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Abstract. Apollonius' problem (ÿnd the tangent circles to three given
ones) has attracted many mathematicians and has been solved using
diþerent methods along more than 22 centuries. Nowadays computers
allow to mechanize the solving process and to treat its generalization
to higher dimension using algebraic methods. Starting from the classical
Vieta-Steiner solution for dimension 2, we have developed a method valid
for dimension n, that, thanks to the use of an original coding, allows to
choose in advance the relative position of the solution sphere w.r.t. the
given ones (i.e., if each tangency is exterior or interior). Moreover, the
possible degeneracy of some of the solution (hyper-)spheres in (hyper-)
planes and the existence of conÿgurations with an inÿnity number of
solutions are considered.

1 Introduction

More than 22 centuries ago Apollonius of Perga proposed in his book Contacts

(Tangencies) the problem of constructing the tangent circles to three given ones.
The problem has interested many great mathematicians from antiquity up to

date. The ýrst known solution was found by F. Vieta [12] in 1600. Later, other
solutions were found by Descartes, Newton, Euler, Steiner, Poncelet, Gergonne,
Mannheim, Fouchÿe... In 1898 Lemoine compared the simplicity and exactness
of the diüerent solutions found till then [4]. A discussion about the number of
solutions of the problem was described by Hadamard [3].

The interest of the problem is not only aesthetic; it has also had practical
applications. In 1936, Nobel award winner Soddy [11] particularized the problem
to the study of the relation between the radius of a molecule and the radii of
its atoms, ýnding a curious relation between them. This result was extended to
dimension n by Pedoe [6] and Coxeter [2] in 1968.

Also with a chemical motivation in the background, the extension of the
problem to 3D (substituting circles by spheres and ellipsoids) has been recently
solved by performing an algebraic reduction that makes use of Dixon resultant
and Groebner bases [5].

Similarly, Maple's Geometry package uses a pure algebraic method to solve
the problem. But these approaches are neither constructive nor allow the user
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to choose in advance the relative position of the solution circle w.r.t. the given
ones (i.e., if it is externally or internally tangent to each given one).

A constructive solution of the 3D problem is given in this article. It uses
a method, derived from Vieta-Steiner's, that allows to choose in advance the
relative position of the solution sphere w.r.t. the four given ones. Also following
this line, a constructive solution to the 2D case was developed by the authors
some years ago [9, 10]

2 Solving the Problem in a Way that Allows to Choose

the Solution in Advance

Algebraic methods solve the problem by stating a polynomial system whose
unknowns are the center and radius of the solution sphere and which coeÆcients
depend on the coordinates of the centers and the radii of the four given spheres.
The system is solved using a method that can deal with non-linear polynomial
systems, like those based on Groebner bases.

As said above, these methods do not allow to choose in advance the relative
position of the solution sphere w.r.t. the four given ones (i.e., if it is externally
or internally tangent to each given one).

To achieve this goal we have decided to apply a geometric method, before
coding it properly, in order to directly obtain the chosen solution when using
the implementation.

2.1 3D Extension of Vieta-Steiner's Method

Among the many existing geometric resolution methods, we have chosen the
one that we consider ýts best, according to its computational adaptability. It
combines F. Vieta's reduction to a simpler problem, with the application of the
inversion-based method due to J. Steiner.

So, Vieta-Steiner's solution of Apollonius' problem will be extended to 3D.
The description of the 2D case can be found in any classic Euclidean Geometry
book [1, 8, 7]. We shall introduce afterwards those concepts related to inversion
that will make this computational approach possible.

In an Euclidean real space, the inversion of pole O and power k is the involu-
tive transformation where two points, P and P 0, diüerent from O, do correspond

iü O;P; P 0 are collinear points such that
ÿ!

OP ÿ
ÿ!

OP 0= k.
In this inversion, the sphere such that P and O are endpoints of a diameter,

is the inverse of the perpendicular plane to OP through P 0 (where P 0 is the
inverse of P ).

In the same inversion, the inverse of a sphere that doesn't pass through the
pole of inversion, O, and such that P and Q are endpoints of a diameter and are
collinear with O, is the sphere such that points P 0 and Q0 (inverse of P and Q,
respectively) are endpoints of a diameter.

Let us state the problem precisely. Given four spheres S0; S1; S2; S3 of diüer-
ent centers C0; C1; C2; C3 and radii r0; r1; r2; r3 (respectively), another sphere,
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S, tangent to the four given ones and which center and radius will be denoted
C and r (respectively), is to be determined.

Let us suppose r0 = minfr0; r1; r2; r3g. When subtracting or adding r0 from
the radii of the four spheres S0; S1; S2; S3, another four spheres are obtained:
S0
0
; S0

1
; S0

2
; S0

3
, of centers C0; C1; C2; C3 and radii r0

0
= r0 þ r0 = 0; r0

1
= r1 ý

r0; r
0

2
= r2 ý r0; r

0

3
= r3 ý r0 (whether adding or subtracting r0 will depend on

the inclusions between S and S1; S2; S3, as will be detailed below). They will be
tangent to sphere S0, of center C and radius r0 = rýr0 (depending on whether S
includes S0 or not). This way the problem is reduced to determine the sphere S0

through C0 tangent to S0
1
; S0

2
; S0

3
. We shall refer to this ýrst part of the process

as Vieta's reduction.
Applying now an inversion, I , of pole C0, the spheres S

00

1
= I(S0

1
), S00

2
= I(S0

2
)

and S00
3
= I(S0

3
) are obtained. If precisely the geometric power of C0 w.r.t. S0

1
is

chosen as the power of I , then S00
1
= S0

1
.

As S0 passes through the pole of inversion C0 and I is an angle-preserving
transformation, ýgure S00 = I(S0) must be a plane, tangent to spheres S00

1
, S00

2

and S00
3
(curiously, the same conýguration of a plane and three spheres is used

in the 3D proof of a 2D theorem due to Gaspard Monge).
Consequently, the image by I of a plane, S00, tangent to S00

1
, S00

2
and S00

3
, is a

sphere or a plane (depending on whether C0 62 S00 or C0 2 S00), S0, that passes
through C0 and is tangent to S0

1
; S0

2
and S0

3
. Unapplying Vieta's reduction to S0,

a solution sphere or plane, tangent to S0; S1; S2; S3, is obtained.
Clearly, from each plane S00, tangent to S00

1
, S00

2
and S00

3
, a solution sphere

or plane would be obtained. As, in the usual case, there are at most 8 of such
planes, and S can include S1 or not, the maximum number of solutions is 16
(S0; S1; S2; S3 are supposed to be exterior two by two).

There are special cases where an inýnite number of solutions exist. This is
the case, for instance, when there is a cylinder or a cone that is tangent to the
four spheres simultaneously or when C0; C1; C2; C3 are vertices of a square and
r0 = r1 = r2 = r3.

Up to here we have described a straightforward extension to 3D of Vieta-
Steiner's method for solving the problem in the Euclidean plane. From here
onwards our original contribution to solve the proposed problem begins. The
main diÆculty of the process lies on the appropriate selection of the tangent
plane S00, in order to obtain precisely the desired solution for S, among the 16
possible ones. This will be achieved through an adequate coding.

2.2 Coding the Geometric Elements

A point P of coordinates (p1; p2; p3) will be codiýed as the list of its coordinates:
[p1; p2; p3].

The plane through point P and perpendicular to the unitary vector v, of
coordinates (v1; v2; v3), will be codiýed by the list [P; v], where P and v are the
sublists [p1; p2; p3] and [v1; v2; v3], i.e. by the list of lists [[p1; p2; p3],[v1; v2; v3]].

The spherical surface of center P and radius r will be codiýed by list [P; r],
where P is the sublist [p1; p2; p3] and r is a positive real number. Therefore, the
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four spheres given in the problem will be introduced as a list [S0; S1; S2; S3],
where each Si is the sublist [Ci; ri], of its center and radius.

In order to determine the relative position of each of the given spheres, Si ; i =
0; 1; 2; 3, w.r.t the solution sphere, S, i.e., if they are included or not in S, an
inclusion code, gi, valued in f-1,1g will be used. We shall assign gi = þ1 or
gi = 1, depending on whether Si is external or internal tangent to the solution
sphere S (respectively). The relative position of the spheres in list [S0; S1; S2; S3]
w.r.t. the sphere solution, S, will be determined by a list of codes [g0; g1; g2; g3].

2.3 Selecting the Tangent Plane According to the Chosen Solution

Once the four spheres S0; S1; S2; S3 are given, a right selection of the tangent
plane S00 must be performed, in order to obtain precisely the desired solution
for S, among all possible ones.

Let us denote by v a unitary vector, ortogonal to this plane (director vector)
and by T1; T2; T3 the intersection points of this plane with the spheres S00

1
; S00

2
; S00

3

(respectively).

As T1; T2; T3 belong to the tangent plane S00, vectors
ÿ!

T1Ti; i = 2; 3 are per-
pendicular to vector v, and therefore their dot products by vector v are zero, so
the following equalities will have to be veriýed.

v ÿ v = 1 ;
ÿ!

T1Ti ÿv = 0 ; i = 2; 3 (1)

On the other hand, according to the properties of inversion, sphere S0 in-
cludes S0

i
= I(S00

i
) iü S00

i
is in a diüerent half-space than the pole of inversion C0

w.r.t. plane S00 = I(S0). Therefore, for each pair of spheres among C 00

1
; C 00

2
; C 00

3
,

they must be in the same or in diüerent half-spaces of border S00
i
, depending

on whether their inclusion codes have the same or diüerent signs. Consequently,
the centers, C 00

1
; C 00

2
; C 00

3
of the respective spheres S00

1
; S00

2
; S00

3
, will be in one or

the other half-space of border the tangent plane S00, depending on the values of
gi ; i = 1; 2; 3. So, if r00

1
; r00

2
; r00

3
are the radii of the spheres S00

1
; S00

2
; S00

3
(respec-

tively), their tangent points, T1; T2; T3, can be expressed, initially, as

Ti = C 00

i
+ gir

00

i
v ; i = 1; 2; 3 (2)

Substituting now in (1) the values of T1; T2; T3 given by (2), a polynomial
system of degree 2 whose unknowns are the coordinates of vector v is obtained.
It is straightforward that this system is equivalent to another one where all
equations are linear except one of degree 2, yielding two possible solutions for
vector v.

This is logical. Let us observe that, once the values of the gi have been ýxed,
there are still two possible planes S00, tangent to C 00

1
; C 00

2
; C 00

3
, that keep these

three spheres at the corresponding half-space of border S00 (in accordance with
those values of gi). Therefore there are two possible directions for vector v.

One of this two posible vectors v has to be chosen. This selection must be
done according to whether sphere S0

1
is included or not in S0 (what depends on
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whether g1 is 1 or -1). Consequently, sphere S
00

1
= I(S0

1
) and the pole of inversion

C0 must be in diüerent or the same half-space w.r.t. to the tangent plane S00,
depending on whether g1 is 1 or -1.

But S00
1
and C0 are in the same or in diüerent half-space w.r.t. the tangent

plane S00, depending on whether the inner products
ÿ!

T1C
00

1
ÿv and

ÿ!

T1C0 ÿv are of
diüerent or of the same sign.

Therefore, among the two diüerent vectors v, the one such that the inner

products
ÿ!

T1C
00

1
ÿv and

ÿ!

T1C0 ÿv are of diüerent or the same sign will be chosen,
depending on whether g1 is 1 or -1.

2.4 Extension to Dimension n

The whole process described above for dimension 3 is also valid for any dimension
n ü 2.

3 Algorithm

Input: [S0; S1; S2; S3], [g0; g1; g2; g3] (list of spheres and list of inclusion codes)

Output: S (solution sphere(s), solution plane(s) or Without solution string)

(1) S0
i
:= [Ci; r

0

i
]; r0

i
= ri þ r0 ; i = 1; 2; 3 (Vieta's reduction )

(2) S00
i
:= I(S0

i
) = [C 00

i
; r00

i
] ; i = 1; 2; 3 (I = inversion of center C0)

(3) Ti := C 00

i
+ gir

00

i
v ; i = 1; 2; 3, where v := [v1; v2; v3]

(4) [vþ; vþþ]:=solutions of system fv ÿ v = 1 ;
ÿ!

T1Ti ÿv = 0 ; i = 2; 3g
(5) IF sign(

ÿ!

T1C
00

1
ÿvþ) 6= sign(g1(

ÿ!

T1C0 ÿvþ)) THEN w := vþ, ELSE w := vþþ

(6) IF w imaginary THEN RETURN Without solution string

(7) T1 := C 00

1
+ g1r

00

1
w (tangent point of S00

1
)

(8) S00 := [T1; w] (tangent plane)

(9) IF C0 2 S00 THEN RETURN S := [C0; w] (solution plane)

(10) S0 := I(S00) = [C; r0] (inverse of the tangent plane)

(11) S := [C; r0 + g0r0] (solution sphere; similarly solution spheres or plane(s))

4 Implementation

The previous algorithm does not require symbolic calculations but exact arith-
metic (to be sure that the right decision is taken in the conditionals and for
checking solutions). Anyway, as a system that contains a non-linear equation is
to be solved, it is advisable to use a Computer Algebra System (CAS). Among
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them, we have chosen Maple, taking into account its comfort, diüusion, porta-
bility and calculation power.

The package we have developed works in any dimensiÿon (for circles, spheres
or hyper-spheres, respectively). It has 26 procedures, of which we shall brieûy
describe the main ones (those mentioned in the examples), omitting all subpro-
cedures where the steps of the algorithm above are implemented.

From here onwards and for the sake of brevity, we shall talk of spheres really
meaning circles or 3D-spheres or hyper-spheres, and we shall talk of planes really
meaning lines or planes or hyperplanes (according to the dimension of the space).

ApoSol(SphereList,CodeList) is the main procedure. Its ýrst argument is
the list of spheres [S0; S1; S2:::] and its second argument is the list [g0; g1; g2:::]
of inclusion codes of these spheres. It returns the solution sphere, S, as mentioned
above:

û list of center and radius, [C; r], if the solution is a sphere

û list of point and vector, [P; v], if the solution is a plane

û string Without solution, if there is no real solution

û list of center and radius, expressed as a function of parameters (to which
particular values should be given in order to obtain particular solutions), if there
were inýnite solutions.

ApoComp(Solution,SphereList,CodeList) is the procedure that allows to
check if the solution obtained is correct and the right one. Its ýrst argument is
the solution, S, previously obtained, its second argument is the list [S0; S1; S2:::]
of the given spheres and the third one is the list [g0; g1; g2:::] of inclusion codes.
This procedure calculates the distances from the centers of the given spheres to
the center of the solution sphere or to the solution plane, and subtracts from it
the sum/diüerence of radii or distances, depending on the values of the gi. If the
solution is correct, such results must be zero all of them. So, a list of zeros must
be obtained.

Equ(ÿgure,vars) is a procedure that allows to obtain the equation of a ýgure
of those considered in section 2.2 (if they are introduced in the way explained
there). Using the terminology of 2.2, its ýrst argument is of the form [P; r] (if
the ýgure is a sphere) or of the form [P; v] (if the ýgure is a plane). Its second
argument is the list of names of the coordinate axes [x; y; z:::] w.r.t. which the
equation of S is to be expressed (the output).

ApoDib(Solution,SphereList) allows to plot in Maple both the 2D and 3D
cases. Its ýrst argument is the solution (sphere or plane) and the second one is
the list of given spheres. It returns the plot of the solution ýgure, S, together
with all the given spheres.

5 Gallery of Examples

In the following examples the code is written in Maple 7. The solutions are
obtained using ApoSol, and are allocated in variable Sol. They are checked af-
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terwards using procedure ApoComp. They are represented in Maple 7 using
procedure ApoDib or using DPGraph2000 (a package specialized in graphing
implicit 3D functions; see http://www.davidparker.com/index.html for de-
tails). When an equation is needed it is obtained using Equ.

Example 1. Given three circles, each one exterior to each other, determine the
circle that is externally tangent to the ýrst two ones and internally tangent to
the third one.

> S0:=[[2,-4],3]: S1:=[[-5,3],1]: S2:=[[2,5],2]:

> S:=[S0,S1,S2]; G:=[-1,-1,1]:

S := [[[2, -4], 3], [[-5, 3], 1], [[2, 5], 2]]

> Sol:=ApoSol(S,G);

Sol := [ [
þ3126
2455

+
68

2455

p
3619;

þ103
491

+
28

491

p
3619];

þ4364
2455

+
252

2455

p
3619]

> ApoComp(Sol,S,G);

[0; 0; 0]

> ApoDib(S,Sol);

Fig. 1. Figure of Example 1

Example 2. Given four spheres, each one exterior to each other, determine the
sphere externally tangent to them all.

> S0:=[[0,5,0],2]: S1:=[[0,-5,0],3]: S2:=[[5,0,0],2]:

> S3:=[[0,0,5],1]: S:=[S0,S1,S2,S3]; G:=[-1,-1,-1,-1]:

[[[0,5,0],2],[[0,-5,0],3],[[5,0,0],2], [[0,0,5],1]]
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> Sol:=ApoSol(S,G);

Sol := [ [
1

8048270
(4940+ 3

p
220667)(þ279 + 2

p
220667);

1

8048270
(4940+

3
p
220667)(þ279 + 2

p
220667);

þ98
445

+
3

890

p
220667 ];

þ457
178

+
1

89

p
220667 ]

> ApoComp(Sol,S,G);

[0; 0; 0; 0]

Fig. 2. Figure of Example 2

Example 3. Case where the solution sphere degenerates into a plane.

> S0:=[[0,0,4],3]: S1:=[[2,-7,-3],4]: S2:=[[2,11,-3],4]:

> S3:=[[-7,2,-3],4]: S:=[S0,S1,S2,S3]: G:=[-1,1,1,1]:

> Sol:=ApoSol(S,G);

Sol:=[ [2,-7,1], [0,0,-1]]

> ApoComp(Sol,S,G);

[0; 0; 0; 0]

> Equ(S0,[x,y,z]), Equ(S1,[x,y,z]), Equ(S2,[x,y,z]),

Equ(S3,[x,y,z]);

x2 + y2 + z2 þ 8z + 7; x2 + y2 + z2 þ 4x+ 14y + 6z + 46;

x2 + y2 + z2 þ 4xþ 22y + 6z + 118; x2 + y2 + z2 + 14xþ 4y + 6z + 46

> Equ(Sol,[x,y,z]);

þz + 1
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Fig. 3. Figure of Example 3

Example 4. Given four spheres, of which at least two are mutually external, try
to determine a sphere internally tangent to them all.

> S0:=[[5,0,0],2]: S1:=[[-5,0,0],10]: S2:=[[0,5,0],2]:

> S2:=[[0,5,0],2]: S3:=[[0,0,0],2]:

> S:=[S0,S1,S2,S3]: G:=[1,1,1,1]:

> ApoSol(S,G);

Without solution

Example 5. Given four non-intersecting spheres of the same radii and which
centers are the vertices of a square, determine the spheres externally tangent to
them all.

> S0:=[[2,0,0],1]: S1:=[[-2,0,0],1]: S2:=[[0,2,0],1]:

> S2:=[[0,2,0],1]: S3:=[[0,-2,0],1]:

> S:=[S0,S1,S2,S3]: G:=[1,1,1,1]:

> Sol:=ApoSol(S,G);

Sol := [ [ 0; 0; 2
t
p
1þ t2

þ1 + t2
]; 2

r
þ 1

þ1 + t2
þ 1 ]

(They are spheres which center lies on line x = 0 = y and which radii are ü 1)

> ApoComp(Sol,S,C);

[0; 0; 0; 0]

Example 6. Given ýve hyper-spheres in 4D, determine a hyper-sphere tangent
to them all.

> S0:=[[0,5,0,0],2]: S1:=[[0,0,0,0],1]: S2:=[[0,0,5,0],2]:

> S3:=[[-5,0,0,0],1]: S4:=[[0,0,0,5],1]:

> S:=[S0,S1,S2,S3,S4]: G:=[1,-1,1,-1,-1]:

60 E. Roanes-Macías and E. Roanes-Lozano



> Sol:=ApoSol(S,G);

Sol := [ [
þ5
2
;

1

12334
(375 + 8

p
862)(96 + 5

p
862);

1

12334
(375 + 8

p
862)

(96 + 5
p
862); 5=2 ];

41

7
+

5

14

p
862 ]

> ApoComp(Sol,S,G);

[0; 0; 0; 0; 0]

6 Conclusions

Mixing new and old techniques has made possible to generalize Apollonius' prob-
lem to higher dimension. The approach maintains Vieta-Steiner's solution's ele-
gance. The original coding of each solution (hyper-)sphere is another advantage
of this approach. Both the resolution method and the implemented program are
valid for dimension n (hyper-spheres in dimension n tangent to n+1 given ones).
Moreover, the possible degeneracy of some of the solution (hyper-)spheres and
the possibility of an inýnity of solutions are considered. Therefore we think this
is one more step forward in the study of Apollonius' problem.

Acknowledgements

This work is partially supported by project TIC2000-1368-C03-01 (Ministry of
Science and Technology, Spain).

References

1. Berger M.: Geometry I, Springer-Verlag, Berlin-Heidelberg, 1987.
2. Coxeter H.S.M.: The Problem of Apollonius, Am. Math. Monthly, Vol. 75 (1968)

5-15.
3. Hadamard J.: Lecons de Gÿeomÿetrie Elementaire, A. Colin, Paris, 1947-49.
4. Lemoine E.: Application de d'une mýethode d'ýevaluation de la simplicitýe des con-

structions a la comparaison de quelques solutions du problýeme d'Apollonius, Nou-
velles Ann. Math. (1892) 453-474.

5. Lewis R. H.: Apollonius Meets Computer Algebra. In: Proceedings of ACA'2001,
http://math.unm.edu/ACA/2001/Proceedings/NonStd/

6. Pedoe D.: On a theorem in Geometry, Am. Math. Monthly, Vol. 74 (1967) 627-640.
7. Pedoe D.: Geometry, Dover Pub., New York, 1988.
8. Ogilvy C.S.: Excursions in Geometry, Dover Pub., New York, 1990.
9. Roanes Lozano E.: El Problema de Apolonio, Bol. Soc. Puig Adam, Vol. 14 (1987)

13-41.
10. Roanes Macýüas E., Roanes Lozano E.: Nuevas tecnologÿþas en Geometrÿþa, Editorial

Complutense, Madrid, 1994.
11. Soddy F.: The Kiss Precise, Nature, 137 (1936) 1021.
12. Vieta F.: Varia Responsa. IX: Apollonius Gallus, Real Academia de Ciencias,

Madrid, not dated edition (Reprint of the original dated 1600).

61Geometrie Determination of the Spheres which Are Tangent to Four Given Ones


	1 Introduction
	2 Solving the Problem in a Way that Allows to Choose the Solution in Advance
	2.1 3D Extension of Vieta-Steiner's Method
	2.2 Coding the Geometric Elements
	2.3 Selecting the Tangent Plane According to the Chosen Solution
	2.4 Extension to Dimension n

	3 Algorithm
	4 Implementation
	5 Gallery of Examples
	6 Conclusions
	References

