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Abstract. In this article, w e presen t ouraxial four dimensional defor-
mation tool. This tool is deþned in the con textof geometrical modeling
of animations, where animations are represen ted by fourdimension p oly-
hedrons, and it p ermits to con trol theshap e/top ologyof animations.

We illustrate this tool by deforming animations represen tinga motion-
less ob ject into the merging of tw o similar ob jects. And w e show h ow
con trolling the shap e of thetool enables to con trol thepath the ob jects
follow during the merging but also the smoothness of the merging.

1 Introduction

A metamorphosis is the pro cess of transformingcon tinuouslya sourceob ject in to
a target ob ject,while keeping the main features of b oth ob jects.The solutions
are generally classiÿed in volume-based and b oundary-representation based ap-
proaches [17 ]. Ina simpliÿed w ay, th e volume-based approach of ob jectsmeta-
morphosis can be stated as a "blend" of ob jects. In the b oundary-based ap-
proach, the pro cess is harder: it requires to construct a sup ermeshthat collapses
on the source and target ob ject.So in this approach, the metamorphosis is the
con tinuousdeformation of the sup ermeshfrom the ÿrst collapsed shape to the
second.

The algorithms of construction of ob jectmetamorphosis are various. They
are guided by the user who can set correspondence p oin ts [18 ], skeletons[22, 8 ]
or features [9]. The algorithms tak e in account the geometry of the ob jects :
they deal diþerently for star-shaped ob jects [13 , 14 ], cylinder like ob jects [16 ]
or ob jects Homeomorphic to a disk [12]. The shape of the inbe tween ob jects
can b e con trolledby inýuence shapes[19 ,21 ]. Except in [7, 23 ], the b oundary-
representation based techniques deal only with homeomorphic ob jects or at least
homeomorphic to a spherewhile the volume-basedapproach techniquesdeal with
arbitrary ob jects.But none of these techniques p ermit to con trolprecisely the
top ologyof the inbe tween ob jects.F orexample, ho wcan a designer make n ew
features (e.g. holes) appear only on the inbe tween ob jects?In techniques that
use inýuence shapes, one can use a toroidal inýuence shape but this strongly
modiÿes the shape of the inbe tween ob jects bygiving them the shape of a torus.
Geometrical modeling of animation (GMA) p ermits to overcomethis. The main
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reason is that the animations are modeled as four dimensional polyhedrons and
many operations of control of shape/topology can be adapted to the fourth di-
mension.

In GMA, animations are visualized as polyhedrons [11]. The movies are ex-
tracted by displaying cuts of the object by a set of planes. Diÿerent algorithms
of construction of animations have been studied. In [4], Brandel constructs the
animations by extruding surfaces following an arbitrary polyline. When the ex-
trusion is linear and the set of cut planes are chosen normal to the line, the
animations represent the initial surface translating along the extrusion line. In
[5], the animations are constructed by thickening 3D graphs so that the anima-
tions represent a sequence of merging and scission of spheres. In [20], Skapin
discusses of the creation of animations by computing the Cartesian product of
two objects. This technique involves that users must have a strong intuition on
the way to choose the objects. As the topology of a cut depends not only on the
topology of the 4D polyhedron but also on its shape, deformation tools have been
deþned. Aubert and Brandel [1, 4] deþned animations with topological changes
using Dogme [3] the N-dimensional deformation tool . To increase the control
on the shape of the animations, we deþned a set of tools [2] exhibiting diÿerent
kinds of control.

The main goal of our work is the creation of metamorphosis of non homeo-
morphic objects; we deal with this problem by deforming 4D polyhedrons. In this
article, we explain how to deform an animation deþned by a motionless object in
the merging of two similar surfaces. For this, we use our axial deformation tool,
and we show how a simple control on the shape of the tool permits to control
the path of the merging and its smoothness. We illustrate this technique by ex-
plaining the diÿerent steps of construction of the merging of two tori. In section
2, we describe our axial deformation tool. In section 3, we give the diÿerent steps
of construction of the animation. In section 4, we explain how to create sharp
mergings.

2 Deformation Tool

This tool is an adaptation, of Chang and Rockwoods [6] axial deformation tool,
to a four dimensional tool. It is deþned by a control polygon Pi and a set of
handles. The polygon deþnes a Býezier curve, which is the axis of deformation.
The handles are introduced for a four dimensional control of the deformation.
As shown in Fig. 1(a), there are three handles Si, Ti and Li (represented by yel-
low, red and blue vectors) associated to each control point Pi except the last one.

In section 2.1, we describe the techniques to create and manipulate such a
tool and in Sect. 2.2 we give the algorithm of deformation.
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2.1 Creation and Manipulation

A designer can create a tool in two ways. The ÿrst one consists in specifying
a linear control polygon and three directions A, B and C : the tool created is
linear (Fig. 1(a)) and all the handles S (respectively T and L) share the same
direction A (resp. B and C). The user can also create a tool by simply inputting
a Bþezier curve (Fig. 1(b)); the handles are computed automatically by the algo-
rithm described in Sect. 3.4.

When manipulating an axial deformation tool, one manipulates three kinds
of parameters : Position of the control points, Length of the handles, Orienta-
tion of the handles. To show the link between the modiÿcation of each of these
parameters and the shape of the deformations, three examples are presented. In
order to stay as clear as possible, the objects considered are cubes (embedded
in the xyz space) and only the handles S and T are displayed (as the time com-
ponent of the vertices of the object are null, the handles L are not taken into
account by the deformation algorithm 2.2).

The Position of the control points : In Figure 2(d), the designer moved the
control points deÿning the initial linear axis in order to deÿne a bent axis : the
cube is thus warped along the bent axis (Fig. 2(a)).

The Length of the handles : In Figure 2(e), the designer created a linear
tool and then pulled the handles : the cube is tapered (Fig. 2(b)).

The Orientation of the handles : In Figure 2(f), the designer created a linear
tool and then turned the handles around the axis of deformation : the cube is
twisted (Fig. 2(c)).

2.2 Algorithm

The algorithm is a simple extension of the one given by Chang and Rockwood[6],
obtained by taking into account the new handle L and the time component of
the input vertices. We have modiÿed the original algorithm in order to make the
axis of deformation represent the evolution of time instead of representing the
x axis and this by interpolating in the time direction instead of interpolating in
the x direction.

The algorithm takes in input a point M , of coordinates (x; y; z; t), and in-
terpolates the result of aÆne transformations applied to the point; the result
Pn
0
(M) is the deformed point.
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With ÿ deÿned as following :

ÿ[O; T; i; j;k]
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CCA = O + tOT + xi+ yj + zk

In this section we adapted Chang and Rockwoods mathematical formalism.
We will now show how to instantiate this tool and to deÿne merging of polyhe-
drons in a smooth way.

3 Construction of the Smooth Merging

Intuitively, the steps to construct the merging of two similar shapes consists in
extruding an initial shape, bending the resulting object and then extracting the
animation. The bending step enables "symmetric" sections of the initial object
to be deÿned in the same plane.

For example, if we wish to merge two circles, we extrude a circle (the result
is a cylinder); and then we bend the cylinder 3(a). Figures 3(b){3(d), represents
a set of cuts of the cylinder.

In the following, we show how to merge two tori. The reason we deÿne
the merging of two similar objects comes from the way we construct our four-
dimensional polyhedrons by extruding 3D shapes : the extrusion operator nat-
urally associates to each vertex of one object a vertex of the other object. The
techniques we present in next section are not dependant on the way we construct
our objects, so they could be applied on more general objects [5, 20, 21].

3.1 Construction of the Four Dimensional Polyhedron

We construct our four dimensional polyhedron by extruding a torus, embedded
in the xyz space, following the time direction. The points having their time
component null are called "bottom" points, and symmetrically the points having
their time component equal to 1 are called "top" points.

3.2 Sketching the Curve

The designer sketches a Bþezier curve, which represents the path the objects
follow during the merging. For the current animation, the designer sketched a
curve having the shape of an "S". This curve (Fig. 4(a)) deÿnes the axis of our
deformation tool. In the two next subsections, we will explain how to compute
the ÿnal parameters of the tool.
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3.3 Send the Inner Control Points to the Future

The two endpoints of the tool represent the positions of the two objects at the
beginning of the animation (time=0). The inner part of the curve represents the
motion path of the two objects, so we have to modify the position of the control
points by sending them to the future.

The strategy we followed in this example, for a curve deÿned by n+1 control
points Pi, consists in sending the points of index i < n=2 to the time i and
sending the points of index i > n=2 to the time nÿ i.

The strategy can be chosen freely; each strategy generates a diþerent kind
of merging. It is by choosing another strategy that we show, in Sect. 4, how to
control the smoothness of the merging.

3.4 Compute the Handles

The most important stage in the deÿnition of the animation is to compute the
handles correctly. Otherwise the 4D polyhedron self-intersects or is ýattened; in
these cases the animations are not appealing. The solution consists in computing
the handles using the rotation minimizing frame [15]. This algorithm ensures the
change of direction between two successive handles of same kind is minimal. In
this way, we eliminate sudden changes of direction of handles and so we avoid
self intersecting deformations. In this subsection, we present a four dimensional
version of the way we compute our handles.

The ÿrst control point and the last one represent the beginning of the ani-
mation (time=0). In order to make the "top" and "bottom" points of the con-
structed object share the same time, the time component of the handles, as-
sociated to the point P0 and Pnÿ1, have to be null. This is a consequence of
the fact that the result of the deformation of a point of coordinates (x; y; z; 0)
is P0 + xS0 + yT0 + zT0 and the result for a point of coordinates (x; y; z; 1) is
Pn + xSnÿ1 + yTnÿ1 + zTnÿ1.

The ÿrst three handles S0, T0 and L0 are set by the user in order to form an
orthonormal set of vectors and that the time component of these vectors is null.
In this way, the four vectors P0P1, S0, T0 and L0 form a orthogonal basis of R4 .

The other handles are computed in an iterative way. The handle Hi+1 is com-
puted by turning the handle Hi. It is the rotation deÿned in the plane spanned
by the two vectors Piÿ1Pi and PiPi+1; the angle of rotation is the angle between
the vectors Piÿ1Pi and PiPi+1. For a precise presentation of four dimensional
rotations, one can refer to Hanson's article on N-dimensional rotations [10].

As we compute iteratively the new set of vectors PiPi+1, Si, Ti and Li by
turning the previous set, these sets always form an orthonormal basis of R4 .
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As the three vectors Snÿ1, Tnÿ1 and Lnÿ1 are normal to the time vector
Pnÿ1Pn, they are space vectors. This is the condition we needed, so the algorithm
is valid.

3.5 Apply the Deformation and Extract the Animation

Figures 4(b){4(e) represent diÿerent cuts of this object, by a set of hyperplanes
normal to time.

An advantage of controlling the shape of the metamorphosis by a deformation
tool, is that we can control the continuity of the mergings with visual parameters.
This will be the subject of next section where we will discuss of another strategy
for the step 3.3, and of the continuity between axial tools.

4 Controlling the Smoothness of the Merging

The animations extracted from the curves constructed using the strategy de-
scribed in 3.3, represent two points that merge softly. In order to make the
points merge sharply, one can, for example, use another strategy that þattens
the curve and extract the animation using a set of planes parallel to the þat area.

For example, we deýned a tool deýned by two continuously connected Büezier
curves. In order to þatten the axis around the connection point, we set the con-
trol points, neighboring the connection point, to be on a same line.

We deform our extruded torus, using the two tools deýned by the two pre-
vious curves. Figures 4(f){4(i) represent diÿerent steps of the sharp merging of
the tori.

As the deýnition of the continuity between two axial 3D De Casteljau Gener-
alized deformation tools was discussed in [6], we only precise, in next paragraph,
the way we deal with two continuously linked tools and the computing of the
handles over the global curve.

Let the ýrst tool be deýned by n+ 1 control points P 0

i
and the handles S0

i
,

T 0

i
and L0

i
, and the second tool be deýned by m+ 1 control points P 1

i
and the

handles S1

i
, T 1

i
and L1

i
. The points P 0

n and P 1

0
are merged in order to make the

three control points P 0

nÿ1
, P 0

n
and P 1

0
collinear. The user speciýes the handles

for the control point P 0

0
; the rotation minimizing frame algorithm computes the

other handles of the tool. For continuity reasons, the ýrst handles associated
to the second tool have to be set to be equal to their "equivalent" handles of
index nÿ 1 of the ýrst tool. Finally, the other handles of the tool are computed
automatically.
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5 Conclusion

In this article, we presented our four dimensional extension of Chang and Rock-
wood's axial deformation tool and discussed the way it can be used to control
sharp/smooth merging of shapes. This work will be continued by a study of the
merging of N diÿerent objects and the control of the areas of contact during the
mergings. The þrst point should require to create an algorithm, of construction
of 4D polyhedrons, that brings together the strength of the Cartesian prod-
uct [20] and the interpolation of objects as proposed by Turk and O'Brien[21].
The second point should require to use deformation tools of higher topological
dimension such as tools deþned by surfaces [2] etc.
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(a) Linear tool (b) Bent tool

Fig. 1. Axial tools
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(a) Bent cube (b) Tapered cube (c) Twisted cube

(d) Bending tool (e) Tapering tool (f) Twisting tool

Fig. 2. 3D examples

(a) Bent cylinder (b) time=0 (c) time=1 (d) time=2

Fig. 3. Merging of 2 circles
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(a) Sketched polyline (b) soft merging { 2 de-
formed tori

(c) beginning of the
merging

(d) end of the merging (e) torus warped by an S
shaped tool

(f) sharp merging {
time=0

(g) time=1 (h) time=2 (i) time=3

Fig. 4. Merging of 2 tori
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