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Abstract. Java technology has recently been receiving increasing atten-
tion as a platform for high performance and large scale scientific comput-
ing. The MICROBE benchmarking toolkit is being developed to assist
in the accurate evaluation of Java platforms. MICROBE is based on
the tenet that benchmarking suites, in addition to furnishing benchmark
codes, should provide flexibility in customizing algorithms, instruments,
and data interpretation to facilitate more thorough evaluation of vir-
tual environments’ performance. The MICROBE architecture, projected
usage scenarios, and preliminary experiences are presented in this paper.

1 Introduction

The number of areas in which Java technology [9] is adopted has been increasing
continuously over last years. In particular, there is strong interest in using Java
for so-called Grande applications, i.e. large scale scientific codes with substan-
tial memory, network and computational performance requirements [2,20]. The
Java Grande Forum [14] has been established to promote and augment Java
technology for use in this area. Concerns about performance have traditionally
accompanied Java from the very beginning of its evolution and continue to do
so, especially in the context of high performance, distributed, and Grid comput-
ing. The performance of a Java application depends not only on the program
code and the static compiler, as in the case of traditional languages, but is also
highly influenced by the dynamic behavior of the Java Virtual Machine (VM).
Although the advanced dynamic optimization techniques used in modern virtual
machines often lead to application performance levels comparable to those using
traditional languages, efficiency in Java is highly dependent on careful coding
and following certain implementation strategies. In general, despite the ease and
rapid deployment benefits that accrue, obtaining high performance in Java re-
quires significant effort above and beyond the coding process. In this context,
the existence and availability of reliable and thorough benchmarking codes, in
addition to profiling tools, is of considerable importance to Java community.

Benchmarking (and especially microbenchmarking) of Java codes is much
more complicated than benchmarking other languages due to the dynamic nature
of Java Virtual Machines. Modern VMs are equipped with so-called Just-In-Time

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 709−719, 2002.
 Springer-Verlag Berlin Heidelberg 2002



(JIT) compilers, which translate Java bytecode into optimized native code at run
time. Because the optimization process can be time and memory consuming,
state-of-the-art Virtual Machines [12,13] often defer compilation (resulting in
so-called JIT warm-up time), and adjust the level of optimizations by observing
program execution statistics that are collected in real-time. The objective of such
VMs is to heuristically self-regulate compilation so that the ”hot spots” of the
program are strongly optimized while less frequently called methods are compiled
without optimization or even not compiled at all. The common optimization
techniques adopted include, among others, aggressive code inlining based on the
analysis of data flow and the dependency of classes loaded into the VM.

Many benchmark suites try to cope with JIT warm-up issues simply by pro-
viding performance averages for increasing time intervals, but in general, the
dynamic issues mentioned above can relate the VM performance not only to the
time elapsed since the program was started and the number of times a given
method was invoked but also to many other factors, like the dependency graph
of classes loaded into the Virtual Machine or the amount of available memory.
Dynamic garbage collection can also influence benchmark results if it is trig-
gered at unexpected moments; further, background threads collecting run-time
statistics can affect program execution in unpredictable ways. Therefore, results
from a specific benchmark do not guarantee that equivalent results would be
reported by another, similar benchmark – in fact, we observed differences up
to an order of magnitude. Without considering dynamic issues and knowing ex-
actly what the benchmark code does, such benchmarking results are of limited
value. For benchmarks that do not publish source code, this problem is further
exacerbated. Furthermore, different benchmarking approaches are required for
server applications, where steady-state performance is in the focus, and client
applications, where the VM startup overhead, the dynamic optimization over-
head and memory footprint must also be taken into consideration. Also, in some
applications (e.g. scientific codes) it is very important if the VM can compile
and optimize a method that is executed only once (as the method can include
a number of nested loops and have significant impact on overall performance)
while in other applications that may be of no importance at all.

All the issues discussed above lead to the conclusion that it is virtually impos-
sible to develop a single, generic and complete benchmarking suite for Java that is
appropriate for all kinds of applications even if the area of interest was restricted
only to large scale scientific codes. On the other hand, there is a definite interest
in understanding Java performance in various, application dependent contexts.
Rather than providing yet another standardized benchmarking suite, we propose
to the Java community an open, extensible, component-based toolkit based upon
separation of benchmarking algorithms, the instruments used for measurement,
data transformation routines, and data presentation routines. As these compo-
nents can be freely assembled and mixed, users can rapidly develop customized
benchmarking codes they require. By demonstrating MICROBE version of Java
Grande Forum benchmark suite, we show that the toolkit can also be a basis for
development of complete, standardized benchmark suites.
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2 Related work

A number of Java benchmarks have been developed in recent years. Some of
these are microbenchmarks focusing on basic operations like arithmetic, method
invocations, or object creation [10,1,11]. Others are computational kernels in
both scientific [8,21] and commercial [5,22,19,4,7] domains. Typically, unlike mi-
crobenchmarks, these suites are proprietary and do not provide source code.
There are also a few benchmarks approximating full-scale applications, and
comparative benchmarks that implement the same application in Java and a
traditional imperative language.

Perhaps the most comprehensive and important benchmarking framework
for scientific applications is the Java Grande Forum Benchmark Suite [3,15],
currently at version 2.0. This suite consists of three separate sections. Section 1
contains a set of microbenchmarks testing the overhead of basic arithmetic op-
erations, variable assignment, primitive type casting, object creation, exception
handling, loop execution, mathematical operations, method calls, and serializa-
tion. Section 2 includes numerical kernels, such as the computation of Fourier
coefficients, LU factorization, heap sort, successive over-relaxation, encryption
and decryption with the IDEA algorithm, FFT, and sparse matrix multipli-
cation. Finally, Section 3 contains several full applications, including a solver
for time-dependent Euler equations, a financial simulation using Monte Carlo
methods, and a simple molecule dynamics modeler.

The interesting feature of JGF benchmarks is that they separate instrumen-
tation and data collection from data presentation in a way that enables relatively
easy addition of new benchmarks to the suite. Unfortunately, the microbench-
marking algorithms themselves are hard-coded thus very difficult to modify.

A few shortcomings of JGF benchmark suite were pointed out [17,7]. The
suite was augmented with new benchmarks [6] including corrected arithmetic and
method call microbenchmarks, extended microbenchmarks for object creation
and exception handling, new microbenchmarks for thread handling, new kernels
including sieve of Eratosthenes, tower of Hanoi, Fibonacci sequence and selected
NAS [18] parallel benchmarks.

A common issue of Java benchmarks is that for sake of portability, they usu-
ally employ the System.currentTimeMillis() method as it is the only time
measurement facility currently available in Java. The inaccuracy of this measure
forces benchmarks to perform a large numbers of iterations, making them vulner-
able to strong run time optimizations [17] and excluding more fine-grained tests,
like analysis of JIT compilation process step by step or evaluation of interpreted
code.

3 MICROBE Toolkit Architecture

In any benchmarking suite, it is possible to discriminate among several concep-
tual entities:
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– Operations that are to be tested, like arithmetic operations, object cre-
ation, array sort, or FFT.

– Algorithms used to perform the benchmark: for microbenchmarking, there
are usually different kind of loops, codes for calibration, etc.

– Instruments for quantity measurement: in Java, time is usually measured
with System.currentTimeMillis() method, whereas memory footprint is
measured with Runtime.totalMemory() method.

– Data processors transforming quantities collected by instruments into
some interpretable output, like the number of operations performed per time
unit, arithmetic mean and standard error computed for a series of measure-
ments, etc.

– Data reporters used to present benchmark results to the user. They can
show data in the console window, display graphs, generate tables or HTML
output files.

In all the benchmarking suites that we reviewed, these entities are more or less
tightly bounded together. Although in a few cases (notably, the JGF Benchmark
Suite) it is relatively easy to use custom time measure or data reporting routine,
it is still not possible to benchmark the same operation using different or modified
algorithms, or using different data processing routines to reinterpret the collected
data. The MICROBE toolkit is based on careful separation of all five coefficients
leading to independence and orthogonality between them.

3.1 Benchlets and Yokes

In order to separate operations from algorithms, the MICROBE toolkit intro-
duces the notion of benchlets. A benchlet is a small piece of code encapsulating
only the operation to be tested and implementing the following simple Java
interface:

interface Benchlet {

void init(Object[] params);

void execute();

}

The execute() method provides the operation to be tested, e.g. binary ad-
dition or object creation. Each benchlet has a no-argument constructor; the
initialization may be performed in the init() method. Additionally, the bench-
let can be attributed as unrolled or calibratable (by implementing appropriate
interfaces). The unrolled benchlet performs more than one operation inside the
execute() method. The calibratable benchlet designates some other benchlet to
rule out benchmarking overheads related to the tested operation, like the empty
loop cycles or necessary preliminary steps which would otherwise influence the
results.

The algorithms in the MICROBE toolkit are represented by entities called
yokes. A yoke is able to instantiate a benchlet and control its execution in a
certain way, possibly performing some measurements. Instead of encapsulating
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Fig. 1. Benchlets, yokes, and benchmarks

complete, sophisticated algorithms though, yokes focus only on elementary tasks,
so the user needs to combine yokes to build more complex ones.

The simplest yoke provided in the toolkit is the looper, which repeats the
execute() method of an instantiated benchlet within a loop for a specified
number of iterations. Most other yokes are not self-sufficient but are rather de-
signed to alter the behavior of other yokes, as denoted by the pluggable attribute.
A few examples of pluggable yokes include: calibrator which adjusts results of
measurements for some benchlet with that of its calibrating benchlet, reseter
which provides benchlets with separate environments by loading them through
independent class loaders and only after performing garbage collection, and time
limiter which restricts the amount of time for which the associated yoke is al-
lowed to run, if only that yoke has the interruptible attribute and responds to
interrupt request. All standard yokes shipped with the MICROBE toolkit (in-
cluding the looper yoke) are interruptible. Although this feature requires yokes
to continuously monitor the value of a boolean flag, potentially introducing small
overheads, it has also the positive side effect of improving the accuracy of cali-
bration, as the calibrator loops (that often tend to be empty) become less vul-
nerable to dynamic optimization. The relationship between benchlets and yokes
is illustrated in Fig. 1.

The modularity of the design enables easy customization of the algorithms
formed by collaborating yokes: for instance, it is straightforward to enable or
disable calibration, add time constraints, or compare the benchmark behavior
as it is loaded through common or separate class loader – features difficult if not
impossible to achieve using existing benchmarking suites.

To improve the accuracy and reliability of the results, it is often desirable
to repeat a given benchmark several times and collect statistics. To address this
need, the MICROBE toolkit provides the repeater yoke. This yoke invokes an-
other selected yoke in a loop until the exit condition (specified by the user) is
satisfied. During the loop, the repeater yoke can collect arbitrary data series
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and compute statistics, including: weighted and unweighted arithmetic and ge-
ometric mean, median, standard deviation, standard error, relative error, and
other standard statistical parameters. Further, a user-defined weight function
may be applied at any time to the collected data. Two useful weight functions
are predefined: one for sharp cutoff and second one for smooth exponential cut-
off, which both permit recent results to bias the metric. Because the results of
the statistics can be used in the evaluation of exit conditions, users can develop
very specific and sophisticated algorithms that control the number of iterations
of a benchmark. For instance, it is relatively easy to create the yoke that repeats
a given operation until the result stabilizes at the certain level, e.g. at the third
significant digit.

3.2 Data Producers, Consumers, and Filters

Data exchange in the MICROBE toolkit is based upon a variation of event
listeners pattern. Yokes do not process or display collected data by themselves,
but they may rather have data outputs (or data producers) to which other entities
can attach. Many yokes contain also data inputs, or data consumers, which can
be connected to appropriate data producers. For instance, the calibrator yoke
provides inputs accepting the data to be calibrated, and appropriate outputs
producing calibrated results. This approach leads to the extreme flexibility –
e.g., the calibrator yoke does not have to assume that the measured quantity
represents a particular parameter such as computation time or an amount of
memory.

The MICROBE toolkit directly supports four kinds of data exchanged be-
tween producers and consumers: single numbers, number arrays, arbitrary ob-
jects, and signals, which do not carry additional information. On their way from
one yoke to another, events and data can be processed through filters trans-
forming them in numerous ways. The toolkit provides many basic transforma-
tion routines, like arithmetic operations on single numbers, collectors allowing
gathering of several numeric events to be triggered together, array operations
computing sum or product of the elements, and many more.

Of particular note are certain kinds of filters which convert signals into nu-
merical values, because various instruments measuring different quantities fit
into this category. For example, a clock in MICROBE toolkit is nothing but
converter of query signal (analogous to pushing the stopper button) into the
value expressed in seconds:

class Clock implements Transform.Signal2Number {

public double transform() {

return System.currentTimeMillis()/1000.0;

}

}

Such a generalization allows the toolkit to be independent of the particular
instruments, so users can replace them very easily according to the needs. Also,
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Fig. 2. Difference measurer used to compute time elapsed between two signals

Fig. 3. Example benchmark

because the measurement is reduced just to invocation of simple Java method,
new and customized instruments can be developed with little effort.

Apart from the (not very accurate) clock shown above, the MICROBE toolkit
provides an additional notion of CPU time measurement based on native code,
specifically the clock() function from the Standard C Library. Despite the use
of native code, portability at the source code level is retained due to the use of
Java Native Interface [16] and wide availability of the C library. Measures which
are even more accurate but also more platform dependent (like those based upon
internal CPU cycle counting) may be developed by users; those can be especially
feasible for testing a short term behavior of the Java VM.

Just like yokes, filters can be grouped together to form more sophisticated
ones. The Fig. 2 presents a difference measurer that computes the time elapsed
between two signals using the clock described above as an internal instrument
(as mentioned, the difference measurer is oblivious to the instrument it uses).
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When the “start” signal appears at the input, the time is read and stored by the
collector (represented in the Figure by the wide rectangle) after negation. When
the “stop” signal is issued, the time is read again and also stored. Because the
“stop” signal is connected to the trigger of the collector, these two aggregated
values are triggered and their sum appears at the output.

Fig. 3 shows an application of the difference measurer in a example of a
benchmark algorithm which calculates calibrated execution time for a benchlet
invoked for some number of iterations. The looper, being the innermost yoke
used, is wrapped into a begin/end signaler which signals the beginning and the
end of the computation. These signals are attached to a difference measurer
which computes elapsed time and passes it to the calibrator. The calibrated
output constitutes the result.

4 Reporting Results

One of the important tasks of a benchmarking suite is to interpret collected data
in certain way and report it to the user, e.g., displaying it in the console window,
writing it to a text file or drawing a performance graph. Examples of data inter-
pretation include computing a mean over a series of results, transforming time
figures into a temporal performance (the number of operations per time unit),
etc. The modular structure of the MICROBE toolkit allows virtually any data
interpretation to be applied to the benchmark without changing its code. Fig. 4
shows how temporal performance can be computed for the example benchmark
algorithm evaluated in previous Section.

Fig. 4. Data interpreters applied to a benchmark algorithm
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The flexible event listener mechanism can also support arbitrary data report-
ing method as users can decide exactly how (and which) data should be reported
by developing proper data consumers and plugging them to appropriate pro-
ducers. However, although such approach enables unrestricted customization of
benchmark behavior, it also requires significant work. In contrast, there is often
a need to quickly examine some benchmark code without developing reporting
routines intended to be used only once – so, it is desirable that the yokes provide
some default notion of data reporting out-of-the-box.

To satisfy this requirement, we added the optional reporting attribute to the
yoke definition. The reporting yoke is the one capable of creating a hierarchically
organized report from data collected during benchmark execution. That hierar-
chical data structure originates from analogous layout of yokes logically nested
inside each other. The data report can be then passed to a Reporter object in
order to exhibit it in some way. At this time we provide only one reporter class
which simply displays the collected data in the console window. We are cur-
rently working on the improvements to this mechanism, specifically two other
reporters: one generating HTML and another generating XML output files.

5 MICROBE and the Java Grande Forum Benchmark
Suite

The Java Grande Forum Benchmark Suite is one of the most important bench-
marking packages for Java related to large scale scientific computing. To show
the appropriateness of MICROBE to become a basis of such benchmark suites,
we translated JGF benchmarks into their MICROBE counterparts.

Section 1 of the JGF suite consists of a number of microbenchmarks. We have
transformed all of these into benchlets that can be used within the MICROBE
toolkit. The algorithm used by the JGF suite for microbenchmarking performs
a sequence of successive loops with the number of iterations growing by a factor
of two until either the limit of iterations or elapsed time has been reached. We
provide an appropriate yoke (called JGFLooper) which implements the same
algorithm, but is even more flexible as it fits the generic MICROBE model and
can be combined with different yokes to facilitate more sophisticated testing
patterns.

Section 2 of the JGF suite consists of various computational kernels. We
have developed an appropriate adapter benchlet, which allows MICROBE yokes
to execute and measure these kernels. As the adapter benchlet generates sig-
nals when approaching subsequent stages of the kernel execution, it is possible
to develop some customized yokes especially suited to deal with JGF kernels,
although the default ones are sufficient to perform measurements analogous to
those of JGF suite.

In Fig. 5, we compare the results obtained by benchmarking the JGF suite
(Section 1) and their MICROBE analogs for two different virtual machines. The
results reported are geometric mean averages for each microbenchmark. The test
platform was a Dell Dimension PC with a 450 MHz Pentium II processor and
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Fig. 5. Performance results [operations per second]

128 MB of memory running Mandrake Linux 7.2. The VMs were SUN HotSpot
Client 1.3.0 and IBM 1.3.0 for Linux. As expected, the results for JGF and MI-
CROBE are very similar in most of cases, except for the “Create” and “Method”
microbenchmarks. That last anomaly is most likely a result of the simplicity of
the methods invoked and the objects being created in JGF suite. These aspects,
in conjunction with the benchmarking algorithms used, makes the benchmarks
very sensitive to run-time optimizations and can introduce performance differ-
ences even for very similar codes. It is also worth noting that the calibration
– absent in JGF suite but enabled by MICROBE – identified a weakness of
the JGF “Assign” test, in which the IBM VM were able to optimize out some
variable assignments, resulting in unrealistically high performance figure.

6 Conclusions and Future Work

In this paper, we have described the MICROBE toolkit which facilitates the rapid
construction of Java benchmark codes. The toolkit addresses the need observed
among the Java community to facilitate testing various aspects of dynamic Java
Virtual Machine behavior, especially the issues of dynamic code optimization.
We have evaluated the MICROBE version of the Java Grande Forum bench-
marks, showing that MICROBE can be used to develop complete benchmark
suites.

Currently, we are investigating the possibility of extending the concept of a
benchlet to facilitate more sophisticated benchmarks, e.g. emulating the behav-
ior of full blown applications as well as parallel codes. We also recognize the
possibility of developing a graphical language which would permit the visual
construction of benchlets and yokes in the manner outlined in this paper.

Scientific applications for Java are often integrated with components and li-
braries written in traditional languages. Such integration can be performed using
the Java Native Interface (JNI) [16], which, however, may introduce significant
overhead. To address this issue, we intend to establish a full size benchmarking
suite for the JNI based on the MICROBE toolkit.
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