trying to looking for it. Furthermore, no
polynomial{based symbolic approach can deal with the restriction on P lying on
segment AB. Using CoCoA as the symbolic engine, Lugares returns an hyperbola
and a circle as locus of C (Fig. 8, left). Nevertheless, it is clear that not all
points on the hyperbola satisfy the locus requirements. No polynomial equation
can express that P is on segment AB, but on line AB. Using the numerical
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capabillities of Mathematica, the locus lines are sampled and a member of each

sample is tested in order to see if it satisÿes all construction properties: the

points lying on the hyperbola and exterior to the circle derive from positions of

P not in segment AB, hence these samples are rejected from the locus, which is

returned as shown in the right of Figure 8.

Fig. 8. The locus found with CoCoA (left) and with Mathematica (right)

4 Conclusion

In this paper, interactive and symbolic approaches to the problem of plane loci

generation within dynamic geometry environments are compared. It is shown

that Groebner bases method can be eþciently used to discover loci, allowing to

automate this task in a graphical interface. The ability for ÿnding the equations

of loci balances the restriction of the method to algebraic curves. Furthermore,

the symbolic approach is more general than the interactive one, in the sense

that it allows to search for loci of points constraining other elements. It is also

shown how eþcient implementations of Groebner bases method compete with

interactive approaches when simulating dynamic behavior of loci. First steps in

generalizing the symbolic approach to deal with inequations are illustrated by

means of a simple problem.
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