Parallel Iterative Methods in Modern Physical
Applications *

X. Cai', Y. Saad?, and M. Sosonkina®

! Simula Research Laboratory and University of Oslo, P.O. Box 1080, Blindern,
N-0316 Oslo, Norway
xingca@ifi.uio.no
2 University of Minnesota, Minneapolis, MN 55455, USA
saad@cs.umn.edu
3 University of Minnesota, Duluth, MN 55812, USA

masha@d.umn.edu

Abstract. Solving large sparse linear systems is a computationally-
intensive component of many important large-scale applications. We
present a few experiments stemming from a number of realistic appli-
cations including magneto-hydrodynamics structural mechanics, and ul-
trasound modeling, which have become possible due to the advances in
parallel iterative solution techniques. Among such techniques is a re-
cently developed Parallel Algebraic Recursive Multilevel Solver (pARMS).
This is a distributed-memory iterative method that adopts the general
framework of distributed sparse matrices and relies on solving the re-
sulting distributed Schur complement systems. We discuss some issues
related to parallel performance for various linear systems which arise in
realistic applications. In particular, we consider the effect of different
parameters and algorithms on the overall performance.

1 Distributed Sparse Linear Systems

The viewpoint of a distributed linear system generalizes the Domain Decom-
position methods to irregularly structured sparse linear systems. A typical dis-
tributed system arises, e.g., from a finite element discretization of a partial dif-
ferential equation on a certain domain. To solve such systems on a distributed
memory computer, it is common to partition the finite element mesh by a graph
partitioner and assign a cluster of elements representing a physical sub-domain
to a processor. The general assumption is that each processor holds a set of equa-
tions (rows of the global linear system) and the associated unknown variables.
The rows of the matrix assigned to a certain processor have been split into two
parts: a local matrix A; which acts on the local variables and an interface matrix
X; which acts on the external interface variables. These external interface vari-
ables must be first received from neighboring processor(s) before a distributed

* This work was supported in part by NSF under grants NSF/ACI-0000443 and
NSF/INT-0003274, and in part by the Minnesota Supercomputing Institute.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 345-B34, 2002.
© Springer-Verlag Berlin Heidelberg 2002

346 X. Cai, Y. Saad, and M. Sosonkina

matrix-vector product can be completed. Thus, each local vector of unknowns
x; (1=1,...,p) is also split into two parts: the sub-vector u; of interior variables
followed by the sub-vector y; of inter-domain interface variables. The right-hand
side b; is conformally split into the sub-vectors f; and g¢;. The local matrix A;
residing in processor ¢ is block-partitioned according to this splitting. So the
local equations can be written as follows:

(gﬁ gi) (ZZ) ! (ZjeN?Eijyj> - @1) ' (1)

The term FE;j;y; is the contribution to the local equations from the neighboring
sub-domain number j and N; is the set of sub-domains that are neighbors to sub-
domain 7. The sum of these contributions, seen on the left side of (1), is the result
of multiplying the interface matrix X; by the external interface variables. It is
clear that the result of this product will affect only the inter-domain interface
variables as is indicated by the zero in the upper part of the second term on the
left-hand side of (1). For practical implementations, the sub-vectors of external
interface variables are grouped into one vector called y; ¢+ and the notation

Z Eiiy; = XiYi ent
JEN;

will be used to denote the contributions from external variables to the local
system (1). In effect, this represents a local ordering of external variables to
write these contributions in a compact matrix form. With this notation, the
left-hand side of (1) becomes

wi = A% + Xi extViext- (2)

Note that w; is also the local part of a global matrix-vector product Az in which
x is a distributed vector which has the local vector components x;.

Preconditioners for distributed sparse linear systems are best designed from
the local data structure described above. Additive and (variants of) multiplica-
tive Schwarz procedures are the simplest preconditioners available. Additive
Schwarz procedures update the local solution by the vector obtained from solving
a linear system formed by the local matrix and the local residual. The exchange
of data is done through the computation of the residual. The local systems can
be solved in three ways: (1) by a (sparse) direct solver, (2) by using a standard
preconditioned Krylov solver, or (3) by performing a backward-forward solution
associated with an accurate ILU (e.g., ILUT) preconditioner.

Schur complement techniques refer to methods which iterate on the inter-
domain interface unknowns only, implicitly using interior unknowns as inter-
mediate variables. These techniques are at the basis of what will be described
in the next sections. Schur complement systems are derived by eliminating the
variables u; from (1). Extracting from the first equation u; = B, 1(fi — Fyyi)
yields, upon substitution in the second equation,

Swi+ > Eyy; =g — BB fi = g, (3)
JEN;

Parallel Iterative Methods in Modern Physical Applications 347

where S; is the “local” Schur complement S; = C; — E; B, LF;. The equations (3)
for all sub-domains ¢ (i = 1,...,p) constitute a global system of equations in-
volving only the inter-domain interface unknown vectors y;. This global reduced
system has a natural block structure related to the inter-domain interface points
in each sub-domain:

S Eo ... Ey Y1 9
Eo Sa o By Y2 95

, , A = (4)
Epl Ep—l,Z NN Sp Yp 91/7

The diagonal blocks in this system, the matrices .S;, are dense in general. The
off-diagonal blocks E;;, which are identical with those involved in (1), are sparse.

The system (4) can be written as Sy = ¢/, where y consists of all inter-domain
interface variables y1, 2, ..., ¥, stacked into a long vector. The matrix S is the
“global” Schur complement matrix. An idea proposed in [13] is to exploit meth-
ods that approzimately solve the reduced system (4) to develop preconditioners
for the original (global) distributed system. Once the global Schur complement
system (3) is (approximately) solved, each processor will compute the u-part of
the solution vector by solving the system B;u; = f; — F;y; obtained by substi-
tution from (1).

For convenience, (3) is rewritten as a preconditioned system with the diagonal
blocks:

yi + ;7! Z Eyy; = S; " [9i— E:B] (5)
JEN;

This can be viewed as a block-Jacobi preconditioned version of the Schur comple-
ment system (4). This global system can be solved by a GMRES-like accelerator,
requiring a solve with S; at each step.

2 Parallel Implementation of ARMS (pARMS)

Multi-level Schur complement techniques available in pARMS [9] are based on tech-
niques which exploit block independent sets, such as those described in [15]. The
idea is to create another level of partitioning of each sub-domain. An illustration
is shown in Figure 1, which distinguishes one more type of interface variables:
local interface variables, where we refer to local interface points as interface
points between the sub-sub-domains. Their couplings are all local to the proces-
sor and so these points do not require communication. These sub-sub-domains
are not obtained by a standard partitioner but rather by the block independent
set reordering strategy utilized by ARMS [15].

In order to explain the multilevel techniques used in pARMS, it is necessary
to discuss the sequential multilevel ARMS technique. In the sequential ARMS,
the matrix coefficient of the at the I-th level is reordered in the from

r (B B
PlAljjl - (El Cl) B (6)

348 X. Cai, Y. Saad, and M. Sosonkina

Interior

Local interface H points
points H

Interdomain
interface points

Fig. 1. A two-level partitioning of a domain

where P; is a “block-independent-set permutation”, which can be obtained in
a number of ways. At the level I = 0, the matrix A; is the original coefficient
matrix of the linear system under consideration. The above permuted matrix is
then approximately factored as

T L 0 U L 'R
PAFT ~ (ElUllf “\o Ay) (™)

where I is the identity matrix, [; and U; form the LU (or ILU) factors of B,
and A;y1 is an approximation to the Schur complement with respect to Cj,

Al+1 ~C)— (ElUlil)(LlilFD. (8)

During the factorization process, approximations to the matrices for obtaining
the Schur complement (8) are computed. The system with A1 is partitioned
again in the form (6) in which [is replaced by I + 1. At the last level, the
reduced system is solved using GMRES preconditioned with ILUT [12]. In the
parallel version of ARMS, the same overall strategy is used except that now the
global block-independent sets are across domains. Consider a one-level pARMS for
simplicity. In the first level reduction, the matrix A; that is produced, will act on
all the interface variables, whether local or inter-domain. Thus, a one-level pARMS
would solve for these variables and then obtain the interior variables in each
processor without communication. We denote by expanded Schur complement
the system involving the matrix A; that acts on inter-domain and local interface
unknowns. For a more detailed description of pARMS see [9].

2.1 Diagonal Shifting in pARMS

Extremely ill-conditioned linear systems are difficult to solve by iterative meth-
ods. A possible source of difficulty is due to the ineffective preconditioning of
such systems. The preconditioner may become unstable (i.e., has large norm of
its inverse). To stabilize the preconditioner, a common technique is to shift the
matrix A by a scalar and use this shifted matrix A + al during preconditioning,
see, e.g., [10]. Because the matrix is shifted, its preconditioner might be a rather
accurate approximation of A+«l. It is also more likely to be stable. However, for

Parallel Iterative Methods in Modern Physical Applications 349

large shift values, the preconditioner might not represent accurately the original
matrix A. So the choice of the shift value is important and leads to a trade-off
between accuracy and stability of the preconditioner. We have considered this
trade-off in [6,14]. In [3], a strong correlation between stability of the precon-
ditioner and the size of & = log (||[(LU)™!int) is shown and is suggested as a
practical means of evaluating the quality of a preconditioner. We can inexpen-
sively compute &, = log (||(LU) e||1), where e is a vector of all ones and LU
are incomplete LU factors of A + al. The estimate &, can be used in choosing
a shift value: if this estimate is large, then we increase shift value and recom-
pute (adjust) the preconditioner. Note that efficient techniques for updating a
preconditioner when a new shift value is provided are beyond the scope of this
paper. One such technique has been outlined in [4].

In the pARMS implementation, we have adapted a shifting technique for a
distributed representation of linear system. Specifically, we perform the shifting
and norm &, calculation in each processor independently. Thus, each processor
i can have a different shift value depending on the magnitude of its &,,. Such
an implementation is motivated by the observation that shifting is especially
important for diagonally non-dominant rows, which can be distinguished among
other rows by a local procedure. In each processor, the choice of shift value is
described by the following pseudo-code:

ALGORITHM 21 Matrix shifting
1. Select initial shift « > 0: B = A+ al.
2. Compute parallel preconditioner M for B.
3. Calculate local &,.
4. If &, is large,
5 Choose o > «;
6. Adjust preconditioner.

Note that in Line 6 of Algorithm 21, depending on the type of preconditioner,
the adjustment operation may be either local or global. For example, Additive
Schwarz type preconditioners may perform adjustments independently per pro-
cessor, whereas all the processors may need to participate in the adjustment of
a Schur complement preconditioner. In addition, Lines 3 — 6 may be repeated
several times.

3 Numerical Experiments

In this section we describe a few realistic applications, which give rise to large
irregularly structured linear systems that are challenging to solve by iterative
methods. The linear systems arising in ultrasound simulation were generated
using Diffpack, which is an object-oriented environment for scientific comput-
ing, see [5,8]. The magnetohydrodynamics application has been provided by
A. Soulaimani and R. Touihri from the “Ecole de Technologie Superieure, Uni-
versité du Québec”, and the linear systems arising in tire design have been
supplied by J. T. Melson of Michelin Americas Research and Development Cor-
poration. For the sake of convenience, let us introduce some notation.

350 X.Cai, Y. Saad, and M. Sosonkina

add_ilut. Additive Schwarz procedure without overlapping in which ILUT is
used as a preconditioner for solving the local systems. These systems can be
solved with a given number of GMRES inner iterations or by just applying
the preconditioner.

add_iluk. Similar to add_ilut but uses ILU(k) as a preconditioner instead of
ILUT.

add_arms. Similar to add_ilut but uses ARMS as a preconditioner for local
systems.

sch_gilu0. This method is based on approximately solving the expanded
Schur complement system with a global ILU(0)-preconditioned GMRES. The
ILU(0) preconditioning requires a global order (referred to as a schedule in
[7]) in which to process the nodes. A global multicoloring of the domains is
used for this purpose as is often done with global ILU(0).

The suffixes no_its or sh are added to the above methods when no local (inner)
iterations are used or when the shifted original matrix is used for the precondi-
tioner construction, respectively.

3.1 Simulation of 3D Nonlinear Acoustic Fields

The propagation of 3D ultrasonic waves in a nonlinear medium can be modeled
by a system of nonlinear PDEs.

The numerical scheme consists of using finite elements in the spatial dis-
cretization and finite differences for the temporal derivatives. At each time level,
the discretization of gives rise to a system of nonlinear algebraic equations in-
volving ¢ from three consecutive time levels. We apply Newton-Raphson it-
erations for the nonlinear system. We refer to [2] and the references therein
for more information on the mathematical model and the numerical solution
method. As a particular numerical test case, we use a 3D domain: (z,y,z) €
[—0.004,0.004] x [—0.004,0.004] x [0,0.008]. On the face of z = 0, there is a
circular transducer with radius » = 0.002, i.e., the pressure p is given within the
circle. On the rest of the boundary we use a non-reflective boundary condition.

We consider solving the linear system during the first Newton-Raphson it-
eration at the first time level. The linear system has 185,193 unknowns and
11,390, 625 nonzero entries. Figure 2 presents the iteration numbers (left) and so-
lution times (right) of this linear system on the IBM SP at the Minnesota Super-
computing Institute. Four 222 MHz Power3 processors share 4GB of memory per
(Nighthawk) node and are connected by a high performance switch with other
nodes. Two preconditioning techniques, sch_gilu0 no_its and add_arms_no_its
have been tested on various processor numbers. Original right hand side and ran-
dom initial guess have been taken.

It is observed that sch_giluOmno_its preconditioning consistently leads to
a faster convergence than add_arms no_its. Both methods, however, show al-
most no increase in iterations with increase in processor numbers. The timing
results are slightly better for sch_gilu0 no_its preconditioner except for the
16-processor case.

Parallel Iterative Methods in Modern Physical Applications 351

Ultrasound problem, (n=185,193 nnz=11,390,625) Ultrasound problem, (n=185,193 nnz=11,390,625)
T T T T T T T T T 18 T T T T T T T

—— add_arms no1ts
== sch_gilu0 noits
" /—\—‘— 1

(]
©
=
Q
ot
Q
16 n
2 g,
5 £
5 |
© k- sch_gilu0 no its -5
2 Q1
- o
i
12 g
o
10 ® L
4 6 8 10 12 14 16 18 2’5 22 2 44 6 8 10 12 14 16 18 20 22 24
Processors Processors

Fig. 2. Iterations (left) and timings results (right) for the ultrasound problem

3.2 A Problem Issued From Magnetohydrodynamic Flow

In [9], we have described the solution of a rather hard problem which arises
from Magnetohydrodynamic (MHD) flows. The flow equations are represented
as coupled Maxwell’s and the Navier-Stokes equations. Here, we provide only a
brief outline of a sample problem along with its solution and note the solution
process when shifting techniques are used.

We solve linear systems which arise from the Maxwell equations only. In order
to do this, a pre-set periodic induction field is used in Maxwell’s equation. The
physical region is the three-dimensional unit cube [—1,1]> and the discretization
uses a Galerkin-Least-Squares discretization. The magnetic diffusivity coefficient
is 7 = 1. The linear system (denoted by MHD1) has n = 485,597 unknowns and
24,233,141 nonzero entries. The gradient of the function corresponding to La-
grange multipliers should be zero at steady-state. Though the actual right-hand
side was supplied, we preferred to use an artificially generated one in order to
check the accuracy of the process. A random initial guess was taken. Little differ-
ence in performance was seen when the actual right-hand and a zero vector initial
guess were used instead. For the details on the values of the input parameters
see [9)].

We observed that all the methods without inner iterations experienced stag-
nation for the MHD1 problem. Additive Schwarz (add_arms no_its) with or
without overlap does not converge for any number of processors while the Schur
global ILU(0) (sch_giluOmno_its) stagnates when executed on more than nine
processors. On four and nine processors, sch_gilu0 no its converges in 188
and 177 iterations, respectively. On an IBM SP, this amounts to 2,223.43 and
1,076.27 seconds, respectively. This is faster than 2,372.44 and 1,240.23 seconds
when five inner iterations are applied and the number of outer iterations de-
creases to 119 and 109 on four and nine processors, respectively. The benefits
of iterating on the global Schur complement system are clear since the Schur
complement-based preconditioners converge for all the processor numbers tested

352 X.Cai, Y. Saad, and M. Sosonkina

as indicated in Figure 3, which presents the timing results (left) and outer it-
eration numbers (right). This positive effect can be explained by the fact that
the Schur complement system is computed with good accuracy. Figure 3 also
shows the usage of the shift value & = 0.1 in the sch_giluO_sh preconditioner
construction. For this problem, shifting does not help convergence and results
in larger numbers of outer iterations. Since a good convergence rate is achieved
without shifting of the original matrix, the shift value applied in sch giluO_sh
may be too large and the resulting preconditioner may not be a good approxima-
tion of the original matrix. The number of nonzeros in sch_gilu0O_sh, however,
is smaller than in sch_gilu0. Therefore, the construction of sch_gilu0O_sh is al-
ways cheaper, and sch_gilu0_sh appears to be competitive for small processor
numbers.

MHD1 Syst. (n=485,597 nnz=24,233,141) MHD1 problem (n=485,597 nnz=24,233,141)
T T T T T T T T T T
*‘ t Seh-glluo_sh appcat '
i ication L

16001 N L S G appicaton 1 0™
» \
‘g 1400 \‘ 4 1701
[} \
8 \
@ 1200 160
o »
£ 1000 S 1s0r
= = = sch_gilu0_sh
x © =k sch_giluo
g soor § 1401
Tl) =
= ©or 130
=
% 400 1201

200 110k

0 5 o s 2 2 EJ 35 o s m 1 2 2 % 35
Processors Processors

Fig. 3. Solution times (left) and outer iterations (right) for the (fixed-size) MHD1
problem with and without diagonal shifting

3.3 Linear Systems Arising in Tire Design

Tire static equilibrium computation is based on a 3D finite element model with
distributed loads. Computation of static equilibrium involves minimizing the
potential energy IT(u) with respect to finite element nodal displacements v’ (i =
1,2,3) subject to nonlinear boundary conditions, which change the symmetry
of a tire. The equilibrium equations of the model are obtained by setting the
variation 8IT(u) to zero. equivalently The Jacobian matrix of the equilibrium
equations is obtained by finite difference approximations. The distributed load is
scaled by a (loading) parameter A, and as X varies the static equilibrium solutions
trace out a curve. The difficulty of the finite element problems and concomitant
linear systems varies considerably along this equilibrium curve, as well as within
the nonlinear iterations to compute a particular point on this curve. In [17], the
problems of varying matrix characteristics are considered. All of the problems
pose a challenge for iterative methods since the treatment of stationary solutions

Parallel Iterative Methods in Modern Physical Applications 353

of rotation makes the systems extremely ill-conditioned during the nonlinear
convergence process. It has been observed that an acceptable convergence was
achieved only when a rather large shift was applied to the matrix diagonal to
stabilize preconditioner. The size of the shift is very important: while making
the preconditioner more stable, large shift values cause the preconditioner to be
a poor approximation of the original matrix.

In this paper, we show (Table 1) the results of a few experiments with using
PARMS on an example of a linear system, medium tire model M, in which n =
49,800 and the number of nonzeros is approximately 84n. In pARMS, a shift
« is chosen automatically: starting with the zero shift, the preconditioner is
reconstructed with a new shift (augmented by 0.1) if the estimate &, of the
preconditioner inverse is large (greater than seven). In Table 1, we state the final
value of «, the maximum &, among all the processors when o = 0, the number
Iter of iterations to converge, and the preconditioner application time Time
spent when running on four processors. Due to the difficulty of this problem,

Table 1. Solution of tire model M on four processors

Method afin max Fa—o Iter Time
add_ilu(2) 0.1 46 543 287.13
add_ilut 0.1 116 537 211.45
sch_gilu0 0.2 146 575 369.00

which is also unpredictably affected by partitioning, the convergence was not
observed consistently on any processor numbers. For example, no convergence
has been achieved on eight processors for moderate shift values.

4 Conclusion

In this paper, we have illustrated the performance of the recently developed par-
allel ARMS (pARMS) code on several realistic applications. For all the problems
considered, it is beneficial to use preconditioners based on Schur complement
techniques, enhanced by a local multi-level procedure. In addition, a few inner
(local to a sub-domain) preconditioning iterations enhance convergence for a
problem arising from a magneto-hydrodynamics application.

We have also proposed an implementation of matrix shifting in the framework
of distributed linear systems which allows a shift value to be assigned indepen-
dently in each sub-domain. An automatic procedure for the shift value selection
has also been implemented, which stabilizes the distributed preconditioner and
often overcomes stagnation. We would like to underline the flexibility of the
PARMS framework, which, with a proper selection of input parameters, allows to
choose among many available options for solving real-world problems.

354 X.Cai, Y. Saad, and M. Sosonkina

References

10.

11.

12.

13.

14.

15.

16.

17.

E.F.F. Botta, A. van der Ploeg, and F.W. Wubs. Nested grids ILU-decomposition
(NGILU). J. Comp. Appl. Math., 66:515-526, 1996.

X. Cai and A. @degérd. Parallel simulation of 3D nonlinear acoustic fields on a
Linux-cluster. Proceedings of the Cluster 2000 conference.

E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite
matrices. Journal of Computational and Applied Mathematics, 87:387-414, 1997.
E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse
iterations. SIAM Journal on Scientific Computing, 19:995-1023, 1998.

Diffpack World Wide Web home page. http://www.nobjects.com.

P. Guillaume, Y. Saad, and M. Sosonkina. Rational approximation precondition-
ers for general sparse linear systems. Technical Report umsi-99-209, Minnesota
Supercomputer Institute, University of Minnesota, Minneapolis, MN, 1999.

D. Hysom and A. Pothen. A scalable parallel algorithm for incomplete factor
preconditioning. Technical Report (preprint), Old-Dominion University, Norfolk,
VA, 2000.

H. P. Langtangen. Computational Partial Differential Equations — Numerical Meth-
ods and Diffpack Programming. Springer-Verlag, 1999.

Z. Li, Y. Saad, and M. Sosonkina. pARMS: A parallel version of the algebraic
recursive multilevel solver. Technical Report UMSI-2001-100, Minnesota Super-
computer Institute, University of Minnesota, Minneapolis, MN, 2001.

T.A Manteuffel. An incomplete factorization technique for positive definite linear
systems. Mathematics of computation, 32:473-497, 1980.

Y. Saad. ILUM: a multi-elimination ILU preconditioner for general sparse matrices.
SIAM Journal on Scientific Computing, 17(4):830-847, 1996.

Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing, New York,
1996.

Y. Saad and M. Sosonkina. Distributed Schur Complement techniques for general
sparse linear systems. SIAM J. Scientific Computing, 21(4):1337-1356, 1999.

Y. Saad and M. Sosonkina. Enhanced preconditioners for large sparse least squares
problems. Technical Report umsi-2001-1, Minnesota Supercomputer Institute, Uni-
versity of Minnesota, Minneapolis, MN, 2001.

Y. Saad and B. Suchomel. ARMS: An algebraic recursive multilevel solver for
general sparse linear systems. Technical Report umsi-99-107-REVIS, Minnesota
Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2001. Re-
vised version of umsi-99-107.

Y. Saad and J. Zhang. BILUTM: A domain-based multi-level block ILUT pre-
conditioner for general sparse matrices. Technical Report umsi-98-118, Minnesota
Supercomputer Institute, University of Minnesota, Minneapolis, MN, 1998. ap-
peared in SIMAX, vol. 21, pp. 279-299 (2000).

M. Sosonkina, J. T. Melson, Y. Saad, and L. T. Watson. Preconditioning strategies
for linear systems arising in tire design. Numer. Linear Alg. with Appl., 7:743-757,
2000.

	1 Distributed Sparse Linear Systems
	2 Parallel Implementation of ARMS (pARMS)
	2.1 Diagonal Shifting in pARMS

	3 Numerical Experiments
	3.1 Simulation of 3D Nonlinear Acoustic Fields
	3.2 A Problem Issued From Magnetohydrodynamic Flow
	3.3 Linear Systems Arising in Tire Design

	4 Conclusion
	References

