
Measuring the Performance of a Power PC
Cluster �

Emanouil I. Atanassov

Central Laboratory for Parallel Processing, Bulgarian Academy of Sciences, Sofia,
Bulgaria

emanouil@copern.bas.bg

Abstract. In this work we present benchmarking results from our Linux
cluster of four dual processor Power Macintosh computers with proces-
sors G4/450 MHz. These machines are used mainly for solving large scale
problems in air pollution and Monte Carlo simulations.
We first present some numbers revealing the maximum performance of
an individual machine. The results are from the well known LINPACK
benchmark and an optimized Mandelbrot set computation.
The second set of benchmarking results covers the NAS Parallel Bench-
mark. These tests are written using MPI and Fortran 77 with some For-
tran 90 constructs and are close to the real problems that we solve on
the cluster. We also tested the performance of a free implementation of
Open MP - the Omni Open MP compiler.
The last set of tests demonstrates the efficiency of the platform for par-
allel quasi-Monte Carlo computations, especially when the vector unit is
used for generating the Sobol‘ sequences.

1 Description of the Software and Hardware
Configuration

Our cluster consists of four dual processor Power Macintosh computers, con-
nected with a BayStack 350 Switch. Each node has 512 MB RAM and 30GB
hard disk space, and has two processors, Power PC G4 at 450 MHz clock fre-
quency, with AltiVec technology. More details about the AltiVec technology can
be found at the website http://www.altivec.org.

We decided to use entirely open source/free source software on these ma-
chines. The operating system on the cluster is GNU/Linux, kernel version 2.4.8,
with SMP and AltiVec support enabled. We used the Yellowdog distribution
version 2.0, but we compiled the kernel with the SMP and AltiVec support our-
selves. The cluster was upgraded later to version 2.1, but this didn’t result in
any significant changes in the benchmarking results, shown here. Since the last
upgrade the cluster had not been restarted.
� Supported by a project of the European Commission - BIS 21 under contract ICA1-
CT-2000-70016 and by the Ministry of Education and Science of Bulgaria under
contract NSF I-811/98.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 628−634, 2002.
 Springer-Verlag Berlin Heidelberg 2002



We use in our work the GNU Compiler Collection (GCC), which has com-
pilers for C, C++ and Fortran 77. When one wishes to use the AltiVec unit of
the G4 processor, some special compiler support is needed. We use the Motorola
patched gcc compiler, which introduces some non-standard extensions to the C
language. In our experience use of this compiler and the AltiVec unit pays off
only when a small part of the code is critical for the overall performance.

For our parallel programs we mainly use MPI, so we installed two versions
of MPI - LAM MPI and MPICH. In the benchmarks and in our daily work we
discovered that the LAM version had better results (version 6.5.4 was installed).
It had better latency and throughput in almost all cases. That is why only
results from this version are shown here. LAM has been compiled with support
for OpenSSH, for better security, and with support for System V shared memory,
since significant improvement was discovered in the communication between two
processor from the same node when shared memory is used instead of TCP/IP.

We tested also the Omni Open MP compiler. More information on it can be
found at http://pdplab.trc.rwcp.or.jp/pdperf/Omni/. For the Power PC
architecture however, this compiler could be used only to generate parallel pro-
grams for the two processors on the same node, while for X86 processors and
clusters the programs can operate on the whole cluster.

The cluster is used actively by researchers from the Bulgarian Academy of
Sciences, as well as students from Sofia University.

2 Peak Performance Numbers

Power PC G4 is a RISC CPU, which means it has a large set of registers. 32 of
them are vector registers, meaning they can store 4 integer or floating point 32
bit values. The CPU can perform one basic operation (like load, store, xor,
. . . ) on these registers at once. A significant drawback of the AltiVec unit is
that it can perform floating point operations only in single precision, so it can
not be used in code that requires double precision floating point operations. In
one operation the AltiVec unit deals with 128 bytes of data, so it can perform 4
Flops in 1 processor cycle. It can in some cases perform even more than 4 Flops
per cycle, since it has a multiply-and-add operation.

A well known benchmarking test for processor speed is computing a Mandel-
brot set. Consider the set coming from the relation zn+1 → z4

n+c. Viktor Decyk,
Dean Dauger, and Pieter Kokelaar from UCLA developed an AltiVec optimized
algorithm, reaching almost 4 Flops per processor cycle. These computations are
actively promoted as a benchmark of Power Macintosh computers performance
by Apple. Since the source code of the AltiVec version of this code was not freely
available, the author developed one such implementation. The code performs ap-
proximately 2 additions and 2 multiplications in one clock cycle, leading to an
average of about 1533 MFlops.

This result suggests that the Linux OS and the SMP kernel do not impede
the performance of the CPU in any way.

629Measuring the Performance of a Power PC Cluster 



The next set of results is connected with the LINPACK benchmark ([6]),
which measures essentially maximum speed of the LU algorithm. The author’s
experience is that the “best” options for compilation are “-O3 -funroll-all-loops”,
since the G4 CPU has a large set of registers, and all tests shown in the paper
were done with these options. When one compiles the reference implementation
of the test, he or she gets around 100 MFlops in double precision. However,
using the ATLAS library ([1]), one can achieve more than 490MFlops for ma-
trix multiplication and more than 330 MFlops for LU factorization in double
precision.

Using the High Performance Linpack (see [5]), and trying various choices for
the options at random, we easily found options which allowed us to achieve 300
MFlops rate per processor for the whole cluster, when all 8 processors were used
(for matrices of 5000× 5000 elements).

3 NAS Parallel Benchmark Results

This benchmark suite was developed by NASA with the aim to measure the
parallel performance of given parallel architecture. The suite consists of eight
tests, coming in four different sizes - W, A, B and C. For a detailed description
of these tests see [2].

The test programs implement some important algorithms, and are usually
refered by two letter abbreviations. We will write what these abbreviations mean:
BT - Block Tridiagonal, CG - Conjugate Gradient, EP - Embarrassingly Paral-
lel, FT - Fourier Transform, IS - Integer Sort, LU - LU Decomposition, MG -
Multigrid, SP - Scalar Pentadiagonal.

The benchmark uses MPI and Fortran 77 with some Fortran 90 constructs
and is widely accepted as a benchmark in the scientific community and by hard-
ware and software vendors. See for instance [16],[14],[8],[10].

We remind that the rules for benchmarking do not allow changes in the
source code, one can only look for the best compiler options. We used the GNU
Fortran Compiler - g77, with options “-O3 -funroll-all-loops”. We had problems
with some tests, since the code uses some Fortran 90 constructs. For this reason
the FT test didn’t compile. The other tests produced correct results, when they
were able to fit in memory.

In some cases the problems in their default sizes were too large to fit into
the memory of a single machine, but can be solved if divided in two or four. All
the results are given in Table 1,2,3, and 4. For some of the algorithms by Mops
the actual MFlops rate achieved by the program is shown, while for the integer
algorithms Mops means “millions of basic operations per second”. The efficiency
shown in the tables is obtained by dividing the Mops rate obtained by the Mops
rate of 1 processor and the number of processors. Efficiency is not shown for size
C problems, because the respective problems couldn’t fit in RAM when only one
processor was used.

We also give in Table 5 results from the Open MP version of the NAS Parallel
Benchmark, obtained by using the free Omni Open MP compiler. The Mops rates

630 E.I. Atanassov



achieved using two processors on the same node are shown, and the efficiency is
calculated by dividing the achieved Mops rate by the Mops rate of one processor
from Tables 1,2 and 3. These results are not so good, compared with the results
from the MPI version. In our institution we mostly use MPI, so we were not
very concerned with the Open MP performance of the cluster.

Table 1. Results from the NAS Parallel benchmark, size W

Np BT CG EP IS LU MG SP

Mops Eff. Mops Eff. Mops Eff. Mops Eff. Mops Eff. Mops Eff. Mops Eff.

1 84.3 1 31.1 1 1.9 1 6.3 1 112.3 1 76.3 1 47.2 1
2 27.7 0.88 1.9 1 4.8 0.77 106.5 0.94 63.8 0.84
4 84.0 0.99 18.9 0.60 1.9 1 2.3 0.37 100.7 0.89 42.4 0.55
8 12.9 0.41 1.8 0.97 0.9 0.14 84.6 0.75 28.5 0.37 53.0 1.12

Table 2. Results from the NAS Parallel benchmark, size A

Np BT CG EP IS LU MG SP

Mops Eff. Mops Eff. Mops Eff. Mops Eff. Mops Eff. Mops Eff. Mops Eff.

1 80.1 1 31.4 1 1.9 1 6.2 1 95.4 1 64.1 1 40.4 1
2 29.0 0.92 1.9 0.99 4.6 0.74 97.6 1.02 58.3 0.91
4 73.9 0.92 22.0 0.70 1.9 0.99 2.5 0.4 95.9 1.00 44.4 0.69
8 16.1 0.51 1.9 0.99 1.4 0.22 87.2 0.91 37.6 0.59 42.3 1.05

Table 3. Results from the NAS Parallel benchmark, size B

Np CG EP IS LU MG SP

Mops Eff. Mops Eff. Mops Eff. Mops Eff. Mops Eff. Mops Eff.

1 20.8 1 1.9 1 88.5 1 68.3 1 45.1 1
2 21.2 1.01 1.9 1 87.7 0.99 62.6 0.92
4 1.9 1 1.9 87.8 0.99 57.9 0.85 46.2 1.02
8 1.9 0.99 12.5 0.18

Looking at the numbers, we observe that in most cases the cluster shows
acceptable performance. Perhaps only the IS (IS means integer sort) algorithm
shows definitely poor performance. The performance drop seen in most algo-
rithms when going from 4 to 8 processors is not unexpected, since the two
processors on the same node share the same memory bus and the same net-
work interface. Even when using both processors of the same node instead of
two processors on different nodes bears a performance penalty of about 5-20%,
when using LAM MPI. Comparing these numbers with the peak performance

631Measuring the Performance of a Power PC Cluster 



Table 4. Results from the NAS Parallel benchmark, size C

Np CG EP IS LU MG SP

Mops Mops Mops Mops Mops Mops

2 1.9 85.4
4 16.1 1.9 85.9 47.5
8 14.1 1.2 65.3

Table 5. Results from the Open MP version of the NAS Parallel benchmark

Np BT EP LU MG SP FT

Mops Eff. Mops Eff. Mops Eff. Mops Eff. Mops Eff. Mops Eff.

W 63.8 0.76 1.7 0.89 91.7 0.27 68.2 0.89 39.1 0.83 67.4
A 58.0 0.72 1.7 0.89 68.2 0.71 50.8 0.79 35.3 0.83 45.7
B 1.7 0.89 61.0 0.69 56.4 0.83 35.1 0.78

numbers from the previous section, one can conclude that some of the algorithms
presented here (for instance LU) are not very well optimized with respect to the
cache of the particular machine. On the other hand, in real programs one rarely
has time to introduce additional parameters and experiment with them, in order
to fit more data in cache, so the results shown here can be considered as more
“realistic”, i.e. close to the performance one would expect for his own programs.

4 Parallel Quasi-Monte Carlo Algorithms

The results shown so far are mostly from standard benchmarks. They can be
considered as a prediction for what one could expect from his own code. I was
impressed by the huge gain in performance, when the AltiVec unit is used, and
decided to develop a vector version of my algorithm for generating the Sobol‘
sequences.

These sequences were introduced by Sobol in [12] (see also [13]). They are
widely used in quasi-Monte Carlo computations, because of the uniformity of
their distribution. In Financial Mathematics they are used for computing special
kind of multi-dimensional integrals, with the dimension reaching often 360 or
more. The reader might look at the paper of Paskov and Traub [15] for more
details .

Our algorithm for generation of the Sobol sequences, which will be described
elsewhere, satisfies the “guidelines” for using the vector unit - a small part of the
code takes most of the CPU time. When one needs less than 222 points, there
is no loss of precision if only single precision numbers are generated. Generating
more than 222 points, while still gaining from the use of the AltiVec unit, is also
possible.

In Table 6 one can see timing results from generating 1 000 000 points in 360
dimensions. These results are compared with the results from a basic version of
the algorithm, using ordinary operations. In the programs GB and GV we only
made sure the generation of the terms of the sequence actually happens, and

632 E.I. Atanassov



is not optimized out by the compiler. In GB we used regular operations and in
GV some AltiVec operations were used. In programs SB and SV we show timing
results from generating and summing all the terms of the sequence. In SB only
regular instructions are used, and in GV the AltiVec instructions are used for
both generation and summing the terms, with the summing being done with
just the most simple vector algorithm.

Table 6. Timing results for generating and summing 1 million terms of the Sobol‘
sequences in 360 dimensions

1 2 4 8

Time Mnps Eff. Time Mnps Eff. Time Mnps Eff. Time Mnps Eff.

GB 7.3 49.0 1 3.7 96.3 0.98 1.9 189.8 0.97 1.0 363.1 0.92
GV 2.3 159.4 1 1.2 309.9 0.97 0.6 589.9 0.93 0.3 1034.8 0.81
SB 10.8 33.4 1 5.5 65.8 0.99 2.8 130.5 0.98 1.4 252.8 0.95
SV 4.3 83.3 1 2.2 163.6 0.98 1.1 318.2 0.95 0.6 586.6 0.88

By Mnps we denote the number of millions of elements of the sequence gen-
erated in one second. We show the total time and the Mnps rate. For each term
of the sequence 360 coordinates are needed, so there are 360× 106 elements to
be generated.

Observe the good speed-up obtained by using all the 8 processors of the
cluster, and also the fact that SV takes noticeably more time than GV, so for
a “real” quasi-Monte Carlo algorithm the generation of the sequence will be
performed in a small fraction of the total time. Another observation is that
summing is perhaps the simplest operation on the generated sequence that can
be performed. Still the difference in time between GB (generation only) and SB
(generation and summation), is much more than the time spent for the AltiVec
generation program GV.

While good speed-up is usually associated with the Monte Carlo algorithms,
the above results show that quasi-Monte Carlo algorithms can also be very effi-
ciently parallelized and vectorized, when the Sobol‘ sequences are used.

5 Conclusions

The various benchmarking results shown here demonstrate the viability of the
Linux cluster built from Power Macintosh machines as a platform for scien-
tific computing. Its vector capabilities can be utilized via standard libraries,
specifically optimized for the AltiVec architecture, or by writing hand-tuned
subroutines, when the time permits so.

References

1. Automatically Tuned Linear Algebra Software (ATLAS) -
http://math-atlas.sourceforge.net/

633Measuring the Performance of a Power PC Cluster 



2. Bailey, D., Barton, J., Lasinski, T., Simon, H., eds.: The NAS Parallel Benchmarks.
Technical Report RNR-91-02, NASA Ames Research Center, Moffett Field, CA
94035, January 1991.

3. Bailey, D., Harris, T., Saphir,W., van der Wijngaart, R., Woo, A., Yarrow, M.:
The NAS Parallel Benchmarks 2.0 Report NAS-95-020, December, 1995

4. GNU Compiler Collection -http://gcc.gnu.org/
5. High Performance Linpack Benchmark -

http://www.netlib.org/benchmark/hpl/

6. Linpack Benchmark - http://www.netlib.org/linpack
7. Linux Kernel Archive - http://www.kernel.org/
8. MPI Performance on Coral - http://www.icase.edu/~josip/MPIonCoral.html
9. NAS Parallel Benchmark - http://www.nas.nasa.gov/NAS/NPB/
10. NAS Parallel Benchmarks on a Scali system -

http://www.scali.com/performance/nas.html

11. Omni Open MP Compiler - http://pdplab.trc.rwcp.or.jp/pdperf/Omni/
12. Sobol‘,I.M.: On the distribution of point in a cube and the approximate evaluation
of integrals, USSR Computational Mathematics and Mathematical Physics, 7,86–
112, 1967

13. Sobol‘, I.M.: Quadrature formulae for functions of several variables satisfying
general Lipshuz condition, USSR Computational Mathematics and Mathematical
Physics, 29,935–941, 1989

14. Origin 2000 on NAS Parallel Benchmark -
http://www.nas.nasa.gov/~faulkner/o2k npb benchmarks.html

15. Paskov,S. and Traub,J.: Faster Valuation of Financial Derivatives, Journal of Port-
folio Management, Vol. 22:1, Fall, 1995, 113–120.

16. Turney, R.D.: Comparison of Origin 2000 and Origin 3000 Using NAS Parallel
Benchmarks. NAS Technical Report 01-003

17. Yellowdog Linux - http://www.yellowdog.com/

634 E.I. Atanassov


	1 Description of the Software and Hardware Con .guration
	2 Peak Performance Numbers
	3 NAS Parallel Benchmark Results
	4 Parallel Quasi-Monte Carlo Algorithms
	5 Conclusions
	References

