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Abstract. The model-based reconstruction of electrical brain activity
from electroencephalographic measurements is of constantly growing im-
portance in the fields of Neurology and Neurosurgery. Algorithms for
this task involve the solution of a 3D Poisson problem on a complicated
geometry and with non-continuous coefficients for a considerable num-
ber of different right hand sides. Thus efficient solvers for this subtask
are required. We will report on our experiences with different iterative
solvers, Successive Overrelaxation, (Preconditioned) Conjugate Gradi-
ents, and Algebraic Multigrid, for a discretisation based on cell-centred
finite-differences.

1 Introduction

The electroencephalogram (EEG) is a major diagnostical tool to determine the
state of the brain. In recent years the model-based analysis of such voltage
measurements has substantially gained in importance. Given the measured data,
the typical task is to reconstruct the sources inside the brain responsible for
the potential field. The results are then used in the planning of brain surgery
and even during the surgery itself. Figure 1 shows an application from epilepsy
surgery [11]. Here an epileptic focus to be removed by surgery was reconstructed.
Another application is to determine important brain areas, which must not be
damaged during an operation, and to insert this information into the surgeon’s
microscope. The reconstruction is denoted the inverse EEG problem, because it
is the inverse of the forward problem, where sources are known / given and the
potential distribution inside the head and on its surface has to be computed.
The forward problem constitutes a classical elliptic boundary value problem to
be solved on a 3D representation of the patient’s head. All solution approaches
to the inverse EEG problem involve the solution of a considerable number of
such forward problems.

� At the time of this research, the author worked for the Department of Neurology,
University of Gent

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 528−537, 2002.
 Springer-Verlag Berlin Heidelberg 2002



Medical applications naturally require a high level of precision. It is becoming
standard nowadays to base the numerical computations on the individual geom-
etry of a patient’s head, which can be obtained e.g. from magnetic resonance
imaging (MRI). The electric conductivities of the different tissues are usually
assumed to be constant and isotropic, but the determination of patient specific
anisotropic values from diffusion weighted MRI is ongoing research, [10]. Thus
there is growing interest in volume based discretisation techniques which are
about to replace the traditional boundary element approach. This transition to
volume discretised realistic head models is encumbered by the fact that there is
still a lack of fast solvers for the forward problem, see e.g. [5].

In this paper we will report on results with different iterative solvers for a dis-
cretisation of the forward problem with a cell-centred finite difference scheme.
The list of solvers includes Successive-Overrelaxation as an example of a sta-
tionary iteration method, Conjugate Gradients and Preconditioned Conjugate
Gradients for Krylov subspace methods and a variant of Algebraic Multigrid.
For a description of theses methods see e.g. [6] and [7].

Fig. 1. Axial, saggital, and cordial cuts through an MRI scan of a patient’s head.
Superimposed is an epileptic focus localised from EEG data.

2 Problem Formulation

In bioelectric field simulation the patient’s head is modelled as a volume con-
ductor, i. e. a contiguous, passively conducting medium. Inside the head we have
neural current densities which constitute the cause for the electrical and poten-
tial field. Due to the temporal behaviour of the sources, which is typically <
1 kHz and the physiological conductivities (e.g. brain 0.2 S/m, skull 0.015 S/m
[3]) one can assume a quasi-static behaviour. This leads to the central equation

∇ · (σ∇Φ) = ∇ · IV . (1)
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which relates the potential field Φ to the current densities IV of the neural
sources. The term σ denotes the conductivity tensor. Together with boundary
conditions on the current flow through the scalp

σ
∂Φ

∂n
= g (2)

this constitutes an elliptic boundary value problem. The classical task of numer-
ical simulation would be to compute the potential field Φ for given source ∇· IV
and boundary terms g. This is referred to as the forward problem. The related
inverse EEG problem is to reconstruct from g and measurements of Φ at some
electrodes either the sources or the potential at some internal interfaces, esp. on
the cortex.

There are three standard approaches to the inverse EEG problem: dipole
localisation, current density analysis and deviation scans, see e.g. [11, 2]. Im-
portant in our context is, that all of these involve the setup of a so called lead
field matrix. This matrix relates the momentum and orientation of one or more
dipoles at given locations to the potential values at measurement electrodes.

Assume that a dipole is given with position r and orientation d and let E be
a set of N electrodes. The vector M(r,d ) of potentials generated by the dipole
at the electrodes in E is given by

M(r,d ) = L̂(r ) · d = R · L(r ) · d (3)

Here L̂ ∈ R
N×3 is the lead field matrix. It can be split into two parts. A ma-

trix L ∈ R
(N−1)×3 that maps the dipole orientation onto potential differences

between the electrodes and a referencing matrix R ∈ R
N×(N−1) that turns these

(N−1) differences intoN scalar potential values. Each row of L is of the following
form

(Φx
AB(r), Φ

y
AB(r), Φ

z
AB(r)) (4)

where Φk
AB
(r) denotes the potential difference between electrode A and B in-

duced by a unit dipole at position r which is oriented in k-direction. So in
principle every entry of the lead field matrix requires the solution of a single for-
ward problem. In all three approaches for the inverse EEG problem the lead field
matrix has either to be assembled for a single dipole at a large number of vary-
ing positions or for a large number of different dipoles at fixed positions. This
constitutes a major part of the computational work. Fortunately this amount of
work can (in some cases) drastically be reduced with the help of the reciprocity
theorem of Helmholtz, see e. g. [11, 12]. It allows the simple setup of the lead
field matrix by interpolation from potential distributions computed in a prepara-
tory step. Selecting N − 1 pairs of electrodes from E this step consist of solving
problem (1,2) with one electrode chosen as unit sink and the other one as unit
source. This leave us with the solution of N − 1 Poisson problems with jumping
coefficients on a complicated 3D domain.
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3 Discrete Model

In order to solve the boundary value problem (1,2) in terms of the bioelectric po-
tentials we need to pose the problem in a computationally tractable way. Modern
medical imaging techniques make it feasible to employ the individual patient’s
anatomy in the creation of a volume conductor model of the head. Geometry
information is typically derived from magnetic resonance imaging (MRI), while
the conductivity is assumed to be isotropic and constant for each type of tissue
and experimental values from literature are taken.

For our experiments in Sect. 5 we have used MR-images to form a 3D voxel
model. In a segmentation process each voxel is assigned to one of the four com-
partment types scalp, skull, brain and air and constant isotropic conductivities
are assumed in each of them. Note however, that the described approach is not
limited to a certain number of compartments and in principle can also handle
anisotropic conductivities. This option is important, since it is anticipated that
in the near future diffusion weighted MRI will allow to approximate the locally
varying and anisotropic conductivity tensors on a patient basis, see e.g. [10]. For
details on the creation of the employed 3D voxel model see [11].

We discretise the boundary value problem (1,2) by means of Finite Differ-
ences. We use the box integration scheme and model the electrodes as point
sources within the voxel that is nearest to the position of the centre of the re-
spective electrode. This leads to homogenous Neumann boundary conditions.
The resolution of our head models is fine enough that for the given spacing of
the two electrodes in a pair will never lie within the same voxel. Let us denote
by ksource and ksink the index of the voxel containing the source and the sink.
Then we get that the discrete approximation Φh of (1,2) has to satisfy(∑

k∈Nl

γk

)
Φh
l −

∑
k∈Nl

γkΦ
h
k = I(δksource,l − δksink,l) (5)

for every voxel Vl that belongs to the head. Here δi,j denotes the Kronecker
symbol and Nl the index set of the six voxels neighbouring Vl. The stencil co-
efficients γj are a mesh-size weighted harmonic average of the conductivities in
the central voxel and the corresponding neighbour. For the eastern neighbour γj
takes the form

γeast =
2hyhz

hx
· σl · σeast

σl + σeast

(6)

and analogously for the other five neighbours. Note that γk > 0 since σ is non-
negative.

Let us denote by A the problem matrix of the linear system resulting from (5).
Assuming that we have a contiguous model without isolated head cells it is easy
to see from (6) and (5) that A will be a symmetric, positive semidefinite matrix.
It is also a singular M-matrix in the classical notation of Berman & Plemmons.
We know therefore that rank(A) = n − 1 and the kernel is of dimension one
[1]. In fact, it is spanned by the vector e = (1, . . . , 1)T . Let b be the right hand
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side we get from (5), then eT b = 0. Thus the problem Ax = b is consistent and
possesses infinitely many solutions differing only in an additive constant.

When trying to find the solution of the system, one can either work with the
singular problem directly, or introduce an additional constraint, that fixes one
element of the set of all solutions and solve the corresponding regular problem.
The easiest approach is to fix the value of the potential Φh to 0 in one voxel. This
leads to a problem with a regular M-matrix and its solution obviously solves the
initial problem with Φh = 0 in the respective voxel. We will compare these two
possibilities.

4 Iterative Solvers

In the literature on bioelectric field problems typically Krylov subspace methods
are mentioned for the solution of the related forward problems, see e.g. [2]. We
consider representatives of this class and compare them to other methods:

– Successive Over-Relaxation (SOR)

– Conjugate Gradients (CG)

– Conjugate Gradients preconditioned by symmetric SOR (PCG)

– Algebraic Multigrid (AMG)

The SOR method is a representative of the classical stationary methods. It is
known to be not the optimal choice as far as convergence is concerned, but
it has a very simple structure. Thus it is a good candidate for an optimised
implementation.

The CG method is the typical algorithm from the large class of Krylov sub-
space methods. The convergence of the CG method depends on the condition
number, or more precisely on the spectrum, of the problem matrix. It is there-
fore seldom used without preconditioning. We have chosen a symmetric SOR
preconditioner for this purpose.

The last contestant is an algebraic multigrid method. Multigrid methods in
general are known to be very efficient solvers for elliptic boundary value prob-
lems. They employ a hierarchy of grid levels to treat individual problem com-
ponents. Unfortunately finding the proper components, i.e. transfer operators,
coarsening strategies, etc. can be quite tedious in the case of complex geometries
and/or jumping coefficients. Therefore the idea of algebraic multigrid methods
is again attracting increased attention. Here a “grid hierarchy” and inter-grid
transfer functions are derived automatically from the problem matrix.

While these methods have been developed for regular linear systems, they
can also be applied in our semi-definite case. In the case of a consistent right
hand side convergence can be guaranteed for SOR and (P)CG, while for AMG
theoretical results are more complicated, see [1, 9].
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5 Numerical Experiments

For our numerical experiments we implemented all algorithms, except AMG, in
a grid- and a matrix-based version. As AMG method we took BoomerAMG, see
[7]. Implementation details can be found in [9].

We compare the performance with respect to two data sets, in the following
denoted by data set A and B. They have been created from real patient MRI
scans at the Epilepsy Monitoring Unit of the University of Gent, Belgium. The
data sets have a different resolution and come from two different subjects. The
edge length h of the voxels is the same in all three dimensions. For the conduc-
tivities we use the values given in [3]. We scale our linear system by (σskullh)

−1

and only use the relative values (σscalp : σskull : σbrain = 16 : 1 : 16). Note that
the differences in the conductivities are only one order of magnitude. So we are
faced with an interface problem with only moderate jumps. An overview of the
properties of the two data sets and of the resulting linear system is given in
Tab. 1.

For both patients an EEG was recorded using 27 electrodes, placed accord-
ing to the international 10–20 standard [8], with three additional electrodes
positioned on the temporal lobe areas on both sides. Thus the preparatory step,
cf. Sect. 2, that provides the data needed for setup of the lead field matrix
consists in the solution of 26 forward problems for as many electrode pairs.

From the four tested methods the CG algorithm is the only one that does not
depend on the choice of a special parameter. In case of the SOR and PCG(SSOR)
method we have to specify the over-relaxation parameter ω. For AMG a threshold
parameter, which allows for the distinction of “weak” and “strong” inter-node
connections, must be chosen. This distinction is critical for the construction of
the grid hierarchy, see e.g. [7]. We have chosen two of the 26 electrode pairs
to test the dependency of the algorithms on these parameters. In these and
all following tests we accepted an approximate solution as soon as its residual
measured in the Euclidean norm became smaller than 10−8.

Figure 2 shows the dependency of the number of SOR iterations for the case
of a singular matrix. We see that this number varies considerable even for the
small interval ω ∈ [1.89, 1.99]. The optimal values seem to be in the vicinity of
1.935 for data set A and 1.970 for data set B. We have employed these values for
all subsequent tests. When we apply SOR to the regular matrix, we get basically

Table 1. Details of the two data sets and the corresponding singular linear systems

Data Set A B

number of voxels / cube dimensions 653 1293

edge length of voxels 3.92mm 1.96mm

number of head voxels / unknowns 70,830 541,402

number of non-zero matrix entries 482,184 3,738,624

matrix sparsity 0.01% 0.001%
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the same picture, with two differences. On the one hand the optimal ω is larger
(about 1.9935 for dataset A and about 1.9977 for dataset B). On the other hand
also the number of iterations needed to reach the desired accuracy is drastically
larger. Even for the nearly optimal ω the numbers are on average 10 resp. 14
times larger, as can be seen in Tab. 2.
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Fig. 2.Number of SOR iterations necessary to satisfy stopping criterion for the singular
problem depending on choice of relaxation parameter ω.

The choice of ω appears to be not as important for the PCG method, as can
be seen in Fig. 3. The number of iterations varies over smaller intervals and the
valleys around the optimal value are more flat, thus choosing a reasonable ω is
easier. The optimal values lie in the vicinity of 1.65 and 1.75 for the singular
problem and 1.65 and 1.8 for the regular one. Note that again the number of
iterations for the singular problem is smaller than for the regular case.

In the AMG algorithm there is quite a number of parameters and algorithmic
variants, that have to be fixed, before the method can be applied. These include
e. g. cycle type, number of smoothing steps, and so on. We have used a V-cycle
with one pre- and one post-smoothing step. The relaxation scheme was a hybrid
Gauß-Seidel / Jacobi method. Construction of the grid hierarchy was performed
with Ruge-Stüben coarsening. Besides this, we left all other parameters at their
default values and investigated the influence of the threshold value α, as shown
in Fig. 4 for the singular case. The regular case is not shown, since the results
are very similar.

We note two interesting facts. The first is, that the best convergence is
achieved for comparatively small values of α. The second fact is that there is a
sharp increase in the number of cycles in the interval α ∈ [0.50, 0.55]. This is es-
pecially pronounced in the case of data set B. One can show [9] that for α > 0.53
we get bad interpolation operators, since skull voxels on the fine grid are only
interpolated from scalp / skull voxels on the next coarser grid. Our experiments
also indicate that performance will decrease again, when α becomes too small.
So, for all further experiments we have settled with α = 0.05.

After having determined a set of reasonably optimal parameters for the dif-
ferent methods, we tested the number of iterations needed to satisfy the stopping
criterion for all 26 electrode pairs. Table 2 summarises the mean values of all
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Fig. 3. Number of PCG iterations nec-
essary to satisfy stopping criterion for
the singular problem depending on
choice of relaxation parameter ω.
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Fig. 4. Number of AMG cycles neces-
sary to satisfy stopping criterion de-
pending on choice of threshold param-
eter α.

pairs. To be able to better compare these values we have determined for each
method an estimate of the total amount of arithmetic work involved. This es-
timate is given in Tab. 2 as a percentage of the amount of work for the SOR
method in the semi-definite case.

We see that the CG method performs worst, due to a bad convergence rate.
This is considerably improved by preconditioning. The number of iterations
drops to roughly 18% of the unpreconditioned case. Due to the higher costs
per iteration step this is still about two thirds of the reference case in the most
favourable situation. The best performance is achieved by the AMG approach,
which also shows the typical feature of a multigrid method, namely that the num-
ber of cycles remains constant, independent of the fineness of the discretisation.

Table 2. Iteration counts for different methods, matrix is singular (1) or regular (2)

Number of Iterations

Data set

Method A B

Mean % SOR Std. Dev. Mean % SOR Std. Dev.

SOR (1) 303.5 100 9.6 634.0 100 2.2

SOR (2) 2957.0 974 34.1 8839.0 1400 635.2

CG (1) 407.5 179 9.3 740.7 156 12.5

CG (2) 533.2 234 6.5 986.8 208 9.7

PCG(SSOR) (1) 80.3 88 1.3 126.7 67 1.8

PCG(SSOR) (2) 106.0 116 1.2 165.8 87 1.6

BoomerAMG (1) 7.0 16 0.0 7.0 7 0.0

BoomerAMG (2) 7.0 16 0.0 7.0 7 0.0
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Besides convergence rates and amount of work, the property that is of pri-
mary interest to the user coming from the application side is run time. Factors
determining the latter involve the numerical characteristics of an algorithm as
well as its suitability for modern computer architectures and its implementation.
We have tested the run times of our four algorithms on three different architec-
tures, a 700MHz AMD Athlon, a 500MHz Alpha A21264 and a 1500MHz Pen-
tium IV. More details of the machines can be found in [9]. In all cases, except
for AMG, we compare the grid-based with the matrix-based implementation.

In Fig. 5 we present the user times for the complete problem. In each case we
have measured times for 10 program runs and taken the mean value. Standard
deviation was always less than 2%. The times consist of the time spent in the
setup phase and for the solution of 26 forward problems. The setup times are
always negligible except for the AMG case, where the construction of the grid
hierarchy adds considerably to the total costs. This varies between 5 and 11%
of the total time depending on architecture and problem size.

Concerning the measurements for BoomerAMG we should note that the
hypre library, of which it is a part, was developed for solving large, sparse sys-
tems of linear equations on massively parallel computers. Thus it is not specially
tuned for the sequential environment in which we used it. We also want to point
out, that, although we have taken into account performance issues in the imple-
mentation of the algorithms, there are still numerous possibilities one could test
for a further optimisation of the code. For some ideas on this, see e. g. [4].
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Fig. 5. Run times (user time in seconds) for the complete problem. This includes the
setup phase and the solution of 26 singular forward problems.

6 Conclusions

Summing up the contents of this paper, we see three major points. The first one
is, that the solution of inverse EEG problems can be sped up considerably by
the application of multigrid methods for the solution of the forward problems
involved. These appear to offer a much better performance than the Krylov
subspace methods typically employed in this context. It remains to be seen
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however, if this also holds for more sophisticated preconditioners like e.g. ILU,
see [6].

The second aspect is that it seems pointless to transform the singular for-
ward problem into an equivalent regular one utilising the approach described in
Sect. 3. In our experiments the regularisation of the problem could not improve
convergence of the tested methods and, in many cases, even led to a worse be-
haviour. However, this does not rule out the possibility that other regularisation
approaches may lead to better performance.

The question, finally, whether a matrix- or a grid-based implementation of
the methods is preferable in view of runtime behaviour, remains open. Our exper-
iments in this context yielded results that vary from architecture to architecture
and are ambiguous in themselves even on the same machine.
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