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Abstract. As the transmission of 3D shape models through Internet becomes 
more important, the compression issue of shape models gets more critical. The 
issues for normal vectors have not yet been explored as much as i t  deserves, 
even though the size of the data for normal vectors can be significantly larger 
than its counterparts of topology and geometry. Presented in this paper is an 
approach to compress the normal vectors of a shape model represented in a 
mesh using the concept of clustering. It turns out that the proposed approach 
has a significant compression ratio without a serious sacrifice of the visual 
quality of the model. 

1. Introduction 

As the use of Internet is an every day practice, the rapid transmission of data becomes 
one of the most critical factors to make the business successful. To transmit data 
faster through network, the compression of the data is the fundamental technology to 
obtain. Since the advent of its concept, the compressions of text, sound and image 
have been investigated in depth and we enjoy the result of research and development 
of such technologies in everyday life. The research on the compression of shape 
model, however, has been started very recently. In 1995, Deering published the first 
and noble paper discussing the issue [3] .  

The issues related to the topology and/or geometry of shape models have been 
extensively investigated. However, its counterpart for normal vectors has not been 
explored as much as it deserves, even though the size of the data for normal vectors 
can be significantly larger than its counterparts of topology and geometry. 

Normal vectors may or may not exist in a model even though they are necessary 
for the visualization of the model. If normals do not exist in a model, usually 
rendering software creates the normals from the face definitions. However, there are 
frequently cases that normals are necessary. Once normal vectors exist in a shape 
model, the file size of the normals is quite big as shown in Fig. 1 compared to the size 
of topology and/or geometry data. In the examples shown in the figure, normals take 
almost half of whole data of shape models. It should be noted that the ratio may vary 
depending on the model and the implementation of the authoring tools. The models 
used in this paper are represented in VRML and were created using a CAD system 
called ProEngineer. 
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Fig. 1. The sizes of geometry, topology and normal vectors for various 
represented in VRML 

mesh models 

A normal vector usually consists of three real numbers represented by float 
numbers, and a float number uses 32-bits in IEEE standard. It has been known that 
two normals with a discrepancy of 2? radian can be distinguished with normals 
represented in the float numbers, and it is generally agreed that this is too much detail 
information than necessary for the general graphics objects [3]. Hence, the 
compression of the normal vectors is an important issue for the exchange of a shape 
model through Internet or graphics pipeline. 

The presented algorithm takes advantage of the well-known technique of 
clustering. The normals of a model are automatically grouped in a set of clusters 
where each cluster has a representative normal which is computed as a mean value of 
normals in the cluster. Each representative normal vector has a unique identification 
associated with it and the normals in a cluster are represented by the cluster 
identification for its use. 

It turns out that the proposed algorithm compresses the normal vectors of a model 
in less than 10 % of the size of the original model without a serious sacrifice of the 
visual quality of the appearance of the models. 

2. Related Works 

Ever since Deering's noble work on the compression of shape model, there have been 
several researches on various aspects of shape model compression. One line of 
researches is the compression of topology [2] [3] [5][8] [10][11] [13], geometry 
[3][9][11][13], colors [12], normal vectors [3][12], and so on. 

Among several algorithms regarding on the topology compression, Edgebreaker 
[lo] reserves a special attention since our algorithm uses the information produced by 
Edgebreaker. Edgebreaker transforms a mesh structure into a string of C ,  L, E, R, and 
S symbols and redefines the sequence of faces in the original mesh model without 
creating any change in the model. 
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The research for normal vector compression has not yet been explored as much as 
it deserves. Deering's approach is the table-based approach to allow any useful normal 
to be represented by an index. To convert a normal vector into an index of normal on 
the unit sphere, the unit sphere is split up into 48 segments with identical surface area. 
In the each segment, the normal vectors are represented by two n-bits integers which 
two angles using spherical coordinates are converted into [3]. 

In Taubin's proposal for VRML compressed binary format, normal vectors are 
quantified with a subdivision scheme. An octant of the base octahedron is divided by 
recursively subdividing the base triangle n times. A normal vector is then encoded 
into a sequence of 3+2n bits, where n is the subdivision level [I 21. 

In Hoppe's Progressive mesh, he introduced a wedge to represent discontinuities of 
normals on mesh. It is a set of vertex-adjacent corners whose attributes are the same. 
In vertex split recodes, a field of 10 bit encodes the wedges to which new corners 
created by vertex split are assigned and the deltas of normals is encoded [6]. 

3. Representations of normal vectors in VRML model 

Among the several representations of shape models, a mesh representation, a 
triangular mesh model in particular, is the main representation in this paper, and the 
mesh model is assumed to be orientable manifold. 

A mesh model is usually obtained from a surface model or the boundary of a solid 
model, and normal vectors are assigned at the vertices or faces of the model 
depending on the requirements of the visual appearance of the model. The principle 
use of normals in a shape model lies in the rendering process so that a model can be 
visualized more realistically. Generally, the shading algorithms, such as Gouraud 
shading and Phong shading [4], require the normal be known for each vertex of a 
shape model. 

Usually there are four different ways to assign normal vectors to a mesh model 
reflecting two factors. First, normal vectors may be assigned at the vertices or faces. 
Second, the coordinate values of the normal vectors may be explicitly represented 
where they should appear or the indices of the vectors may be used instead of the 
coordinates themselves. In fact, this categorization lies under the design concept of 
VRML itself. 

The node to define a triangular mesh in VRML 97 is IndexedFaceSet, and the node 
has two fields named nortnulPerVertex and nortnullndex [I] .  If the value 
nortndPerVertex field is TRUE, the normal vectors in the mesh model are assigned at 
the vertices of the model. Otherwise, the normal vectors are defined at the faces. If the 
normallndex field exists in the mesh definition, the coordinate values of a vertex may 
be defined only once and they can be referenced as many as needed via the indices. 
Hence, the possible ways that normals are related to a mesh model in VRML 97 can 
be illustrated as shown in Fig. 2. Even though Fig. 2(a) and (c) look similar, they are 
in fact different method in the sense that (a) does not use indices while (c) does. 

Among these four possible configurations of assignments, we will be presenting a 
compression algorithm and file format for Case 4 that the normal vectors are assigned 
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Fig. 2. Categorization of normal vector representation in VRML (a) Case 1 : normalPerVertex 
(FALSE) not-inallndex(non-existing) (b) Case 2 : tzor17zalPerVertex(TRUE) nornznllndex(non- 
existing) (c) Case 3 : normalPerVert(~x(FALSE) normallndex(existing) (d) Case 4 : 
nori?~alPerVertex(TRUE) normalIt~dex(existing) 

at the vertices and the normal indices are used. Note that this case is the most general 
configuration among the four cases. 

4. Clustering of the normal vectors 

The approaches to compress normal vectors should be investigated in three aspects: 
bit-efficiency, the amount of information losses, and the decompression time. 

Note that the approaches by Deering and Taubin yield a number of surface (this 
surface is a vector surface on which the end points of normals lie) segments with 
identical area. Provided that the normal vectors are usually unevenly distributed in the 
space (in its angular distribution), some of the surface segments are less frequently 
used than the others. Both approaches also use a fixed length code to reference a 
surface segment and therefore the bit-efficiency can decrease significantly if the 
distribution of normals is seriously skewed. 

Based on this observation, the bit-efficiency can be improved in one of two ways: 
With surface segments with identical area, the entropy encoding using Huffman code 
may be used so that the frequency of the normal occurrences in the segment may be 
accounted. The other way could be to make a number of regions so that each region 
may contain normal vectors with identical or closer to identical number of normals. In 
this case, hence, the areas of related surface regions may differ. In this way, the bit- 
utilization of fixed length code may be maximized. Theoretically speaking, both 
approaches will reach similar compression ratio, except that the first approach needs 
Huffman tree itself to be stored. In addition, the first approach needs to navigate 
Huffman tree in the decompression process. 

Considering these factors, we propose an approach that reflects the concept to 
assign identical number of normals to a segment. In our algorithm, clustering 
technique is used to compress the normal vectors. We use the standard and simplest 
K-means algorithm for the clustering. In the future, it may be necessary to analyze the 
pros and cons of different clustering algorithms for the compression of normal 
vectors. K-means algorithm is an iterative clustering algorithm. Suppose that the 
number of clusters and the initial mean of each cluster are given. K-means algorithm 
then assigns each data to the closest cluster based on a dissimilarity measure and 
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(a) (b) 

Fig. 3. (a) Normal vectors of original model (b) Cluster means after clustering 

updates cluster mean values by incorporating the new data until the cluster means are 
stabilized [7]. The dissimilarity measure is the angle between normal vectors. The 
cluster mean is the axis direction of the smallest enclosing cone. 

Shown in Fig. 3 (a) is 1,411 normal vectors from a bolt model. The small balls on a 
larger sphere represent the end points of unit normal vectors. Note that several 
normals may coincide at a ball on the sphere. Fig. 3 (b) illustrates the mean normal 
vectors of each cluster, where all normal vectors are grouped into 64 clusters. 

5. Normal Vector Compression 

As was discussed, we will be presenting a compression algorithm for Case 4 that the 
normal vectors are assigned at the vertices and the normal indices are used. 

5.1 Encoding of normal vector 

Consider an example that has three faces and six normals as illustrated in Fig. 4. 
Suppose that the clustering process yielded three clusters A, B, and C, where nl and 
n4 are in the cluster A, n2 is in the cluster B, and the others, n3, n5, and n6, are in the 
cluster C. In Fig. 4, fi is initially related with three normals nl, n2, and n3, and this 
fact is reflected in the first three integers, 1, 2, and 3, respectively, in Normal Index 
array. These integers denote that fl is related with the first, the second, and the third 
vectors in Cluster Pointer array which again point to the cluster mean values, % , 
- 
n, , and & , of clusters A, B, and C, respectively. 

Suppose that Cluster Pointer array is rearranged via a sorting operation so that the 
key values of the elements in the array are in an ascending order. Then, the 
representation of the model is identical to the one before the sorting was applied, if 
the index values in Normal Index array are appropriately adjusted. 
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Model bcrorc compression Model a k r  compression 

Cluster Pointer Cluster Pointer Cluster Size 

A B C  

Fig. 4. Encoding of normal vector 

Normal Index Normal Index 

This observation is well-illustrated in the figure. Suppose that Cluster Poiizter assay 
before sorting is rearranged to Cluster Poirzter array ufter sorting. Then, the 
information related to a face f l  remains identical if the normals n2 and n3 (represented 
by integers 2 and 3) in Normal Index array before sorting is changed to n3 and n4 in 
the rearranged Norrnul Index array after sorting, respectively. Hence, f l  is related with 
n , ,  n3, and n4 after the rearrangement of Cluster Pointer array without any topological 
change in the model. 

Then, we further encode Cluster Poiizter array by devising another array named 
Cl~ister Size which contains the number of occurrence of each cluster in a sequential 
order as shown in the figure. In the given example, Cluster Size array contains three 
elements where the first, the second, and the third elements indicate the occurrences 
of normals associated with the clusters A, B, and C, respectively. 

The first integer 2 in Cluster Size assay, for example, indicates that the first two 
elements in Cluster Pointer array are pointing to the cluster A. Note that this also 
means that the cluster A consists of two normal vectors that are n ,  and n2 from the 
clustering operation. Similarly, the second integer 1 means that the cluster B has one 
normal that is n3. Then, it is easy to verify that model before compression and model 
after compression altogether defines identical model without any ambiguity as shown 
in Fig. 4. 

5.2 Encoding of normal index 

1 ,2 ,3  

Our algorithm assumes that topology of the mesh model is compressed by 
Edgebreaker. Note that Edgebreaker redefines the sequence of faces of the original 
mesh model and the changes should be reflected in the indices of the normals. In 
addition, it should be reminded that the normal indices were changed once more when 
the sorting operation was performed. 

f 1 fi f 3 f ,  f? fi 

1 , 3 , 4  1 , 3 , 4  6 , 3 , 5  1 ,4 ,2  6 , 4 , 5  
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It is interesting to observe that a normal index is more likely to appear within a few 
topological distances after its first appearance. The topological distance is defined 
here as the integer that represents the relative distance between the currently recurring 
normal index value and the latest occurrence of the same normal index value in 
Normal Index array. 

Suppose that a triangle in a model has an associated unique normal vector. Then, 
normal indices at three vertices will refer to an identical normal, and the index values 
will be identical. The normal indices of a face may show up in a consecutive order in 
Normal Index array. Also, suppose that three triangles share one vertex, and there is a 
unique normal at the vertex (which is frequently the case in many models). Then, 
Normal Index array will have an identical index value three times with two 
topological intervals in-between. Since Edgebreaker creates a triangle chain by 
producing a new neighboring triangle, a normal index at the vertex of a face is likely 
to appear after one or two (or more) triangles are created. We separate the normal 
indices into two distinct groups: absolute and relative indices. 

Suppose that an index to a particular normal vector appears at a particular position 
in Normal Index array. When the second occurrence of the index happens within a 
prescribed maximum topological distance, denoted as r, the second occurrence of the 
index is represented by relative index that has the topological distance as the value. 
On the other hand, the second occurrence of the index may happen beyond r or a new 
index, not existing beforehand, the index is represented by absolute index and has the 
index itself as the value. 

Fig. 5 (a) is Normal Index array after sorting in Fig. 4. Suppose that r = 4. Normal 
indices of 1 and 4 in f2 have topological distance 3 and 2, respectively, and normal 
index of 4 in f3 has topological distance 3. These three indices are represented by 
relative indices as shown at the gray cells in Fig. 5 (b). 

On the other hand, the normal indices of 1, 3, and 4 in f,, 2 in f2, and 6 in f3 are 
completely new indices in the array. In other words, they do not exist in the array 
beforehand. Hence, they have to be represented by absolute indices. In the case of the 
normal index 3 (the very last integer in the array) in f3, the topological distance is 7 
since n3 was shown up as the second integer in the array which is far beyond the 
predefined r (=4) and therefore it is also represented by an absolute index. 

Fig. 5. (a) usage of normal indices (b) mixed usage of absolute and relative index (r  = 4) 

To effectively use the mixed indices of absolute and relative, it is necessary to 
consider two factors: the bit-size of relative indices and the coverage of indices with 
relative indices. Depending on these two factors, the mixed use may compress the 
model or may not. 

Shown in Fig. 6 is the frequency distribution of normals that can be covered by the 
absolute and the relative indices. Note that r = .o for the relative indices in this 
experiment meaning that all recurring indices are counted. As shown in the figure, 
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approximately 80 % of the normal indices are recurring. Hence, the normal indices 
can be better compressed if the recurring normals can be more efficiently encoded, if 
the appropriate r is prescribed. 

Fig. 6. Distribution of absolute index vs. relative index (a) Frequencies, (b) Percentiles 

To decide appropriate number for r, we performed another experiment that is 
summarized in Fig. 7. The figure shows the coverage of relative indices which can be 
covered by the topological distances 1, 2, 3, 4, and higher than 5. Note that the 
relative indices with topological distances 1, 2, and 3 altogether cover roughly 80% of 
total relative indices. This observation suggests that most of the relative indices can 
refer to the latest occurrence of the same normal index using 2-bits of memory. 

model l model2 model3 model4 model 5 model6 model7 model8 

l 1 . 2 0 3 0 4 . 5 -  

model l model2 model 3 model4 model5 mcxIe16 model 7 model8 

l 1 . 2 0 3 0 4 . 5 -  

Fig. 7. Occurrence of relative indices with topological distance 1, 2, 3, 4 and, 5+ (a) 
Frequencies, (b) Percentiles 

6. Experiment 

The models used in this paper are created using a commercial CAD system called 
ProEngineer. Table 1 shows the comparison between file sizes compressed by 
different approaches. Column A shows the size of VRML file in ASCII which 
contains the normal vectors only, and the column B is the size of compressed files 
using an application called WinZip. Min Required Memory, denoted as MRM, means 
the theoretical minimum memory size to store normal vectors in a binary form. 
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Table 1. Comparison of file size 

The compression ratio of the proposed algorithm is approximately 10 % and 30 % 
of VRML files in ASCII and WinZip compressed files of corresponding VRML files, 
respectively. 

Fig. 8 shows the visual difference between the original model and the model with 
normal vectors compressed by the proposed algorithm. Note that original model and 
compressed model have the same geometry information and the same topology 
information. Fig. 8 (a) shows the visualization of original model 5 with 2,861 normal 
vectors and Fig. 8 (b) shows the visualization of model 5 compressed by the proposed 
algorithm and the normal vectors in model 5 are represented by 64 cluster means. It is 
not easy to find the remarkable distinction between (a) and (b). 

Fig. 8. Difference of visual quality (a) model 5 before compression (158,900 bytes) (b) model 5 
after compression (13,001 bytes) 

7. Conclusion 

Normal vectors are necessary to create more realistic visualization in a shape model. 
When the normals exist in the definition of model, the file size could be significantly 

283The Compression of the Normal Vectors of 3D Mesh Models



large compared to the size of geometry and topology data. Hence, the file size can be  
an obstacle to transmit the model data seamlessly through a network. 

The proposed compression technique obtains a significant compression ratio of 
roughly 10% for original normal vectors without a serious sacrifice of the visual 
quality of the model. In particular, we have presented techniques related to the 
absolute and relative indices for compressing normal vectors. 

However, there are a few issues to be further studied. Using a better algorithm than 
K-means algorithm for the clustering may be  one of the important topics. In addition, 
we believe that the mean values of the representative normal vectors in the clusters 
could be  also compressed. 
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