
A Combinatorial Scheme for
Developing Efficient Composite Solvers*

Sanjukta Bhowmick, Padma Raghavan, and Keita Teranishi

Department of Computer Science and Engineering
The Pennsylvania State University

220 Pond Lab, University Park, PA 16802-6106
{bhowmick,raghavan,teranish}@cse.psu.edu

Abstract. Many fundamental problems in scientific computing have
more than one solution method. It is not uncommon for alternative so-
lution methods to represent different tradeoffs between solution cost and
reliability. Furthermore, the performance of a solution method often de-
pends on the numerical properties of the problem instance and thus
can vary dramatically across application domains. In such situations,
it is natural to consider the construction of a multi-method composite
solver to potentially improve both the average performance and reliabil-
ity. In this paper, we provide a combinatorial framework for developing
such composite solvers. We provide analytical results for obtaining an
optimal composite from a set of methods with normalized measures of
performance and reliability. Our empirical results demonstrate the ef-
fectiveness of such optimal composites for solving large, sparse linear
systems of equations.

1 Introduction

It is not uncommon for fundamental problems in scientific computing to have
several competing solution methods. Consider linear system solution and eigen-
value computations for sparse matrices. In both cases several algorithms are
available and the performance of a specific algorithm often depends on the nu-
merical properties of the problem instance. The choice of a particular algorithm
could depend on two factors: (i) the cost of the algorithm and, (ii) the probability
that it computes a solution without failure. Thus, we can view each algorithm as
reflecting a certain tradeoff between a suitable metric of cost (or performance)
and reliability. It is often neither possible nor practical to predict a priori which
algorithm will perform best for a given suite of problems. Furthermore, each
algorithm may fail on some problems. Consequently it is natural to ask the fol-
lowing question: Is it possible to develop a robust and efficient composite of

! This work has been funded in part by the National Science Foundation through
grants NSF CCR-981334, NSF ACI-0196125, and NSF ACI-0102537.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 325−334, 2002.
 Springer-Verlag Berlin Heidelberg 2002

multiple algorithms? We attempt to formalize and answer this question in this
paper.

An illustrative example is the problem of solving sparse linear systems. We
have a variety of algorithms for this problem, encompassing both direct and
iterative methods [3]. Direct methods are highly reliable, but the memory re-
quired grows as a nonlinear function of the matrix size. Iterative methods do
not require any additional memory but they are not robust; convergence can
be slow or fail altogether. Convergence can be accelerated with precondition-
ing, but that leads to a larger set of preconditioning methods in addition to
the basic iterative algorithms. In such cases there is often no single algorithm
that is consistently superior even for linear systems from a specific application
domain. This situation leads us to believe that rather than relying on a single
algorithm, we should try to develop a multi-algorithmic composite solver. The
idea of multi-algorithms has been explored earlier in conjunction with a multi-
processor implementation [1]; the multi-algorithm comprises several algorithms
that are simultaneously applied to the problem by exploiting parallelism. We
provide a new combinatorial formulation that can be used on uniprocessors and
potentially generalized to multiprocessor implementations.

In our model, the composite solver comprises a sequence of different algo-
rithms, thus endowing the composite with the higher cumulative reliability over
all member algorithms. Algorithms in the sequence are executed on a given prob-
lem until it is solved successfully; partial results from an unsuccessful algorithm
are not reused. We provide a combinatorial formulation of the problem in Sec-
tion 2. Section 3 contains our main contribution in the form of analytical results
for obtaining the optimal composite. We provide empirical results on the per-
formance of composite solvers for large sparse linear systems in Section 4 and
concluding remarks in Section 5.

2 A Combinatorial Model

We now formalize our problem using a combinatorial framework. The composite
solver comprises several algorithms and each algorithm can be evaluated on the
basis of two metrics: (i) performance or cost, and (ii) reliability. The former can
be represented by a normalized value of the performance using either execution
time or the number of operations. The reliability is a number in the range [0, 1]
reflecting the probability of successfully solving the problem. For example, if an
iterative linear solver fails to converge on average on one fourth of the problems,
its failure rate is 0.25 and its reliability is 0.75. In some situations, it may be
possible to derive analytic expressions for both metrics. In other situations, these
metrics can be computed by empirical means, i.e., by observing the performance
of each algorithm on a representative set of sample problems.

Consider generating a composite solver using n distinct underlying methods
(or algorithms) M1,M2, . . . ,Mn. Each method Mi, is associated with its normal-
ized execution time ti (performance metric) and reliability ri; ri is the success
rate of the method and its failure rate is given by fi = 1−ri. We define the utility

326 S. Bhowmick, P. Raghavan, and K. Teranishi

2.00 3.00.8

.02 .984

.016

S

M M
1 2

Composite: M M 1 2

Time = 4.4

S = Success F= Failure

F 3.00 2.00 F

.984

S
.8

.02
.016

Time = 3.04

M M
2 1

Composite: M M
2 1

Fig. 1. Composites of two methods M1, t1 = 2.0, r1 = .02 and M2, t2 = 3.0, r2 = .80;
both composites have reliability .984 but the composite M2M1 has lower execution
time.

ratio of method Mi as ui = ti/ri. Let P represent the set of all permutations
(of length n) of {1, 2, . . . , n}. For a specific P̂ ∈ P, we denote the associated
composite by Ĉ. Ĉ comprises all the n underlying methods M1,M2, . . . ,Mn in
the sequence specified by P̂ . If P̂k denotes the k−th element of P̂ , the composite
Ĉ consists of methods MP̂1

,MP̂2
, · · · ,MP̂n

. Now for any P̂ ∈ P, the total relia-

bility (success percentage) of the composite Ĉ is independent of the permutation
and invariant at 1 −Πi=n

i=1 (1 − ri), a value higher than that of any component

algorithm. Next, observe that T̂ , the worst case execution time of Ĉ, is:

T̂ = tP̂1
+ fP̂1

tP̂2
+ · · · + fP̂1

fP̂2
· · · fP̂n−1

tP̂n .

Thus, the execution times of different composites can indeed vary depending
on the actual permutation. A two-method example in Figure 1 shows how the
permutation used for the composite affects the execution time. Our goal is to
determine the optimal composite, i.e., the composite with minimal worst-case
execution time.

We now introduce some additional notation required for the presentation
of our analytical results. Consider the subsequence P̂k, P̂k+1, · · · , P̂l (P̂ ∈ P)
denoted by P̂(k:l). Now P̂(k:l) can be associated with a composite comprising some

l− k methods using the notation Ĉ(k:l). The total reliability of Ĉ(k:l) is denoted

by R̂(k:l) = 1−∏l
i=k fP̂i . Similarly the percentage of failure, F̂(k:l) =

∏l
i=k fP̂i .

Observe that both these quantities depend only on the underlying set of methods
specified by P̂k, P̂k+1, · · · , P̂l and are invariant under all permutations of these
methods. We next define T̂(k:l) as the worst-case time of Ĉ(k:l); we can see that

T̂(k:l) =
∑l

i=k[tP̂i
∏l−1

m=k fP̂m]. A final term we introduce is the total utility ratio

of Ĉ(k:l) denoted by Û(k:l) = T̂(k:l)/R̂(k:l).

For ease of notation, we will drop explicit reference to P̂i in expressions for
R̂, F̂ , T̂ , and Û for a specific Ĉ and P̂ . Now the expression for T̂(k:l) simplifies to
∑l

i=k[ti
∏l−1

m=k fm]. Additionally, in an attempt to make the notation consistent,

327A Combinatorial Scheme for Developing Efficient Composite Solvers

we will treat Ĉ(k:k) specified by P̂(k:k) as a (trivial) composite of one method and

use related expressions such as T̂(k:k), R̂(k:k), F̂(k:k) Û(k:k) (where tk = T̂(k:k),rk =

R̂(k:k), fk = F̂(k:k), and uk = Û(k:k).

3 Analytical Results

This section contains our main analytical results aimed at constructing an opti-
mal composite. Some natural composites include sequencing underlying methods
in (i) increasing order of time, or (ii) decreasing order of reliability. Our results
indicate that both these strategies are non-optimal. We show in Theorems 1
and 2 that a composite is optimal if and only if its underlying methods are in
increasing order of the utility ratio.

We begin by observing that for any P̂ ∈ P the composite Ĉ , can be viewed as
being formed by the sequential execution of two composites, Ĉ(1:r) and Ĉ(r+1:n).

We can also easily verify that T̂(1:n) = T̂(1:r) + F̂(1:r)T̂(r+1:n). We use this obser-
vation to show that for any composite, the overall utility ratio is bounded above
by the largest utility ratio over all underlying methods.

Lemma 1. For any P̂ ∈ P, the utility ratio of the composite Ĉ satisfies Û ≤
max{Û(i:i) : 1 ≤ i ≤ n}.

Proof. We can verify (with some algebraic manipulation) that the statement is
true for the base case with two methods (n = 2). For the inductive hypothesis,
assume that the statement is true for any composite of n − 1 methods, that
is, Û(1:n−1) ≤ max{Û(i:i) : 1 ≤ i ≤ n − 1}. Now consider Ĉ, a composite of

n methods with P̂ as the associated sequence. By our earlier observation, we
can view it as a composite of two methods with execution times T̂(1:n−1) and

T̂(n:n), reliabilities R̂(1:n−1) and R̂(n:n), and utility ratios Û(1:n−1) and Û(n:n). If

Û(1:n−1) ≤ Û(n:n), then by the base case, Û(1:n) ≤ Û(n:n) and by the induction

hypothesis, Û(1:n) ≤ max{Û(i:i) : 1 ≤ i ≤ n}. It is also easy to verify that the

statement is true if Û(n:n) ≤ Û(1:n−1). %(

Theorem 1. Let C̃ be the composite given by the sequence P̃ ∈ P. If Ũ(1:1) ≤
Ũ(2:2) ≤ . . . ≤ Ũ(n:n), then C̃ is the optimal composite, i.e., T̃ = min{T̂ : P̂ ∈ P}.

Proof. It is easy to verify that the statement is indeed true for the base case
for composites of two methods (n = 2). We next assume that the statement is
true for composites of n− 1 methods. Now we extend the optimal composite of
n− 1 methods to include the last method; let this sequence be given by P̃ and
the composite by C̃ . For the sake of contradiction, let there be a permutation
Ṕ ∈ P, such that T́ ≤ T̃ and the utility ratios {Ú(i:i) : 1 ≤ i ≤ n} are not in
increasing order of magnitude.
Let the k-th method in Ć be the n-th method in C̃ . Therefore T́(k:k) = T̃(n:n)

328 S. Bhowmick, P. Raghavan, and K. Teranishi

and F́(k:k) = F̃(n:n). Using the earlier observations:

T̃ = T̃(1:k) + F̃(1:k)T̃(k+1:n−1) + F̃(1:k)F̃(k+1:n−1)T̃(n:n) (1)

T́ = T́(1:k−1) + F́(1:k−1)T́(k:k) + F́(1:k−1)F́(k:k)T́(k+1:n)

= T́(1:k−1) + F́(1:k−1)T̃(n:n) + F́(1:k−1)F̃(n:n)T́(k+1:n) (2)

We know that T̃(1:n−1) is the optimal time over all composites of n − 1
methods and thus lower than the time for composite obtained by excluding the
k-th method in Ć and the n-th method in C̃. Thus T́(1:k−1) + F́(1:k−1)T́(k+1:n) ≥
T̃(1:k) + F̃(1:k)T̃(k+1:n−1), to yield:

T́(1:k−1) + F́(1:k−1)T́(k+1:n) − T̃(1:k) − F̃(1:k)T̃(k+1:n−1) ≥ 0 (3)

According to our assumption T́ ≤ T̃ ; we expand this relation using Equations
1 and 2 to show that T́(1:k−1) + F́(1:k−1)T̃(n:n) + F́(1:k−1)(1 − R̃(n:n))T́(k+1:n)

is less than or equal to T̃(1:k) + F̃(1:k)T̃(k+1:n−1) + F̃(1:k)F̃(k+1:n−1)T̃(n:n). We
can then rearrange the terms on either side to show that the left-hand side
of Equation 3 is less than or equal to F̃(1:k)F̃(k+1:n−1)T̃(n:n) − F́(1:k−1)T̃(n:n) +

F́(1:k−1)R̃(n:n)T́(k+1:n). Thus,

0 < F̃(1:k)F̃(k+1:n−1)T̃(n:n) − F́(1:k−1)T̃(n:n) + F́(1:k−1)R̃(n:n)T́(k+1:n).

By rearranging terms and using the equation F̃(1:k)F̃(k+1:n−1) = F́(1:k−1)F́(k+1:n)

to simplify, we obtain:

F́(1:k−1)T̃(n:n) − F̃(1:k)F̃(k+1:n−1)T̃(n:n) ≤ F́(1:k−1)R̃(n:n)T́(k+1:n).

F́(1:k−1)T̃(n:n) − F́(1:k−1)F́(k+1:n)T̃(n:n) ≤ F́(1:k−1)R̃(n:n)T́(k+1:n).

Cancelling the common terms on either side yields T̃(n:n)(1 − F́(k+1:n)) ≤
R̃(n:n)T́(k+1:n). Observe that this is equivalent to Ũ(n:n) ≤ Ú(k+1:n). By the def-

inition of C̃, Ũ(n:n) is the largest utility ratio among all the n methods. But if

Ũ(n:n) ≤ Ú(k+1:n), there is a composite whose overall utility is higher than the
maximum utility ratio of its component methods, thus contradicting Lemma 1.
This contradiction occurred because our assumption that T́ ≤ T̃ is not true;
hence the proof. %(

We next show that if a composite is optimal, then its component methods
are in increasing order of the utility ratio. The proof uses shortest paths in an
appropriately weighted graph.

Theorem 2. If C̃(1:n) is the optimal composite then the utility ratios are ar-

ranged in increasing order, i.e., Ũ(1:1) ≤ Ũ(2:2) ≤ . . . ≤ Ũ(n−1:n−1) ≤ Ũ(n:n).

Proof. Consider a graph constructed with unit vertex weights and positive edge
weights as follows. The vertices are arranged in levels with edges connecting

329A Combinatorial Scheme for Developing Efficient Composite Solvers

vertices from one level to the next. There are a total of n+ 1 levels numbered 0
through n. Each vertex at level l (0 ≤ l ≤ n) denotes a subset of l methods out of
n methods. Assume that the vertex is labeled by the set it represents. Directed
edges connect a vertex VS at level l to a vertex VS̄ only if |S̄ \ S| = 1 and
S̄ ∩ S = S, i.e., the set S̄ has exactly one more element than S. Let FS denote
the total failure rate over all methods in the set S. If S̄ \ S = {i}, the edge
VS → VS̄ is weighted by FST(i:i), the time to execute method i after failing at all
previous methods. It is easy to verify that any path from V0 (representing the
empty set) to V{1,2,···n} represents a particular composite, one in which methods
are selected in the order in which they were added to sets at subsequent levels.
Now the shortest path represents the optimal composite.

Assume we have constructed the shortest path in the graph. Consider a
fragment of the graph, as shown in Figure 2. We assume that VS is a node
on the shortest path, and VŜ is also a node on the shortest path, such that

Ŝ−S = {i, j}. There will be only 2 paths from VS to VŜ , one including the node
VS̄ (S̄−S = {i}) and the other including the node VS∗ (S∗−S = {j}). Without
loss of generality, assume VS∗ is the node on the shortest path; thus method j
was selected before method i in the sequence. Let the time from V0 to VS be
denoted by TS and the failure rate by FS . Using the optimality property of the
shortest path:

TS + FST(j:j) + FSF(j:j)T(i:i) ≤ TS + FST(i:i) + FSF(i:i)T(j:j)

After canceling common terms we get T(j:j) + F(j:j)T(i:i) ≤ T(i:i) + F(i:i)T(j:j).
This can be simplified further using the relation F(j:j) = 1 − R(j:j) to yield:
R(j:j)T(i:i) ≥ R(i:i)T(j:j) and thus U(j:j) ≤ U(i:i). This relationship between util-
ity ratios holds for any two consecutive vertices on the shortest path. Hence,
the optimal composite given by the shortest path is one in which methods are
selected in increasing order of the utility ratio. %(

4 Empirical Results

Our experiments concern composite solvers for large sparse linear systems of
equations. We use a suite of nine preconditioned Conjugate Gradient meth-
ods labeled M1, . . . ,M9. M1 denotes applying Conjugate Gradients without any
preconditioner. M2 and M3 use Jacobi and SOR preconditioning schemes re-
spectively. Methods M4 through M7 use incomplete Cholesky preconditioners
with 0,1,2 and 3 levels of fill. Methods M8 and M9 use incomplete Cholesky
preconditioners with numerical drop threshold factors of .0001 and .01.

For our first experiment we used a set of six bcsstk sparse matrices from
finite element methods in structural mechanics. We normalized the running time
of each method by dividing it by the time required for a sparse direct solver. The
geometric mean of the normalized running time was used as our estimate of ti for
each Mi. We assumed that the method was unsuccessful if it failed to converge
in 200 iterations. We used the success rate as the reliability metric ri for method

330 S. Bhowmick, P. Raghavan, and K. Teranishi

V

F

S

V
Ŝ

V *SV_
S

(i:i)
T

S
F F

S
T
(j:j)

(j:j)
T

(i:i)
F

S
F

S
F
(j:j)

T
(i:i)

Fig. 2. Segment of the graph used in the proof of Theorem 2.

Mi. These two measures were used to compute the utility ratio ui = ti/ri for
each method Mi. We created four different composite solvers CT , CR, CX , CO.
In CT underlying methods are arranged in increasing order of execution time. In
CR the underlying methods are in decreasing order of reliability. The composite
CX is based on a randomly generated sequence of the underlying methods. The
composite CO is based on the analytical results of the last section; underlying
methods are in increasing order of the utility ratio. The overall reliability of each
composite is .9989, a value significantly higher than the average reliability of the
underlying methods. We applied these four composite solvers to the complete
set of matrices and calculated the total time for each composite over all the test
problems. The results are shown in Table 1; our optimal composite CO has the
least total time.

In our second experiment, we considered a larger suite of test problems
consisting of matrices from five different applications. To obtain values of the
performance metrics we used a sample set of 10 matrices consisting of two
matrices from each application type. We constructed four composites solvers
CT , CR, CX , CO as in our first experiment. Results in Table 2 indicate that our
composite solver still has the least total execution time over all problems in the
test suite. The total execution time of CO is less than half the execution time
for CT , the composite obtained by selecting underlying methods in increasing
order of time.

These preliminary results are indeed encouraging. However, we would like to
observe that to obtain a statistically meaningful result it is important to use
much larger sets of matrices. Another issue concerns normalization; we normal-
ized by the time for a sparse direct solver but other measures such as the mean
or median of observed times could also be used. These statistical aspects merit
further study.

331A Combinatorial Scheme for Developing Efficient Composite Solvers

Table 1. Results for the bcsstk test suite.

Methods and metrics

M1 M2 M3 M4 M5 M6 M7 M8 M9

Time 1.01 .74 .94 .16 1.47 2.15 3.59 5.11 2.14
Reliability .25 .50 .75 .25 . 50 . 50 .75 1.00 .25

Ratio 4.04 1.48 1.25 .63 2.94 4.30 4.79 5.11 8.56

Composite solver sequences

CT M4 M2 M3 M1 M5 M9 M6 M7 M8

CR M8 M3 M7 M2 M5 M6 M1 M4 M9

CX M9 M8 M1 M5 M3 M2 M7 M6 M4

CO M4 M3 M2 M5 M1 M6 M7 M8 M9

Execution time (in seconds)

Problem Rank Non-zeroes CT CR CX CO
(103)

bcsstk14 1,806 63.4 .25 .98 1.19 .27
bcsstk15 3,908 117.8 1.88 5.38 9.45 1.22
bcsstk16 4,884 290.3 1.05 6.60 2.09 .98
bcsstk17 10,974 428.6 57.40 12.84 16.66 37.40
bcsstk18 11,948 149.1 4.81 5.70 12.40 2.80
bcsstk25 15,439 252.2 1.60 21.93 36.85 1.59

Total execution time 66.99 53.43 78.64 44.26

5 Conclusion

We formulated a combinatorial framework for developing multi-method compos-
ite solvers for basic problems in scientific computing. We show that an optimal
composite solver can be obtained by ordering underlying methods in increasing
order of the utility ratio (the ratio of the execution time and the success rate).
This framework is especially relevant with the emerging trend towards using
component software to generate multi-method solutions for computational sci-
ence and engineering applications [2]. Our results can be extended to develop
interesting variants; for example, an optimal composite with reliability greater
than a user specified value, using only a small subset of a larger set of algorithms.
Such “subset composites” can effectively reflect application specific tradeoffs be-
tween performance and robustness. Another potential extension could include
a model where partial results from an unsuccessful method can be reused in a
later method in the sequence.

332 S. Bhowmick, P. Raghavan, and K. Teranishi

Table 2. Results for the test suite with matrices from five applications.

Methods and metrics

M1 M2 M3 M4 M5 M6 M7 M8 M9

Time .77 .73 .81 .20 1.07 1.48 2.10 .98 .76
Reliability .50 .60 .90 .50 . 70 .60 .60 1.00 .40

Ratio 1.54 1.23 .90 .40 1.53 2.47 3.50 .98 1.91

Composite solver sequences

CT M4 M2 M9 M1 M3 M8 M5 M6 M7

CR M8 M3 M5 M2 M6 M7 M1 M4 M9

CX M9 M8 M7 M6 M5 M3 M2 M1 M4

CO M4 M3 M8 M2 M5 M1 M9 M6 M7

Execution time (in seconds)

Problem Rank Non-zeroes CT CR CX CO
(103)

bcsstk14 1,806 63.4 .31 1.06 1.18 .37
bcsstk16 4,884 290.3 .97 6.35 2.07 .99
bcsstk17 10,974 428.6 35.7 13.3 16.3 23.4
bcsstk25 15,439 252.2 1.61 22.8 36.8 1.60
bcsstk38 8032 355.5 35.8 33.5 51.5 2.39

crystk01 4875 315.9 .44 4.03 .84 .47
crystk03 246,96 1751.1 2.55 35.8 5.45 2.56
crystm02 139,65 322.90 .32 .40 5.38 .32
crystm03 246,96 583.77 .60 .72 .73 .60

msc00726 726 34.52 .13 1.39 .23 .13
msc01050 1050 29.15 .80 .10 .23 .27
msc01440 1440 46.27 2.91 .79 2.39 .5
msc04515 4515 97.70 10.5 1.95 6.10 4.45
msc10848 10848 1229.77 75.6 101 163 26.3

nasa1824 1824 39.21 2.46 1.15 1.3 1.80
nasa2146 2146 72.25 .09 .64 2.29 .09
nasa2910 2910 174.29 10.9 2.34 6.69 2.80
nasa4704 4704 104.756 13.4 13.4 13.40 4.61

xerox2c1 6000 148.05 .27 1.92 .23 18.1
xerox2c2 6000 148.30 .24 .41 .48 .25
xerox2c3 6000 147.98 .27 .41 .21 .24
xerox2c4 6000 148.10 .23 .40 .22 .23
xerox2c5 6000 148.62 .25 .42 .24 .23
xerox2c6 6000 148.75 .29 .62 .90 .23

Total execution time 196.64 244.9 318.16 90.6

333A Combinatorial Scheme for Developing Efficient Composite Solvers

References

1. Barrett, R., Berry, M., Dongarra, J., Eijkhout, V., Romine, C.: Algorithmic Bom-
bardment for the Iterative Solution of Linear Systems: A PolyIterative Approach.
Journal of Computational and applied Mathematics, 74, (1996) 91-110

2. Bramley, R., Gannon, D., Stuckey, T., Villacis, J., Balasubramanian, J., Akman,
E., Berg, F., Diwan, S., Govindaraju, M.:Component Architectures for Distributed
Scientific Problem Solving. To appear in a special issue of IEEE Computational
Science and Eng., 2001

3. Golub, G.H., Van Loan, C.F.: Matrix Computations (3rd Edition). The John Hop-
kins University Press, Baltimore Maryland (1996)

334 S. Bhowmick, P. Raghavan, and K. Teranishi

	1 Introduction
	2 A Combinatorial Model
	3 Analytical Results
	4 Empirical Results
	5 Conclusion
	References

