
Designing a Flexible Grid Enabled Scientific
Modeling Interface

Mike Dvorak1,2, John Taylor1,2,3, and Sheri Mickelson1,2

1 Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne IL 60439
{dvorak, jtaylor, mickelso}@mcs.anl.gov

http://www-climate.mcs.anl.gov/
2 Computation Institute,

University of Chicago, Chicago, IL, 60637
3 Environmental Research Divisions

Argonne National Laboratory, Argonne IL 60439

Abstract. The Espresso Scientific Modeling Interface (Espresso) is a
scientific model productivity tool developed for climate modelers. Espresso
was designed to be an extensible interface to both scientific models and
Grid resources. It also aims to be a contemporary piece of software that
relies on Globus.org’s Java CoG Kit for a Grid toolkit, Sun’s Java 2
API and is configured using XML. This article covers the design and im-
plementation of Espresso’s Grid functionality and how it interacts with
existing scientific models. We give specific examples of how we have de-
signed Espresso to perform climate simulations using the PSU/NCAR
MM5 atmospheric model. Plans to incorporate the CCSM and FOAM
climate models are also discussed.

1 Introduction

The Espresso Scientific Modeling Interface (Espresso) is designed to utilize ex-
isting Grid computing technology to perform climate simulations [1]. Espresso
is also a software tool that gives scientific model users the freedom to eliminate
the mundane task of editing shell scripts and configuration files. It empowers
the scientist to spend more time performing science and analyzing the output of
climate simulations.

Espresso is tailored to the demands of the climate modeler. In the Mathe-
matics and Computer Science (MCS) Division, we make global climate model
runs using the Fast Ocean-Atmosphere Model (FOAM) [2]. We also create high
resolution meteorological model runs for extended periods of time (e.g. hourly
output for years over the United States at 10-52 km resolution) using a regional
climate model. Making regional climate simulations requires a robust computing
environment that is capable of dealing with resource faults inside complex model
codes. Espresso is designed to meet the rigorous demands of a multi-architecture,
terra-scale environment.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 777−786, 2002.
 Springer-Verlag Berlin Heidelberg 2002



Moreover, Espresso strives to make the best use of contemporary technology
by using: (1) the eXtensible Markup Language (XML) for system and graphical
configuration; (2) the Globus.org Java CoG Kit for accessing Grid resources;
(3) Sun’s Java Web Start for software deployment; (4) a subset of the Apache
Software Foundation’s Jakarta Project utilities i.e. Regexp. Espresso is a pure
Java program that is capable of being run from anywhere on the Internet.

Lastly, Espresso can be utilized by a wide variety of users, not just climate
modelers. Espresso is designed for ease of use with different scientific models
where model configuration is complex and Grid resources are required. Work is
underway to incorporate both the FOAM and the Community Climate System
Model [3] into Espresso.

This article focuses on the system side (non-graphical user interface (GUI))
and Grid application design of Espresso. For a detailed look at the design of
the GUI, see [4]. It should also be mentioned that Espresso is a second genera-
tion tool with the Argonne Regional Climate Workbench [5] as its predecessor.
Espresso is different from the Climate Workbench in that: (1) its client side is
pure Java; (2) it can be an interface for multiple models; (3) it is fully config-
urable via text (XML) files; (4) it can run anywhere on the Internet. Lessons
learned from the design of the Climate Workbench and its applications have
contributed significantly to the design of Espresso.

2 An Example Scenario Using Espresso

While the details of Grid computing for climate science are detailed in papers
like [6], the following scenario provides insight on how a Grid enabled interface
can be utilized to help climate scientists perform climate simulations. Figure 1
provides an example situation of how a climate scientist might interact with
Espresso.

To the user, the most important part of Espresso is the GUI. Espresso’s GUI
hides all of the implementation details behind buttons and tell-tale output in-
dicators. Users are not forced to learn all of the climate model’s idiosyncrasies.
Instead, they can concern themselves with the relevant model parameters. The
GUI is a secure proxy to the Grid resources. From Espresso, the user can com-
mand the supercomputing, storage and analysis resources the user has access to
with their authenticated certificate. The user only needs to authenticate once to
obtain access to all Grid resources which they are authorized to use. This is the
Internet equivalent to logging on to a single computing system.

After the user authenticates, they enter their climate simulation parameters
via Espresso’s GUI. Figure 1 shows the a scenario in which the climatologist
wants to access a historical archive of climate data on a remote server (which
could contain terabytes of data) to obtain initial and boundary conditions for
a regional climate simulation. Inside the GUI the user simply specifies the his-
torical data set via a combo box. The run dates, geographical grid, and model
parameters to run for the simulation is set in text boxes. The user then submits

778 M. Dvorak, J. Taylor, and S. Mickelson



Scientist
InternetEspresso Client

Supercomputing Resource

Historical Climate
Archive

Access via Globus
Java CoG Kit

Access via Globus
Java CoG Kit

Data transfer
via Globus URLCopy

Fig. 1. An Example Scenario Using Espresso to Perform a Climate Run

the job to the Espresso server side component (which could be located anywhere
on the Internet) for execution.

Eventually, the Espresso server side component will know how to use a Grid
toolkit to obtain the climate data from a remote historical archive. The super-
computing resource will then use third party data transfer to obtain the climate
data and proceed with the climate simulation. After the simulation is finished,
the Grid toolkit could also be used to analyze and move the data to a different
storage server via the Grid. For an overview of Grid computing infrastructure,
see [1].

3 Modeling Interface Software Design

Table 1 highlights the most significant design requirements that were required
for regional and global climate modeling. These requirements also help to make
Espresso sufficiently flexible so that it could be used by other scientific modeling
systems.

3.1 Special Considerations for Climate Modeling

Climate modeling places unbounded demands on supercomputing resources. Re-
gional climate modeling intensifies demand on computing resources by increasing
spatial resolution and the frequency of atmospheric/oceanographic data output.
In MCS, initial and boundary condition files typically run on the gigabyte scale
with raw data output running on the terabyte scale. Climate modeling systems
also consist of several different data preprocessing programs and executables
with many different build options. An effective interface for a climate modeling

779Designing a Flexible Grid Enabled Scientific Modeling Interface



Design Requirement Implementation Solution

Grid enabled Globus.org Java CoG Kit

System-side easily configurable XML

GUI easily configurable XML/Java Swing

Distributable case studies XML

Easy package deployment Java Web Start

Run anywhere on Internet Globus Java CoG Kit/
Java Web Start

Table 1. General design requirements and implementation solutions in Espresso

system must be able to work with all of these preprocessing and build programs
in a dynamic manner.

The Penn State University/National Center for Atmospheric Research Mesoscale
Model 5 (MM5) is a good example of a scientific model that pushes a computing
resource to its limits. We use MM5 for high resolution, regional climate runs.
Most of the challenges of running MM5 evolved from porting the atmospheric
model to different architectures i.e. MCS’s Chiba City, a 512-processor Linux
cluster. Other high performance problems are derived from running MM5’s com-
plex system of data preprocessing programs. The model is also written in Fortran
77 so variables are not dynamically allocated. Having to run a scientific model-
ing system with a complex build and preprocessor system placed a high quality
design requirement on Espresso. A good review of MM5 is given in [7] [8] [9]
and [10].

3.2 Making Espresso Work With Multiple Models

In order to make Espresso usable for a wide group of scientific models, it was
necessary to make three broad assumptions:

– Large scientific modeling systems are configured by editing text configuration
files.

– By editing these text files and replacing them within the system, the original
scientific model can be used in the way that its designers intended.

– No code modifications to the original software.

By stating these underlying assumptions during the design and implemen-
tation of Espresso, it has been easy to determine which models will be able to
use this interface. An important side effect of these assumptions is that Espresso
can easily be used with a scientific model not originally designed to have a GUI.
This is the situation for many older Fortran scientific codes.

3.3 General Espresso System Requirements

In order to accommodate the needs of a wide variety of users, Espresso must be
extensible. We needed both a Grid functionality component and a GUI that was

780 M. Dvorak, J. Taylor, and S. Mickelson



easily configurable using an input text file. The original Climate Workbench was
limited to running only the MM5 model and contained hard-coded fields specific
to MM5. It would have been very difficult to extend this interface to new models.
Therefore, the interface needed to be customizable via a ASCII text file. Ideally
this text configuration file would be written in XML to take advantage of freely
available parsing tools.

We required the use of object oriented design and programming techniques
in order to incorporate extensibility. The original Climate Workbench modeling
interface was written such that it was nearly impossible to extend the functional-
ity of the interface. Along with this design paradigm came the desire to reuse as
much code as possible through the inheritance of key scientific modeling compo-
nents i.e. model variable data structures and general text processing algorithms.
Model specific tasks such as the regular expression syntax would be sub-classed.

The most critical design feature to building a “wrapper modeling interface”
was embracing the scientific model without structural changes. This approach
has substantial advantages with regard to code maintenance. Figure 2 illustrates
how Espresso accomplishes this task. Contained within Espresso are only the
model’s original configuration files that will be used as a template. In step 2,
Espresso has modified the configuration files with error checking. Step 3 places
the files on the server side supercomputing resource using the Globus URL Copy
functionality. These configuration files are “pushed” into place like the final
pieces of puzzle, allowing the model to be run as originally intended.

Step 1 Step 2
Step 3

Globus URL Copy

Step 4

Espresso changes
ONLY the config files!

Configured modeling
system ready to run
in its intended state

Fig. 2. Espresso runs the remote system by editing the configuration files. These con-
figuration files are then moved back into their original location. The scientific model
can be executed in the way intended by the original designers. No structural changes
are made to the scientific modeling code when using Espresso.

By making no changes to the scientific modeling system, upgrades can also
be performed with minimal effort. This design requirement limited us to only
having the configurable text files on the remote system and then copying these
files to the server, in the appropriate location. Updating versions of the model
code can be achieved with minimal effort using this approach.

The Climate Workbench could be run only on specific machines in MCS.
The old version assumed that the Network File System (NFS) was available.

781Designing a Flexible Grid Enabled Scientific Modeling Interface



Unfortunately, this limited the interface to run only within the MCS network.
We wanted to be able to run Espresso from anywhere via a Java enabled browser.
Espresso would have to run as a stand alone application and access all resources
via its Grid interface. The Globus Java CoG kit made all of this functionality
possible.

Some users may desire to run a non-GUI version of the modeling interface, i.e.
a text only version. For testing purposes, this was also a very important feature.
Other users may want to perform special Grid computing tasks that would not
be feasible within a GUI. This would allow experienced users to take advantage
of all of Java and Globus tools described above without the need to enter data
via the Interface. Error checking occurs in the GUI so this feature would be lost
in the non-GUI version ( [4] discusses Espresso’s GUI error checking in detail).

3.4 Espresso Server Side Component

The implementation of Espresso’s server side component uses several shell script-
ing languages (TCSH, Python, BASH). For testing and modular purposes, we
needed all of these shell scripts to run independently of Espresso. We also wanted
to rid the server side of scripts that took long command line arguments. Con-
sequently, we developed additional helper scripts that discovered information
about the variables needed to run other scripts e.g. the start and end dates of
the model simulation.

4 Espresso Implementation

4.1 Grid Utilization via the Globus Java CoG Kit

In order to make the Espresso client pure Java code, we needed a Grid toolkit
that was implemented in Java. The Globus.org group had available a Java im-
plementation of its Commodity Grid (CoG) Kit [11] [12]. The availability of the
Java CoG Kit allowed us to integrate all of the Grid functionality that we needed
with its Java API. The Java CoG Kit has all the necessary packages in a single
Java ARchive (JAR) which can be distributed with the modeling interface. The
Java CoG Kit communicates with the C implementation of the Globus Toolkit
to perform tasks on the server side.

The two components utilized in the Globus Toolkit are the Globus Resource
Allocation Manager (GRAM) and the GridFTP components. GRAM is used to
run jobs remotely on different computation resources [13]. In order to execute a
job on a resource machine, users use the Resource Specification Language (RSL)
to tell the GRAM server what type of job is to be run. Typically, the RSL string
sent to a supercomputing resource includes the name of the executable and the
location of the standard out and error files (which can be located remotely).

Editing all of the model configuration files on the system side required that we
transfer these files to the server side. We used the CoG Kit’s Globus URLCopy
from the GridFTP [14] component to provide this functionality. The URLCopy

782 M. Dvorak, J. Taylor, and S. Mickelson



class allows both second and third party file transfers in a fashion similar to that
of the common FTP client. Authentication on the remote server(s) is handled
with the Globus security credentials and there is no need to type in another
password once the original Grid Proxy has been established. We plan to use
URL Copy’s 3rd party copy functionality in future versions of Espresso to move
large files from server to server (to which we may add additional error checking).

4.2 Creating a Java Based SED

The Unix “Stream EDitor” (SED) is a commonly used tool to edit streams of
text. Since we assumed the scientific models were configured by editing text
files, we needed the equivalent functionality of SED operations in Java. The first
version of the interface used SED on the Unix server side to edit files.

The Java Foundation Class (JFC) provides the java.util.StringTokenizer class
that allows one to parse tokens. Significant additional coding and testing had
to be undertaken to mimic SED’s functionality. The Apache Software Founda-
tion’s Jakarta Project provides us with a regular expressions package written in
Java (appropriately named “Regexp”) to use with the Java IO package. This
allows us to build regular expressions for each model variable. MM5 for exam-

ple, uses the “Regexp” regular expression “̂[.*\s—](” + v.getVariableName() +
”)\s{1,}=\s{1,}(\d{0,})” to search through the variables in a Fortran name list.

5 Delivering Espresso to the User Community

5.1 Obtaining Access to Grid Resources

In order to use Espresso with Globus Grid resources, you need to establish
your Globus credentials. You must first obtain these Globus credentials from
the Certificate Authority [16]. Next, you need to have your name added to the
“grid-map” on a Globus resource e.g. a mass storage device or a high performance
computer. The number of resources that you have access to is limited only by
your need to obtain permission to access the resource and Globus being installed
on the system.

To use these Grid resources, you are required to validate your Globus cre-
dentials via the “grid-proxy-init” utility which asks for you password and vali-
dates your certificate for a fixed amount of time (12 hours by default). Once the
“grid-proxy-init” is performed, you have complete access to all of your computa-
tional resources through the Globus toolkit. Espresso utilizes this functionality
by copying files to a file server and running the scientific model on a different
machine.

5.2 Accessing Espresso Technology

Delivering updated software to our user community was a concern from the start
of the project. We wanted to distribute Espresso with minimal difficulty for both

783Designing a Flexible Grid Enabled Scientific Modeling Interface



«abstract»
Class Control

Class MachineTask

Class MM5Control

Class MM5Espresso

«abstract»
Class Espresso

Implements Fascade
design pattern.
Communicates with
gov.anl.mcs.climate.
espressogui package.

«abstract»
Class Variable

package gov.anl.mcs.climate.espresso;

Class MetaModel

Globus Java CoG

package gov.anl.mcs.climate.espresso.system;

Class CSSMEspresso

Class CCSMControl

Inherited by
IntegerVariable,
IntegerArrayVariable,
etc...
Also inherited by the
GUI side to include min/
max and description info.

Espresso Server
Side Component

Fig. 3. UML Description of the Espresso System Side Design (Facade design pat-
tern [15])

784 M. Dvorak, J. Taylor, and S. Mickelson



us (the developers) and the users. Fortunately Sun Microsystems, Inc. has a
web-based software solution called Java Web Start [17]. Once users install Web
Start (available for Windows, Solaris, Linux and Macintosh OS X), programs
are installed, updated and executed via an Internet or desktop link. If Espresso
is updated on the web server, Web Start detects a newer version and downloads
the update.

Once a historical climate data archive is set up (similar to the diagram in
Figure 1), we plan on creating a “case study repository” of XML files. Having a
repository of XML files would allow other users to replicate or alter the param-
eters of other scientists model simulations. Other users could create case studies
of interesting weather/climate events and exchange the XML files with other
model users. All users could potentially have access to the historical climate
data referenced in the “case studies” via the Grid.

6 Conclusion and Future Work

The initial version of the Espresso Scientific Modeling Interface, a scientific mod-
eling productivity tool incorporating Grid technology has been developed. Cre-
ating a multipurpose scientific modeling interface that could be applied to many
different scientific models was a challenging task. Using existing tools such as the
Apache Software Foundation’s XML parsers and regular expressions packages,
Globus.org’s Java CoG Kit and Sun’s Web Start technology has allowed us to
produce a high quality scientific model interface.

Espresso was intended to be developed iteratively, with the initial focus on
the MM5 atmospheric model. Current efforts are being directed toward incor-
porating FOAM and the CCSM climate models. This will help us to abstract
common components of scientific model simulation and analysis. In the coming
year, we plan on updating the design of Espresso to simplify the task of adding
scientific models to the interface. With increased Grid functionality, Espresso
could become an important software tool for performing Grid based climate
simulations.

Acknowledgments

We thank that the staff the Mathematics and Computer Science Division and
the Computation Institute. We would also like to thank Gregor von Laszewski
and Jarek Gawor of the Globus.org group for helping us use the Globus Java
CoG Kit. The work was supported in part by the Laboratory Director Research
and Development funding subprogram of the Office of Advanced Scientific Com-
puting Research, U.S. Department of Energy, under contract W-31-109-Eng-38.
This work was also supported by the NSF Information Technology Research
Grant, ATM-0121028.

785Designing a Flexible Grid Enabled Scientific Modeling Interface



References

1. Ian Foster and Carl Kesselman. The Grid: Blueprint For A New Computing In-
frastructure. Morgan Kaufmann Publishers, 1999.

2. Robert Jacob, Chad Schafer, Ian Foster, Michael Tobis, and John Anderson. Com-
putational Design and Performance of the Fast Ocean Atmosphere Model, Version
One. In Computational Science - ICCS 2001, volume Part I, pages 175–184. Inter-
national Conference on Computational Science, Springer, May 2001.

3. The CCSM Home Page. http://www.ccsm.ucar.edu/.

4. Sheri Mickelson, John Taylor, and Mike Dvorak. Simplfying the Task of Generat-
ing Climate Simulations and Visualizations. Submitted to the 2002 International
Conference on Computational Science.

5. John Taylor. Argonne Regional Climate Workbench.
http://www-climate.mcs.anl.gov/proj/climate/public_html/.

6. John Taylor, Mike Dvorak, and Sheri Mickelson. Developing GRID based infras-
tructure for climate modeling. Submitted to the 2002 International Conference on
Computational Science.

7. F. Chen and J. Dudhia. Coupling an Advanced Land-Surface/Hydrology Model
with the Penn State/NCAR MM5 Modeling System: Part I: Model Implemen-
tation and Sensitivity. Monthly Weather Review, 2001. ”See also Pennsylvania
State University/National Center for Atmospheric Research, MM5 Home Page”
http://www.mmm.ucar.edu/mm5/mm5-home.html.

8. F. Chen, K. Mitchell, J. Schaake, Y. Xue, H. L. Pan, V. Koren, Q. Y. Duan,
K. Elk, and A. Betts. Modeling Land-Surface Evaporation by Four Schemes and
Comparison with FIFE Observations. Journal of Geophysical Research, 101:7251–
7268, 1996.

9. J. Dudhia. A Nonhydrostatic Version MM5 of the Penn State/NCAR Mesoscale
Model: Validation Test and Simulation of an Atlantic Cyclone and Cold Front.
Monthly Weather Review, 121:1493–1513, 1993.

10. G. A. Grell, J. Dudhia, and D. R. Stauffer. The Penn State/NCAR Mesoscale
Model (MM5). Technical Report NCAR/TN-398+STR, National Center for At-
mospheric Research, 1994.

11. Gregor von Laszewski, Ian Foster, Jarek Gawor, and Peter Lane. A Java Commod-
ity Grid Kit. Concurrency and Computation: Practice and Experience, 13:645–662,
2001.

12. The Globus Toolkit CoG Kit Homepage. http://www.globus.org/cog/java/.

13. Karl Czajkowski, Ian Foster, Nicholas Karonis, Carl Kesselman, Stuart Martin,
Warren Smith, and Steve Tueke. A Resource Management Architecture for Meta-
computing Systems. Technical report, Proc. IPPS/SPDP ’98 Workshop on Job
Scheduling Strategies for Parallel Processing, 1998. pp. 62-82.

14. GridFTP:Universal Data Transfer for the Grid. Technical report, Globus Project,
September 2000.

15. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

16. The Globus Homepage. http://www.globus.org//.
17. Java Web Start Home Page. http://java.sun.com/products/javawebstart/.

786 M. Dvorak, J. Taylor, and S. Mickelson


