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Abstract. We propose and test a new method for pricing American op-
tions in a high dimensional setting. The method is centred around the
approximation of the associated variational inequality on an irregular
grid. We approximate the partial differential operator on this grid by
appealing to the SDE representation of the stock process and computing
the logarithm of the transition probability matrix of an approximat-
ing Markov chain. The results of numerical tests in five dimensions are
promising.

1 Introduction

The current mathematical approach to option pricing was first introduced by
Black and Scholes [1] and Merton [10] in 1973. They showed that pricing a
European option on a stock is equivalent to solving a certain parabolic initial
boundary value problem, under some simplifying assumptions.

This pricing paradigm has revolutionised the financial world and much work
has gone into extending this framework. In particular the pricing of American
options, which involves the solution of a parabolic free-boundary problem under
the Black-Scholes-Merton assumptions, has drawn much attention since most
traded options are of this type. Given the nature of the problem, it is no surprise
that numerical methods are nearly always used for pricing American options.

An example of such a product is a put option on a stock, giving the buyer
the right to sell a certain stock for a fixed price K at some fixed future date T .
In effect this gives the buyer a payoff of ψ(x) = max(K − x, 0) currency units
at the time of exercise where x is the stock price at exercise date T and K is
the so-called strike price. If exercise is allowed only at T , the option is called
European and if it is also allowed at any time before T it is called American.

In practise we are often confronted with problems involving several state
variables such as an option written on several underlying assets or a pricing
problem in which we allow some of the model parameters to become stochastic.
Pricing an American option in this case amounts to solving a free-boundary
problem in a high-dimensional space. Numerical methods give some hope of

! Research supported by Netherlands Organisation for Scientific Research (NWO)

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 510−519, 2002.
 Springer-Verlag Berlin Heidelberg 2002



finding approximate solutions in this case, but it is well known that the work
involved in current grid-based methods grows exponentially with the number of
dimensions; this is sometimes called the curse of dimensionality.

An alternative to grid-based methods is Monte Carlo simulation of the corre-
sponding stochastic differential equation (SDE). The European pricing problem
can be solved even in a high dimensional setting using this technique since it
only involves a numerical integration of the payoff function with respect to the
density of the state variables.

American problems in one dimension can often be solved under the Black-
Scholes-Merton assumptions by using a method where the time and state variable
axes are discretised into a regular grid and a complementarity problem solved
at each time-step. Unfortunately this method suffers from the curse of dimen-
sionality.

Apart from finding the option value for a given specification of the state
variables, it is also of practical interest to find the sensitivity of the price to the
values of the state variables, in particular to find approximations to the first and
second derivatives. In specifying numerical schemes we would like to take this
into account.

The literature on option pricing has been extensive since 1973. However there
is only a limited number of papers dealing with high dimensional problems, and
only a few of these concentrate on the American case.

Broadie and Glasserman [2] propose a method based on approximating the
stock price dynamics with a stochastic tree in which they obtain two consistent
estimators, one biased high and the other low. This leads naturally to a con-
fidence interval method for pricing American options; however the number of
nodes in the tree increases exponentially with the number of exercise opportu-
nities. In a later paper [3] they suggest a method based on a stochastic mesh
which alleviates this problem; however Fu et al. [6] find that this method has a
substantial upward bias in their numerical tests.

Longstaff and Schwartz [9] propose and test a dynamic programming-like
method based on estimating the value of continuation at each time step by
projecting realised continuation values onto a linear combination of polynomial
basis functions. They call this method least squares Monte Carlo (LSM). They
provide few theoretical justifications for this procedure, although the results are
quite reasonable for the examples they consider. Independently, Tsitsiklis and
Van Roy [14] provide theoretical justification for such a method based on the
projections onto the set of basis functions (features) being orthogonal, the or-
thogonality being with respect to a suitably chosen inner product which changes
at each time step. The error in the method is bounded by a function of the error
inherent in approximating the value function by the features, which is in practice
difficult to assess since the value function is exactly what we want to determine.

Stentoft [13] and Moreno and Navas [11] perform further numerical tests on
the pricing of American options using the LSM method, with promising results
in simple cases. However results for more complex high dimensional examples
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are mixed (see [11]). Fu et al. [6] perform extensive numerical tests on American
option pricing using several alternative Monte Carlo-based methods.

It is clear that a regular grid approach cannot work in high dimensions. Inse-
tad, we approximate the diffusion on an irregular grid. This grid can in principle
be arbitrary, but we think of it as having been generated with a pseudo or quasi
Monte Carlo method. This has the advantage that the number of points in the
grid can be directly controlled, and thus does not have to grow exponentially
with the dimension.

We then construct a Markov chain by defining transition probabilities be-
tween grid points in a continuous time setting in such a way that the solution to
the Markov chain converges to the solution to the PDE as the number of points
in the grid increases. This gives us an approximation to the partial differential
operator which we use to solve the PDE in the European case and the variational
inequality in the American case.

2 Formulation

There are two main paradigms which allow us to formulate and compute values
for options.

In the first place we have the SDE paradigm in which the value of the option
is obtained as the discounted expected payoff at expiry T . This is the most
natural for financial applications since we directly use the financial processes
that are specified in our model.

For a European option with payoff function ψ this leads to the pricing formula

vt = e−r(T−t)E (ψ(XT )) (1)

at time t where r is the (constant) risk free rate and the expectation is taken un-
der the risk neutral dynamics of the system. This naturally leads to a numerical
method using Monte Carlo trials

v̂t = e−r(T−t)
1

N

N∑
i=1

ψ(XT (ω))

where XT (ω) are random variables with the risk neutral densities implied by
the SDE. In the American option case we also have to optimise with respect to
the exercise date. In this case the pricing problem becomes an optimal stopping
problem and

vt = sup
τ∈T

E

(
e−r(T−τ)ψ(Xτ )

)
(2)

where T is the set of all stopping times with respect to the natural filtration
of the underlying process. This American formulation does not lead in such a
natural fashion to a pricing method.

In the second place we have the PDE paradigm in which the problem of
pricing European options becomes equivalent to solving a linear parabolic initial
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boundary value problem, backwards in time. Here the initial value is the option
payoff at expiry and the coefficients of the PDE are inferred from those of the
SDE. If we restrict our region of interest to a subset Ω ⊂ R

n then we want to
find v0(x) such that

v(x, t) |t=T = ψ(x) for x ∈ Ω

v(x, t) = φ(x, t) for x ∈ ∂Ω, t ∈ [0, T ] (3)

∂v

∂t
+ Lv = 0 for (x, t) ∈ (Ω\∂Ω) × [0, T ]

where L is a second degree elliptic operator and φ(x, t) specifies appropriate
boundary conditions. Note that it is not formally necessary to restrict the prob-
lem to Ω ⊂ R

n but computationally it is convenient. Such problems possess
a unique solution given suitable regularity conditions. This formulation for the
price of a European option leads naturally to finite difference and finite element
methods in which the most time consuming operation is solving a system of
linear equations at successive time points.

For American options the early exercise property manifests itself as a free
boundary in the PDE. The problem becomes to find the solution v(x, t) to the
variational inequality




∂v
∂t + Lv > 0
v − ψ > 0(

∂v
∂t + Lv) (v − ψ) = 0

for (x, t) ∈ (Ω\∂Ω)× [0, T ] (4)

with initial conditions v(x, t) |t=T = ψ(x) for x ∈ Ω and boundary conditions
v(x, t) = φ(x, t) for x ∈ ∂Ω, t ∈ [0, T ].

Again some regularity conditions are required for the problem to possess a
unique solution (see Jaillet et al. [7]). The most popular numerical method to
solve the problem in up to two dimensions is formulated by adapting a finite
difference method using projected SOR (PSOR) so that the extra constraint is
satisfied at each time-step. The discretised system can be treated as a linear
complementarity problem. The existence and uniqueness of solutions at each
time-step can be proved when the matrix ML (see Section 3) multiplying the
vector of approximate values v(t) is of type P (see Cottle, Pang and Stone [4]).
The convergence of PSOR for real symmetric positive definite ML is proved
by Cryer [5] and the convergence of the overall computed solution at t = 0
(allowing for numerical errors at each time-step) is proved for certain classes
of payoff functions ψ by Jaillet et al. [7]. The European and American pricing
problems in one dimension are treated in detail in this paradigm by Wilmott,
Dewynne and Howison [15] for example.

3 An Irregular Grid Method

The method we propose basically follows the second of the two paradigms men-
tioned in Section 2, but we also make use of the SDE paradigm and Monte Carlo

513An Irregular Grid Method for Solving High-Dimensional Problems in Finance



methodology. We approximate the value function v(x, t) on a grid just as in the
PDE method, but, to avoid an exponential growth of the number of grid points,
we use an irregular grid. We first approximate the partial differential operator in
the space direction via a semidiscrete Markov chain approximation of the SDE.
Then we discretise in the second argument, using a time-stepping method which
gives rise to a system of linear equations (or a complementarity problem in the
American case) at each time step.

It is important to specify our approximation A in a consistent manner, in the
sense that the solution obtained via the numerical method converges to the true
solution as the number of points in the grid (and the number of time steps) goes
to infinity. The construction of such an approximation is the main consideration
of Section 4.

In this analysis we assume homogeneous Neumann conditions at the bound-
ary (where the derivative of v·,t in the direction normal to ∂Ω is zero). We plan
to extend the analysis to other types of boundary conditions in future work.

Suppose that X = {x1, . . . xN} is a representative set of points (states) in Ω
on which our process can evolve for t ∈ [0, T ]. For the moment we can think of
X as being a generic set of low discrepancy points in the sense of Niederreiter
[12]. The structure of X will be specified in more detail later.

Let A be our discrete approximation to the diffusion operator L on X , let
vi(t) denote the approximated value of v(xi, t), at points xi in X , in continuous
time and let v(t) = (v1(t), . . . , vN (t))

′
and ψ = (ψ(x1), . . . ,ψ(xN ))

′
. Thus in the

European case we now wish to find the solution v(0) to the system of ODEs

dv

dt
(t) +Av(t) = 0 for t ∈ [0, T ] (5)

with initial condition v(T ) = ψ.

We now discretise the time axis so that the problem can be solved numerically
at intermediate time steps. For a small time step δt = T/K a simple approach
is to discretise this system using a θ-method, where θ = 0, 1

2 , 1 corresponds to
explicit, Crank-Nicolson and implicit discretisation respectively. Thus for k =
K − 1, . . . , 0 we have

v((k + 1)δt)− v(kδt)

δt
+ θAv(kδt) + (1− θ)Av((k + 1)δt) = 0 (6)

and the approximate solution is obtained by solving

MLv
k = MRvk+1 k = K − 1, . . . , 0 (7)

with initial condition vK = ψ where vk is the approximation to v(kδt), K =
T/δt is the number of time steps and the matrices ML and MR are equal to
(I − θAδt) and (I + (1− θ)Aδt) respectively. Numerically we must solve a sys-
tem of linear equations at each step, and thus if N is large, we would like the
matrix A to be sparse.

514 S. Berridge and H. Schumacher



In the American case we must include the American constraint vk > ψ, so
the complementarity problem to solve is




MLv
k −MRv(k+1) > 0

vk − ψ > 0(
MLvk −MRv(k+1)

) (
vk − ψ

)
= 0

k = K − 1, . . . , 0 (8)

with initial condition vK = ψ and where the inequalities are componentwise.
Numerically we must solve a complementarity problem at each step and again
the sparsity of A is of great interest when it comes to solving such a system
for large N . The complementarity problem can be solved using PSOR or linear
programming, depending on the nature of the matrices involved.

4 Approximating the Partial Differential Operator

Here we provide a method for approximating the partial differential operator L
on our grid X . To do this we appeal to the SDE representation of the problem.

We assume that the density of the SDE fx0,t(x) is available for arbitrary
initial points x0 and time horizons t. We first choose a time horizon T0 at which
the density can be approximated suitably well on our grid X for initial points
in X . Before continuing we must specify the nature of the grid X . We suppose
that X consists of points generated from pseudo or quasi Monte Carlo trials
with (importance sampling) density g(x) where g(x) > 0 whenever f(x) > 0
and x ∈ Ω.

We now let the transition probability between xi and xj for time horizon
T0 be approximated by the continuous density fxi,T0(xj) weighted by the im-
portance sampling or empirical density g̃(x). That is, our transition probability
matrix is PT0 = (pij) where pij = P(XT0 = xj |X0 = xi) and we set

pij =
1∑N

k=1 f̃xi,T0(xk)
· f̃xi,T0(xj) (9)

and f̃xi,T0 =
fxi,T0

g̃ .
As mentioned earlier, we assume homogeneous Neumann boundary condi-

tions; in this case the value function is relatively flat in a region of the boundary,
so that the distortion of probabilities in the Markov chain near the boundary
will not affect the consistency of the solution.

In the European case, with no time discretisation and choosing T0 = T , we
see that solving the option pricing problem using these transition probabilities
amounts to Monte Carlo integration with importance sampling,

v(0) =

∫
IRn

ψ(x)fxi,t(x)dx ≈
∫
Ω

ψ(x)

[
f

g

]
(x) [g(x)dx]

≈
N∑
j=1

ψ(Xj)
f̃xi,T (Xj)∑N
k=1 f̃xi,T (Xk)

=
N∑
j=1

ψ(Xj)pij
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where Xj are iid random variables with density g(x) and the importance sam-
pling function may also incorporate the empirical density of the grid. The ap-
proximation v̂(0) = PTψ is good for points xi in the centre of our grid where the
transition probabilities approximate the density well. The American problem is
more complicated in that a time discretisation is called for.

The transition probability matrix P now gives us access to an approximation
to the partial differential operator on our grid. We note that the evolution of
state probabilities in the semidiscrete setting is given by p(t) = eA

′tp(0) where
p(t) is the discrete probability distribution over our grid at time t. Thus we
obtain an approximation to L through finding the following matrix

A =
1

T0
log(PT0) (10)

In effect A = (aij) where aij = limδt↓0 1
δt [P (Xt+δt = xj |Xt = xi)− δij ].

We could also find a transition probability matrix for small time steps δt by

taking a root of PT0 , Pδt = eAδt = (PT0)
δt/T0 . This could in principle be useful

for directly specifying the matrices ML and MR as used in Section 3, and has
been found to be a faster operation than computing the logarithm in Matlab.

The more naive approach of calculating the transition probability matrix
directly through (9) with T0 = δt has been found to lead to inaccurate results.
This suggests that the transition probabilities do not reflect the density of the
process over longer horizons when they are calculated in this way.

5 Experimental Results

We conduct experiments to test our proposed method in a Matlab environment,
and using no special techniques to accelerate the speed of computation. In par-
ticular no attention is paid to the approximately sparse nature of the transition
probability matrix when calculating the logarithm. This meant that the maxi-
mum feasible grid size was 1500, which is a relatively low number in terms of
Monte Carlo integration.

Our experiments are based on results from Stentoft [13], who obtains approx-
imate prices for options written on three and five assets using the LSM method.
He considers stock processes driven by correlated Brownian motions.

Specifically our stock prices S = (S1, . . . , Sn) (with Itô correction term
included) are given by S(t) = S(0) exp

{(
r1− 1

2diag(Σ)
)
t+RW(t)

}
where

W(t) = (W1(t), . . . ,Wn(t))
′

is a vector of independent Brownian motions, 1
is a vector of ones, diag(Σ) is a vector of the diagonal entries of Σ and R is a
Cholesky factor of the covariance matrix Σ = RR′, the latter giving the covari-
ances of the stock processes in the log domain.

We are given initial stock prices Si(0) = 40 for each i, the correlations be-
tween log stock prices are ρij = 0.25, i %= j, and volatilities1 are σ2

i = 0.04 for
all i, the risk-free interest rate is fixed at r = 0.06 and the expiry is T = 1.

1 In Stentoft’s paper the volatilities are incorrectly specified as σ2i = 0.2.
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Fig. 1. QMC grid valuation of European (solid lines) and American (dotted lines)
put options on the arithmetic average, geometric average, maximum and minimum
respectively over five assets. Stentoft’s solutions are drawn as horizontal lines

Furthermore we set T0 = T = 1 in the approximation of the partial differential
operator and use implicitness θ = 1

2 and K =  20 time-steps (in the European
case we found that the difference between the (K =  20) time-discretised and
single time-step calculations was negligible).

Our grid is generated using Sobol points with uniform density g(x) ≡ (∫
Ω
dx

.The first grid point is set to be the vector of log stock prices at t =  0; we only con-
sider the estimated value at this point in our convergence analysis. The region of
interest Ω is set to be the rectilinear region (L,U) where Li = E(Si(T ))−3σi

√
T

and Ui = E(Si(T )) + 3σi
√
T .

The payoff functions considered correspond to put options on the maxi-
mum, minimum, arithmetic mean and geometric mean which have respective
payoff functions ψ1(x) = (K −maxi(xi))

+
, ψ2(x) = (K −mini(xi))

+
, ψ3(x) =(

K − 1
n

∑
xi
)+

and ψ4(x) =
(
K − (

∏
xi)

1/n
)+

.

Figure 1 shows the QMC grid approximation of the option values for increas-
ing numbers of grid points. For most cases we see that the approximation for
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1500 grid points is within 10% of Stentoft’s estimate; however it appears that
more than 1500 points are required to obtain a satisfactory convergence. This
is not surprising if we consider the number of trials required to obtain accurate
results in numerical integration.

The similarity between American and European convergence patterns is en-
couraging if we consider that the numerical scheme in the European case is
essentially Monte Carlo numerical integration, which we know is a tractable
numerical scheme with respect to dimensionality.

6 Conclusions and Further Research

We have proposed a new method for finding the value of American options in a
high-dimensional setting. Central to this method is the use of an irregular grid
over the state space and an approximation of the partial differential operator on
this grid.

In our analysis we allow any grid which is generated using Monte Carlo trials
with respect to a known density function. We also suggest a method to correct
for the empirical density of these points in order to give a more accurate Markov
chain approximation to the SDE on our region of interest, although this was not
tested experimentally.

Once the Markov chain approximation has been obtained, we use the tran-
sition probability matrix to form a semidiscrete approximation to the partial
differential operator corresponding to this Markov chain. This is done through
taking a logarithm or root of the transition probability matrix.

Our initial experiments suggest that this method has promising convergence
properties. Unfortunately we have not yet been able to use more than 1500 points
in our grid since we have not implemented an efficient method for computing
the matrix logarithm or root. Such a method could take account of the fact that
the logarithm and root of the transition probability matrix would have the same
approximately sparse structure as the transition probability matrix itself.

In terms of future research possibilities there are a number of areas which
can be explored, in terms of both the numerical and theoretical properties of the
algorithm.

To consolidate the numerical results contained in this paper, we would like
to increase the number of points in the grid. This relies crucially on being able
to determine the matrix logarithm or root in a more efficient manner. Two ways
to approach this are to use the approximately sparse nature of the transition
probability matrix or to use Krylov subspace methods. Such a procedure may
add a further approximation to the algorithm, but the effects of this are expected
to be easily outweighed by the efficiency gains.

In the experiments a uniform grid was used, for convenience; however the evo-
lution of the SDE would be better approximated on a grid of radially decreasing
density, such as a normally distributed grid. We would also like to explore the
possibility of making use of the empirical density of the points to further ad-
just the transition probabilities. This is expected to improve the accuracy of the
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transition probability matrix especially when, for example, two points in the grid
are very close together.

Other techniques which may prove useful are randomised QMC, which could
help us in analysing the standard error of solutions, and various variance reduc-
tion techniques such as the use of control variates.

Extra information can also be obtained using our method. In particular we
could manipulate the grid in order to be able to easily estimate derivatives of the
option value, the so-called Greeks. This would be done by concentrating more
points around the initial asset values, either by directly placing extra points or
by modifying the importance sampling density.

Further work is also needed to obtain theoretical justification of the proposed
method. Such a justification may follow the analysis of Jaillet et al. [7] in the
American case and the analysis of Kushner and Dupuis [8] for the more general
dynamic programming problem, but would also have to take into account the
pseudo or quasi Monte Carlo nature of the solution method.

References

1. Black, F., Scholes, M.: The pricing of options and corporate liabilities. Journal of
Political Economy 81 (1973) 637–654

2. Broadie, M., Glasserman, P.: Pricing American-style securities using simulation.
Journal of Economic Dynamics and Control 21 (1997) 1323–1352

3. Broadie, M., Glasserman, P.: A stochastic mesh method for pricing high-dimensional
American options. Working paper (1997)

4. Cottle, R.W., Pang, J., Stone, R.E.: The Linear Complementarity Problem. Aca-
demic Press (1992)

5. Cryer, C.W.: The solution of a quadratic programming problem using systematic
overrelaxation. SIAM Journal of Control 9 (1971) 385–392

6. Fu, M.C., Laprise, S.B., Madan, D.B., Su, Y., Wu, R.: Pricing American options:
a comparison of Monte Carlo simulation approaches. Journal of Computational
Finance 4 (2001) 39–88

7. Jaillet, P., Lamberton, D., Lapeyre, B.: Variational inequalities and the pricing of
American options. Acta Applicandae Mathematicae 21 (1990) 263–289

8. Kushner, H.J., Dupuis, P.G.: Numerical Methods for Stochstic Control Problems in
Continuous Time. Springer-Verlag (1992)

9. Longstaff, F.A., Schwartz, E.S.: Valuing American options by simulation: a simple
least squares approach. Review of Financial Studies 14 (2001) 113–147

10. Merton, R.C.: Theory of rational option pricing. Bell Journal of Economics and
Management Science 4 (1973) 141–183

11. Moreno, M., Navas, J.F.: On the robustness of least-squares Monte Carlo (LSM)
for pricing American options. Working paper (2001)

12. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods.
SIAM (1992)

13. Stentoft, L.: Assessing the least squares Monte-Carlo approach to American option
valuation. CAF Working paper No. 90 (2000)

14. Tsitsiklis, J.N., Roy, B. Van: Regression methods for pricing complex American-
style options. Working paper (2000)

15. Wilmott, P., Dewynne, J., Howison, S.: Option Pricing: Mathematical Models and
Computation. Oxford Financial Press (1993)

519An Irregular Grid Method for Solving High-Dimensional Problems in Finance


	1 Introduction
	2 Formulation
	3 An Irregular Grid Method
	4 Approximating the Partial Differential Operator
	5 Experimental Results
	6 Conclusions and Further Research
	References

