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Abstract. The classical algorithms for computations with polynomials and
polynomial matrices use elementary operations with their coefficients. The
relative accuracy of such algorithms is relatively small and for polynomials of
higher order and polynomial matrices of higher dimension the executing time
grows very quickly. Another possibility is to use symbolic manipulation
package but even this is applicable only for moderate problems. This paper
improves a new method based on polynomial interpolation. Its principle is as
follows [1]: firstly a sufficient number of interpolation points is chosen, then
the interpolated object is evaluated in these points and finally it is recovered
from both series of values. The choice of interpolation points is crucial to have
a well-conditioned task. Typically, a random choice of real points leads to a
badly conditioning for higher order of interpolated polynomial. However, a set
of complex points regularly distributed on the unit circle in the complex plane
gives a perfectly conditioned task. Moreover very efficient algorithm of fast
Fourier transform can be used to recover the resulted polynomial or polynomial
matrix. The efficiency is demonstrated on determination of inverse to
polynomial matrix.

1   Introduction

Solution of many technical problems leads to computations with polynomials or
polynomial matrices. The classical algorithms, which are based on manipulations with
coefficients, are distinguished for small relative accuracy and low efficiency. The
algorithms based on interpolation-evaluation techniques represent a computationally
efficient way to deal with such computations. The interpolation theory for polynomial
case is very old. Nevertheless even the problem is very well studied all the algorithms
meet the problem of badly conditioned task and could be used only for polynomials of
lower degree (up to 30). The generalization to the matrix case appeared only recently.
The most general way, which includes all the interpolation schemes, was introduced
by Antsaklis [1], generalizing the approach [5]. However, the problem of badly
conditioned task remained unsolved even if some ways for its removing were
suggested. The different polynomial bases were used in Lagrange and Hermite
interpolation ([6]).
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The computational aspects of the enhancement to multivariate case are summarized in
[3] and [4].

In this paper the conditioned number of corresponding task is improved by
choosing a special set of interpolation points in both, polynomial and polynomial
matrix case [7,8]. Moreover, the fast Fourier transform (FFT) algorithm is used for
evaluation of the interpolated object in the prescribed set of points and its recovery
from these values. The proposed algorithm is very efficient and numerically reliable.

2   Polynomial Case

Firstly let us remind, that the term interpolation can be used to denote many different
mathematical tools. The technique, which will be here understood as interpolation, is
described below. The basic idea of all interpolation methods can be summarized in
the three following steps:

1. A sufficient number of interpolation points is chosen.
2. The interpolated object is evaluated in this set of points.
3. The interpolated object is recovered from both series of values.

The simplest example of interpolation technique is univariate polynomial
interpolation. The corresponding procedure can be stated by the following theorem.

THEOREM 1 (Univariate polynomial interpolation [1])
Given K distinct generally complex scalars sj, .M ÿÿþÿ= , and K corresponding

complex values bj, there exists a unique polynomial r(s) of degree ÿ−= .Q  for
which

.MEVU MM þþÿþýü ÿ== .
(1)♦

That is, an nth degree polynomial r(s) can be uniquely represented by the
ÿ+= Q.  interpolation points (or pairs) (sj, bj), .M ÿÿþÿ= . To see this, the nth

degree polynomial Q
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ÿþ
ÿ=U  is ýýþüþü +× Q row vector of the coefficients. The ÿ+= Q.

equations can then be written as
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The matrix V is called Vandermonde matrix and it is non-singular if and only if the
K scalars sj, .M ÿÿþÿ= are distinct. In that case the equation (2) has a unique
solution r; that is, there exists a unique polynomial r(s) of degree n which satisfies
(1). This proves the theorem 1.

From numerical point of view the solution of equation (2) depends on the condition
number of matrix V. This problem is studied in the next section.
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3   Condition Number of Vandermonde Matrix

It is well-known fact that the Vandermonde matrix (2) for vector of real numbers is
very badly conditioned. Typically, for interpolation points regularly distributed in the
interval [-1,1] the critical MATLAB condition number 1016 is achieved for ÿþ=. .
An immense improvement of the condition number of the Vandermonde matrix can
be surprisingly achieved using complex interpolation points even if it seems to be
contraproductive.

Let us choose the vector of interpolation points as

[ ] [ ] .VV
.
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(3)

where ω denotes a primitive K-th root of 1, that is

ûüüûüûüû −=≠= .K
K.

ÿωω .
(4)

Such a set of interpolation points is called Fourier points. The corresponding
Vandermonde matrix ΩΩ (referred to as Fourier matrix) has the following form:
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Observe that since ∑ −
= −=ÿ

ú
ûúaù

.

L

LK
.ωω  for .K ≤≤ÿ  where ωω þÿ

a =  is a

primitive root of 1, the Euclidean norm of each column appearing in the matrix ΩΩ is

equal to . . Moreover since .K
.

L

KL ≤≤=∑ = ûIRUþ
ú
ω , the matrix ΩΩ is unitary

and

ÿþýFRQG =� .
(6)

It means that the Fourier matrix ΩΩ is perfectly conditioned and its inverse can be
determined as its complex conjugate

ÿ
ÿ
�� =− .

(7)

The vector of coefficients of interpolated polynomial can be then obtained as the
solution of (2) as

[ ] .. LM ÿ
a

ÿþ ωEE�U == .
(8)

Another important fact is that in order to evaluate a univariate polynomial in the
Fourier points, that corresponds to step 1 of the general interpolation-evaluation
algorithm mentioned above, the fast Fourier transform (FFT) algorithm could be
applied. The algorithm is well studied, very efficient and numerically reliable.
Moreover, as the Fourier matrix is unitary, the inverse FFT algorithm can be used to
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recover the polynomial coefficients from its values (step 3 of that algorithm or
equivalently the product in (8)).

The use of the described algorithm will be shown on an example in section 6 on
determination of determinant of polynomial matrix.

In the following section a generalization of the algorithm described above to
polynomial matrix case is introduced.

4  Polynomial Matrix Case

The result obtained above can be generalized to polynomial matrix case in many
different ways. Nevertheless all of them can be seen as special cases of the basic
polynomial matrix interpolation procedure introduced by the following theorem.

Let Á@ÿÿÿþ^>GLDJEORFNýüû
7GLVVV ÿ=6  where PLG L ÿÿþÿ ÿ=  are non-negative

integers; let ú≠MD  and bj denote (m×1) and (p×1) complex vectors respectively and

sj complex scalars.

THEOREM 2 (Polynomial matrix interpolation [3])
Given interpolation (points) triplets (sj, aj, bj), .M ÿÿþÿ=  and non-negative integers

di, PL ÿÿþÿ=  with ∑ += PG. L  such that the .PG L ×+∑ üû  matrix

@üûÿÿüû>ý
ÿÿ ... VV D6D66 ÿ=

(9)

has full rank, there exists a unique ýü PS ×  polynomial matrix Q(s), with ith column

degree equal to di, PL ÿÿþÿ=  for which

.MV MMM ÿÿþÿýü ÿ== ED4 .
(10)

Q(s) can be written as

ÿþÿþ VV 464 = (11)

where Q ýýüü ∑ +× PGS L contains the coefficients of the polynomial entries. Q must
satisfy

.. %46 =
(12)

where @ÿÿ>
ÿ .. EE% ÿ= . Since SK is non-singular, Q and therefore Q(s) are uniquely

determined.
For ý== PS SK is turned to Vandermonde matrix. In the polynomial matrix case,

we shall call it block Vandermonde matrix because of its structure, that will be shown
later.

Both theorems expand step 3 in the general description of interpolation methods
introduced before. They show, that the resulted polynomial or polynomial matrix can
be found as a solution of the matrix equation (6) or (8) respectively. It means, that the
step 3 is the same for every problem solvable by interpolation techniques. The whole
difference consists in step 2, which of course can be performed by algorithms
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working with constant matrices. These algorithms are usually very efficient and
therefore guarantee good numerical properties of results computed in a short time.

5   Block Vandermonde matrix

Let us focus on the block Vandermonde matrix SK appearing in (12) defined by (9).
According to theorem 2 the choice of interpolation triplets (sj, aj, bj) is arbitrary. The
only condition is the full rank of matrix SK. The postmultiplication of interpolated
matrix by the vectors aj makes it possible to vary interpolation triplets not only by
points sj but also by the vectors aj. This is compensated by a higher number of points
than they are necessary for element by element interpolation procedure. In section 3 it
was shown that Vandermonde matrix has some appropriate properties if evaluated in
the Fourier points. Let us try to choose such triplets (sj, aj, bj) to maintain this
structure in the block Vandermonde matrix.

Let ∑ += PG. L , .M ÿÿþÿ=  , PL ÿÿþÿ=  , 00 =d , rq ,,1ÿ= , LGU PD[þ+= :
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where 1 is on the ith position.
This set of interpolation triplets requires only r different interpolation points sq,

which is the lowest possible number and it corresponds to the column-wise
interpolation procedure. The block Vandermonde matrix SK has the following form:
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where each PLL ÿÿþÿ ü=9  is the Vandermonde matrix
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From (14) it immediately follows that the inverse to SK appearing in solution of
(12) can be determined as
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If the interpolation points sj are chosen as the Fourier ones then
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Again the fast Fourier transform algorithm can be used for evaluation of Q(s) in
these points and its recovery from them.

6   Example

Let us use the described procedure to determine inverse to polynomial matrix A(s),
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The inverse to polynomial matrix A(s) can be determined as

ø÷ø÷øø÷÷DGMøø@÷>GHW÷ø÷
þþþ

VVUVVV 4$$$
−−− ==

where adj stands for adjoint to a matrix.
Firstly let us compute the determinant r(s) using procedure described in section 2.
The first step consists in estimation of degree n of r(s). It is important to note that if

the estimated degree is higher than the real one, the coefficients corresponding to high
powers will be determined as zero because due to theorem 1 there is only one
polynomial of nth degree determined by þ+Q  points (in fact it should be “of nth or
less degree”). Obviously, the estimated degree cannot be less than the real one. The

simplest choice is ∑ == P

L L
FQ

þ
, where ci are the column degrees of A(s) (the highest

degrees appearing in the column).
Here ö=Q  and the Fourier matrix Ω is of the seventh ( õþ =+= Q. ) order. Now

we have to evaluate matrix A(s) in the interpolation points @ÿÿÿþ> ûωω ý  where ω is
seventh root of 1. This step is performed by FFT algorithm. Next the vector of values

525On Polynomial and Polynomial Matrix Interpolation



of the determinants ÿÿ@þGHWþýÿÿýþGHWþÿÿýüþ>GHWþ
ÿωω $$$E ÿ=  is computed using

standard procedure for computing determinant of a constant matrix. The recovery of
all the coefficients of r(s) (solution of (8)) is performed via inverse FFT applied on
the vector b.

The algorithm gives ûúùø÷øöÿþ
þýüûÿ −−−−−−−= VVVVVVVU . Now let us

determine the polynomial matrix ÿÿþþDGMÿþ VV $4 = .

As in the previous procedure firstly the column degrees di of Q(s) have to be
estimated. The simplest choice is PLFPG

L
ýýüýÿüþ ÿ=−=  where 

L
FF PD[= . In our

case øýýüýú ÿ== LG
L

. Let us choose the interpolation points according to (13) as the

Fourier points. We need ûüPD[ =+=
L

GU scalar complex points ûýýüý ÿ=MV M ,
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ωω ÿÿ =VV  where ω is the fifth root of 1. The total number of

interpolation triplets is üû
ú

=+= ∑ =
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L L PG. . The procedure continues as follows.

The polynomial matrix A(s) is evaluated in the points ûýýüý ÿ=MV M . Next the values

of Q(s) are computed in those points: ûýýüÿÿýþþDGMÿþ ÿ== MVV MM $4 . Finally, the

solution of (12) can be determined by applying inverse FFT algorithm on each entry
of ÿþ MV4 .

The algorithm gives
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7   Conclusion

In the paper the general concept of algorithms on polynomials and polynomial
matrices based on interpolation-evaluation methods was presented. The algorithms
are very efficient and numerically reliable because of using the FFT algorithm, very
well studied algorithms for constant matrices and perfectly conditioned task. The
method was used for computing inverse to polynomial matrix. The experiments reveal
that the algorithm is able to deal with polynomial matrices of high dimension with
elements of high degrees. For example, determinant of a polynomial matrix ÿÿþÿþý ×
with elements of degrees 30 is computed in 2 seconds1. Adjoint to the same matrix is
determined in 10 seconds. The only drawback of interpolation-evaluation methods
consists in big storage capacity of a computer needed to store all the values of
interpolated object in interpolation points for some algorithms. For example, to
determine the determinant above one need to store 810900 complex values (even if
the determinant is of degree 401 only). However, to determine the adjoint above the

1 All the computations was done on Pentium II, 64MB, 120MHz.
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same number of values has to be stored as the total number of coefficients of the
adjoint.
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