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Abstract. A new class of approximate inverse preconditioners is pre-
sented for solving large linear systems with an iterative method. It is at
the intersection of multipole, multigrid and SPAI methods. The method
consists in approximating the inverse of a matrix by a block constant
matrix, instead of approximating it by a sparse matrix as in SPAI meth-
ods. It does not require more storage, or even less, and it is well suited
for parallelization, both for the construction of the preconditioner and
for the matrix-vector product at each iteration.

1 Introduction

Recently, multipole methods [9, 4,2, 19] have dramatically improved the solution
of scattering problems in Electromagnetism. The basic idea behind multipole
methods consists in a low rank approximation of far field interactions. The matrix
A obtained when using integral equations can at the first glance be considered
as an approximation of the Green function G(x,y) of the problem, that is A4;; ~
G(z;,x;) if the z;’s are the discretization points. The matrix A is dense, and
for large problems it becomes impossible to store the whole matrix. When two
points ¥ and y* are distant from each other, the starting point of the multipole
approach is a separate variables approximation

Glz,y) =Y unl)va(y)

which is valid for x close to #* and y close to y*. It leads to a low-rank approx-
imation of the associated block of the matrix A :

A[J’ZUVT.

Here I and J are sets of indices of points respectively close to z* and y*. The
sizes of Ayy, U and V are respectively |I| x |J|, |I| x r and |J| x r. Hence both
memory and computational time are saved if r << |I| and r << |J|. When «*
and y* are close to each other, the above approximation is not valid anymore,
and G(z*,y*) must be computed more carefully. This approach is general, and
relies on the fact that the Green function associated to a pseudo-differential
operator is singular on the diagonal, but regular outside.
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The context looks quite different when considering finite element methods:
the matrix A issued from the discretization of a partial differential equation is
usually sparse, and there is a priori no interest for using a low-rank approxima-
tion of almost zero blocks (see however [3]). But its inverse A~! is a dense matrix
and, like the matrix issued from an integral equation, it is associated to a Green
function G(x,y) which is singular on the diagonal z = y but smooth outside
the diagonal. In the context of an approximate inverse used as a preconditioner
in an iterative method, one can think of approximating off-diagonal blocks of
A~! by low-rank matrices. Since it leads to a number of unknowns significantly
larger than in the original problem and because we do not need such a good
approximation as in the case of integral equations, we can go even further in
the approximation: off-diagonal blocks (A~1);; can be simply approximated by
constant blocks. The size of the constant blocks can vary: smaller when they
are close to the diagonal, and getting larger away from it. This approach makes
sense in the case of non oscillatory Green functions associated to an elliptic
equation like Poisson’s equation or elasticity equations. This relies on the fact
that piecewise constant functions can well approximate the Green function of
the problem. It would not be well suited for Green functions arising for example
from Helmholtz equations.

Like in the multipole method (see e.g. [7] [15]), a crucial point is the ordering
of the unknowns. They need to be sorted by proximity, that is, in such a way that
unknowns associated to neighboring points must be grouped together, and vice-
versa. When the nodal table which has been used for assembling the matrix is
available, a simple way to achieve this is to use a recursive coordinates bisection,
but more sophisticated methods are available like recursive graph bisections or
recursive spectral bisection [16] [18] [17] which do not require the nodal table.

In this paper, we focus our attention on the solution of systems issued from
the discretization of elliptic partial differential equations, leading to a sparse
symmetric and positive definite (SPD) matrix A. Our goal is to obtain a block
constant approximate inverse C' of the matrix A, used for preconditioning an
iterative method.

Section 2 describes how to determine such a Block Constant Preconditioner
(BCP) together with it’s relation to multipole, multigrid and sparse approximate
inverse (SPAI) methods. Section 3 reports some numerical experiments: the BCP
is compared to a basic SPAI using the sparsity pattern of the original matrix A
[6] and to the incomplete Cholesky factorization with no fill-in IC(0).

2 Description of the Block Constant Preconditioner

Consider a linear system
Ax=b, z,beR"

where A € M,,(IR) is an SPD matrix. As mentioned in the introduction, the
unknowns must be ordered by proximity, like in multipole methods. In the sequel,
we suppose that this reordering has been done.
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When the dimension n is large, an iterative method like the preconditioned
conjugate gradient (PCG) is often used for solving such a system. It consists
in applying the conjugate gradient algorithm to a system of the form M Az =
Mb. Here M is an explicit left preconditioner. It should also be SPD. Right
preconditioners can be used in a similar way, and will not be discussed here. The
BCP preconditioner M is of the form

M=C+wl, w>0 (1)

where [ is the identity matrix and C' is a block constant matrix (BCM), which
consists in rectangular blocks of variable size whose elements are constant. The
steps for computing the BCP of the matrix A are the following:

— determine the pattern of the BCM, i.e., location and size of the different
constant blocks,

— compute the constants associated to this pattern by minimizing some Frobe-
nius norm of CA — I over the set of matrices having the same pattern,

— choose the parameter w.

The way of computing C resembles SPAT methods [13] [11] [5]. The com-
putation of C as well as the matrix-vector preconditioning operation is highly
parallelizable. The difference lies in the fact that the approximation of the Green
function G(z,y) by a sum of discrete Dirac functions (SPAI methods) is replaced
by a piecewise constant function, which is likely to offer a better approximation
outside the diagonal x = y. For some particular cases of pattern of the BCM,
the method becomes very close to a two-level multigrid method [10] [14]. In the
general case, the difference lies in an attempt to simulate a cycle over several
grids in a single operation. Hence, the BCP method is at the intersection of
multipole, multigrid and SPAI methods.

2.1 Determination of the pattern of the BCM

A BCM pattern is obtained by a recursive splitting of the initial matrix A. The
depth of recursiveness (the level of refinement) is determined by three parameters
le, g and [,:

— [. is the coarsest level of refinement, and fixes the size of the largest blocks
of the BCM,

— [, is an intermediate level of refinement and determines the size of the small-
est off-diagonal blocks of the BCM,

— 1[4 is the finest level of refinement and determines the size of the blocks of
the BCM containing the diagonal elements.

Let d be the integer defined by 2972 < n < 2971 It is supposed here that
l. <1, <lg <d. The two extreme situations correspond to l; = 1, in which
case the whole matrix is constant, and to [. = d, in which case each block of the
BCM is of size 1 x 1.
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Different values of these parameters lead to different sequences of refinement,
and consequently to different patterns. Each refinement consists in splitting a
block K into four blocks of equal size if possible. The algorithm is the following:

REFINEMENT ALGORITHM FOR DETERMINING THE PATTERN
lev =1; K is a n x n block of level 1;
for lev =2:1,
split each k£ x [ block K of level lev — 1 into 4 blocks of size k; x I;
where k1 > ko, k1 +ko =k, ki —ko < 1l,and ly > s, 1+l =1, 11 —13 < 1;
endfor
for lev = 1.+ 1 : max(l,,1q)
for each block K of level lev — 1
if
K is a diagonal block and lev < Ig4
or
K is not a diagonal block and lev <[,
and
the corresponding block of A has nonzero elements
then
split the block K into 4 blocks following the previous rule as long as
possible: if min(k, ) = 1, just split it into 2 blocks when k # [ and of
course do not split it if k =1 =1;
endif
endfor

endfor

BCM pattern with Ic=4, lo=6, Id=7

10 20 30 40 50 60

Fig. 1. Reordered A and example of BCM pattern
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Note that the obtained pattern is also symmetric if A is symmetric. Following
this algorithm, the BCM in Fig. 1 (right) has been obtained from the classical
Poisson’s matrix of size 64 x 64 reordered by a recursive coordinates bisection
method (Fig. 1, left). With [. = 4, I, = 6 and l; = 7, the largest blocks are
8 x 8, the smallest off-diagonal blocks are 2 x 2 and the smallest diagonal blocks
are 1 x 1 (as all A;; are nonzero, all diagonal blocks are in fact of size 1 x 1).
The parameter [; makes it possible to have a finer refinement on the diagonal
where the Green function is singular. Each color in Fig. 1 (right) corresponds to
a constant block. One can see that the blocks are smaller at the locations where
the matrix A has nonzero elements. As in SPAI methods, many other algorithms
can be proposed. For example, instead of using the pattern of A, one could use
the pattern of A® for a certain integer s.

2.2 Definition of the BCP

Once the pattern of the BCM has been determined, it remains to compute the
values ¢; of the constants for each block. Let C € M, (IR) denote the linear
space of matrices which satisfy a given pattern. A basis of this space consists
in matrices E; which have a single nonzero block (corresponding to the given
pattern) with value 1. In this basis, a matrix C' € C can be written

C = i CiEi
i=1

where ny is the dimension of C (the number of blocks). The space M,,(IR) is
equipped with the Frobenius norm defined by its square

2
Il =Y A%, Ae Ma(R).
i,j=1
This norm is associated to the scalar product
A:B= Y Ay;Bj; =trace(AB"), A, B € Mu(R).
i,j=1
The subspace C is equipped with the same norm.

Definition 1. The block constant preconditioner for solving the linear system
Ax = b is defined by

1
M= 5(C+CT)+wI

where C' € C is the solution to the residual norm minimization problem

‘(CA . I)A*”H?m (2)

min
CeC

and w > 0 is chosen in such a way that M is a symmetric and positive definite
matriz.
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If I, = l; and if A is symmetric, then it can be shown that C'is also symmetric,
thus M = C4+wl. When l; = d, it may not be necessary to add a diagonal term
wl, because in that case C contains already the diagonal matrices. The larger
is lg, the larger is the number n; of unknowns involved in the BCP, however
the numerical results of Section 3 show that taking l; < d performs well for
a reasonable number n, < n of constant blocks. When l; < d, adding some
diagonal terms becomes necessary because, as in multigrid methods, C'A is not
invertible and some smoother must complete the preconditioning operation C A.
More general definitions are possible, as for example M = C'+D with D diagonal,
and M minimizing ||[(M A — I)A®|| . The value s = —1/2 has a precise meaning
only for SPD matrices, although the optimality condition (3) can be used for
any kind of matrices, without the guaranty of a minimum. A simple choice for
non SPD matrices is to take s = 0.

2.3 Computation of the BCM
The computation of the constants ¢; follows from the next proposition.

Proposition 1. If the matriz A is symmetric and positive definite, Problem (2)
has a unique solution, which is also the solution to the linear system of equations

(CA-I1):H=0, VHEeC. (3)
This linear system has a unique solution, and for C =", ¢;E;, it reads
Nec=g, Ne M,,(R), ¢c,g e R™ (4)
where fori, j=1,..., np

Nij =A: E]TEZ, g; = trace(Ei).

Proof. Equ. (3) is the optimality condition associated to Problem (2). Further-
more, the associated homogeneous system CA : H = 0 for all H € C has the
unique solution C' = 0 (taking H = C yields HC’A1/2H1 = 0). Hence (3) has a
unique solution, which is given by (4) when using the basis (E;);*, defined in
Section 2.2.

The matrix N is block diagonal with p = 2'<~1 sparse blocks on the diagonal.
Hence its computation as well as solving Equ. (4) are parallelizable. Depending
on the distribution of the matrix A among the processors, its parallelization may
be complicated but still remains possible. Similarly, the matrix-vector precondi-
tioning operation is parallelizable.

3 Numerical Results

We present some numerical experiments with the Poisson equation on a square
with an homogeneous Dirichlet boundary condition, solved by using the five-
point finite difference stencil reordered by the recursive coordinate bisection
algorithm [16].
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The BCP is compared to the SPAI(1) (same pattern as A for the sparse ap-

proximate inverse) and IC(0) preconditioners. The incomplete Cholesky factor-
ization is of the form A = UTU 4 R. The three preconditioners are used with the
conjugate gradient algorithm. The experiments presented here were performed

n=.9K. BCP: 1.4K, SPAI(1): 44K, IC(0): 2.6K n=10K. BCP: 7K, SPAI(1): 50K, 1C(0): 30K
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Fig. 2. Comparison BCP - SPAI - IC(0), n = 900, 10000, 40000, 160000.

with MATLAB and they all used the following parameters for the BCP:

1c
lo

omega = 1.5/normest(A);

= ceil(log2(n))+1;
ceil(d/2)-2;
1c+3; 1d = lo+2;

600
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The function normest(A) computes an approximation of ||A||z and ceil(x)
is the smallest integer ¢ > x. The letters omega, d, 1lc, 1d and lo denote
respectively w, d, I, lg and [, (see Section 2 for the notation).

A first series of experiments is reported in Fig. 2 which shows the residual
2-norm history for four n x n matrices with increasing size n = 900, 10000,
40000 and 160000. At the top of each graphic is indicated the amount of storage
(number of blocks or of nonzero elements) which was used by each preconditioner.
One can observe that the BCP takes a clear advantage when n becomes large, and
moreover it uses ten times less storage than IC(0) in the last case n = 160000. For
an adequate coding of the BCP matrix-vector multiplication which will not be
discussed here, the number of elementary operations per iteration is comparable.

A second series of experiments is reported in Fig. 3, which plots the number of
iterations needed for obtaining a given precision (relative residual norm < 10~%)
versus the size of the system. One can see that the number of iterations with
BCP is of order

O(h™Y%) = O(n*/*).

The results for BCP match the line y = 6n'/4, and the results with IC(0) match
the line y = 2.5n%3%, For these experiments, the chosen values for n, (number

16 v

number of iterations

10' 17

10
n = size of the system
Fig. 3. Number of iterations with respect to the size n.

of blocks) and nnz(U) (number of nonzero elements in the matrix U) are given
in Table 1. They indicate the amount of storage used by the preconditioners and
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they satisfy asymptotically

ny ~ —, nnz(U) ~ 3n.

~13

Table 1. Storage used by the preconditioners.

n_ |36 ] 144 | 576 | 2300 | 9200 | 36900
ny |208] 616 [1300] 2900 | 6300 | 15000
nnz (U) | 90 | 408 | 1700 6900 | 27600| 111000

A third series of experiments is reported in Table 2, which shows the spectral
condition numbers Apax/Amin of the matrices A, M A and U TAU !, with M =
C+wl and U defined above. We used the MATLAB function eigs fore computing
them. One can observe that the condition number of M A is of order y/n.

Table 2. Condition numbers.

n | ny |cond(A)|cond(MA)| /nlcond(U-TAU")

625 | 1480 273 23 25 25

2500 | 3220 | 1053 38 50 93

10000| 7024 | 4133 65 100 366

40000(16048| 16373 119 200 1448
Conclusion

The new BCP preconditioner is at the intersection of multipole, multigrid and
SPAI methods. Its computation as well as its application on a vector is highly
parallelizable. In our experiments the results showed that the BCP takes the
advantage when the size of the system increases, both in terms of memory re-
quirements and number of iterations, the costs per iterations being comparable.
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