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Abstract. In the fields of computer aided geometric design and computer 
graphics, B-spline curves and surfaces are often adopted as a geometric 
modelling tool and their evaluation is frequently required for a various 
geometric processing. In this paper, we present a new algorithm to convert B- 
spline curves into piecewise polynomials in power form. The proposed 
algorithm considers recursive B-spline basis function to be a pile of linear 
functions and collects all the necessary linear functions in each knot span. Then, 
algorithm computes the power form representation of B-spline basis functions 
and the required transformation of B-spline curve is obtained through the linear 
combination of B-splines in power form and the corresponding control points in 
each knot span. 

1. Introduction 

In the applications of computer graphics and computer aided geometric design, shapes 
are often modeled in terms of freeform curves and surfaces represented in B-spline 
form and their evaluation is frequently required for a various geometric processing. A 
B-spline curve of degree p with (m + 1)  knots is defined by 
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where Pi and Ni,p ( t )  are control points and B-spline basis functions of degree p on 

a knot vector u = 0 ,  . 0, t + , ,  t , . . ,  ti 5 t i  , respectively [I]. In 

general, N, , ,  ( t )  is defined as the following recurrence formula in Equation (I)  

where i = 0, 1 ,  ..., m-p-I. Equation (2) shows that the evaluation of C( t )  requires 
inevitably a recursive function evaluation which makes the evaluation slower. Even 
though a faster implementation in a non-recursive form may exist for periodic curve 
[2][3], a further reduction of the computation time is desirable especially when the B- 
spline curve changes its shape continuously by moving some of the control points. 

Once a curve or surface is represented in power form, a point evaluation can be 
made faster due to Horner's rule even though the issue of numerical stability remains 
[4]. In this paper, we propose a faster algorithm for the evaluation of a B-spline curve 
based on the conversion of curve into a piecewise polynomial in a power form. It is 
also known that faster computation of the characteristic points on a curve, such as 
inflection points and cusps, can be facilitated by the conversion of a B-spline curve 
into a set of piecewise polynomial curves in power form. Note that the subdivision of 
a parametric curve at these characteristic points facilitates the fast computation of 
intersection points between curves [5]. In addition, IGES supports a free-form curve 
as a piecewise polynomial in power form with an entity type 112 [6]. Due to the 
relative advantages of implicit representation of curves or surfaces over parametric 
one in some geometric calculations such as a point inclusion problem, it is sometimes 
necessary that a parametric form be converted to an implicit form [7]. The 
implicitization process, which uses a resultant, usually requires the curve to be 
represented in power form [S]. Since this operation is computationally demanding, the 
reduction of computation should not be ignored. 

Discussed in this paper is the transformation of B-spline curve into a set of 
piecewise polynomials in power form, which is known to be a tedious task [9]. 
Especially, the focus of the paper is made on dynamic curves in the sense that one or 
more of the control points of the curves are moving. On the other hand, a curve with 
fixed control points is called static. 

Since a static B-spline curve can be converted into a set of piecewise Bezier curves 
by a knot refinement [1][10][1 1][12][13], applying a basis conversion operation to 
each piece will produce a set of piecewise polynomials in power form. This approach 
is called the KR-approach in this paper. The required transformation can also be 
obtained through applying Taylor expansion of the B-spline at each knot span with 
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the appropriate number of terms depending on the degree of the curve [14], which is 
denoted by the TE-approach in this paper. 

The main idea of the proposed algorithm, called a direct expansion (DE) algorithm, 
is as follows: after collecting all linear terms that make up the basis functions in a 
knot span, the algorithm directly obtains the power form representation of basis 
functions in the knot span by expanding the summation of products of appropriate 
linear terms. Then, the polynomial curves in power form in the knot span can easily 
be obtained by multiplying the basis functions in power form with corresponding 
control points. Repeating this operation for each knot span, a B-spline curve are 
transformed into a set of piecewise polynomials in power form. Experiments show 
that the proposed DE algorithm significantly outperforms the existing approaches for 
the case of dynamic curves. Hence, the proposed algorithm can be very useful for the 
curve implicitization as well as the computation of intersections when the curves are 
dynamically changing. 

2. Direct Expansion of A Static Curve 

Definition I .  A truncated basis function, T,,, ( t )  , i=w-p,w-p+l,.., w, w=p,p+l,.., m-p- 

1 ,  be an active polynomial segment among Nl,p's, in [t. , t,.,, ) . 
Figure l a  shows cubic B-splines with m = 11, and Figure Ib illustrates the 

corresponding truncated basis functions. Note that there are p+l truncated basis 

functions in [t ;, t ;+, ) for a B-spline curve of degree p. If we collect all the truncated 

basis functions with same i value, then we can obtain a well-known B-spline basis 

function. For example, there exist four truncated basis functions To,, ( t )  , TI,, ( t )  , 

T,,, ( 1 )  and Z,,, ( 1 )  in [ti,  t, ) and N ,  7 consists of four truncated basis functions, 

~ , , , ( t )  , ~ , , , ( t )  , ~ , , , ( t )  and T3,6 ( t )  . Thus, B-spline basis function N,,,, can be 

represented by the following equation. 
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Fig. 1. Cubic basis splines and truncated basis functions with five knot spans of nonzero length 

The truncated basis function in power form can be computed summation of 
products among appropriate linear terms, which can be obtained by Equation (2) and 
the enumeration of 0-1 sequences [15]. Once all of the truncated basis functions are 
computed, the B-spline curve in the knot span can easily be transformed into a 
polynomial curve in power form by the summation of the multiplications between 
appropriate control points and truncated basis functions. Thus, the power form 

polynomial curve for [ti, ti+l ) is given as 

where z ~ , ~  ( t )  is a truncated basis function and Pj is the corresponding control point 

and each truncated basis function is already of power form. Thus, if the previous 
operation is performed for each knot span, then a static B-spline curve can be 
transformed into a set of piecewise polynomial curve in power form which can be 
formulated as follows. 
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The above equations show that the computation required is not less than the K R  or 
TE.  In fact, experimental result shows that TE-approach is the fastest independent o f  
the degree o f  curve. Especially, DE shows a quadratic-like increase whereas K R  and 
TE show only linear-like increases w.r.t. degrees o f  static B-spline curves. However, 
it is quite different for dynamic curves. 

3. Direct Expansion of A Dynamic Curve 

Definition 2. A dynamic B-spline curve, C, (t) , is a B-spline curve with more than 

one control point moving. Thus, C, (t) can be represented by the following equation. 

where I and J are the index sets o f  fixed control points, P, and moving control - 
points , Pj , respectively. 

A naive approach to transform C, (t) to piecewise polynomials in power form is 

to recalculate the curve segment in every knot span whenever some control points are 
moving. This method is obviously unsatisfactory since it wastes computing time for 
the knot spans with unchanged curve shape. Let C(t) be a B-spline curve before any 

control point moves and C,(t) be a dynamic curve counterpart o f  C(t) . Then, 

C,(t) can be now rewritten as the following equation using difference vectors, 

starting at old control points and ending at new control points. 

Where K = I U J . That is, P,, k E K , is all control points o f  C(t) , and 

Dj = (Fj - Pj) corresponds to the displacement o f  the moving control point. Thus, 

Equation (7)  means that C, (t) can be obtained by the summation o f  original curve 

C(t) and difference vectors multiplied by the corresponding basis functions. It is 
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required to detect knot spans that are affected by the second term of Equation (7) so 
that the transformation can be done more efficiently. In the case of KR-approach, a 
knot refinement and a basis conversion are performed for all knot spans of curve 
segments whose shapes are changed by moving control points. Similarly, TE- 
approach can recalculate the coefficients of polynomial curves for the knot spans of 
curve segments whose shapes are changed. The derivative information and factorial 
evaluation are needed for each coefficient of the polynomial. 

However, the computational behavior of DE-algorithm is quite different. 
Regardless of whether control points are moving or not, the truncated basis functions 
are fixed. It turns out that the computational gain of DE algorithm for a dynamic 
curve is more significant than that of others if that a static curve, C(t )  , is provided as 

Equation ( 5 )  through DE algorithm, as a pre-processing tool for a dynamic curve. 
On the other hand, C ,  ( t )  can also be divided into two groups: the first group is 

the set of curve segments whose shapes are fixed, and the second is the set of curve 
segments whose shapes are changed by moving control points. Hence the following 
equation holds. 

where M and N are index sets for knot spans of curve segments whose shapes are 

fixed and changed by moving control points, respectively. In addition, c,? ( t )  can be - 
again rewritten by using truncated basis functions as follows since C n  ( t )  may also 

have both fixed and moving control points. 

where Q and R are index sets for fixed and moving control points for, c,, ( t )  

respectively. Therefore, 

where S - Q U R and IsI = p + 1 . P\ , s E S , is a11 the control points of C,, ( t )  

before they move. Thus, Equation (10) can be rewritten as Equation ( I  1) using 
difference vector and truncated basis function. 
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where D, = Fr - Pr is a difference vector whose value is the displacement of the 
moving control point. Thus, for a particular knot span, a changed curve segment in 

power form, e n ( t ) ,  can be obtained by summing the original polynomial Cn ( t )  in 

the form of Equation (4) and difference vector multiplied by the corresponding 
truncated basis function. Performing the operation in Equation (1 1) for the knot spans 
that are influenced by the moving control points completes the desired transformation 
for C, ( t )  . 

4. Experiments for Dynamic Curves 

Transformation of a dynamic curve into a set of piecewise polynomial curves in 
power form through DE algorithm consists of two steps: i) pre-processing, and ii) the 
operation of Equation (1 1) for all the knot spans with changed curve segments. While 
TE and KR-approach gets much more computational burdens, DE takes only (p + 1) 
multiplications and (p + 1) additions for a knot span. The computation time for each 
approach is provided in Figure 2 where pre-processing time is not considered. DE 
algorithm outperforms the other approaches and the computational gain of DE 
algorithm gets significant as the degree of curve and the number of control points 
increase. Since the relative time portion of DE algorithm is negligible, the trend of 
computation time of DE algorithm is provided separately in Figure 3. In each degree 
of curve, it seems that the computation time increases in linear pattern. 

Although the implementation details may affect to the experimental results, we 
believe that our implementation considers the possible minimum operations for the 
KR and TE-approach. 

1 Computation tirne(degree:3) 

1 2 3 4 5 6 1 8 9 1 0  

# of moving control points 

a degree: 3 
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Computation time(degree:4) 1 

1 2 3 4 5 6 7 8 3 1 0  

# of moving control points 

I I 

b degree: 4 

Computation tirne(degree:5) 

1 2 3 4 5 6 7 8 9 1 0  

# of moving control points 

c degree: 5 

Fig. 2. Computation time vs. the number of moved control points 

1 Computation time 

".'O 1 degree 

2 3 4 5 6 7 8 9 10 

# of moving control points 

Fig. 3. Computation time vs. the number of moving control points for degree 3,4 and 5 
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5. Conclusions 

In computer graphics and computer aided design, it is often necessary to manipulate 
B-spline curves or surfaces by converting the B-spline representation into a set of 
piecewise polynomial curves or surfaces in power form. It is known that faster 
computation of the characteristic points on a curve, such as inflection points and 
cusps, can be facilitated by the conversion of a B-spline curve into a set of piecewise 
polynomial curves in power form. Once a curve is represented in power form, a point 
evaluation can also be made faster due to Homer's rule. 

In this paper, a new algorithm for converting a B-spline curve to piecewise 
polynomial curves in power form is presented. We claim that the proposed algorithm 
outperforms the conventional KR-approach and is at least comparable with TE when 
the degree of the static curve is relatively low. When the curve is dynamically 
changing its shape, the speed of computation becomes rather important. In this case, 
experiments show that DE algorithm gets much more computational gain. It is our 
expectation that a similar idea can be easily extended to B-spline surfaces, and our 
approach will show more significant computational properties for the problem. 

In addition, the extensions of this algorithm to rational B-spline curves and 
surfaces are straightforward through the homogeneous coordinate. 
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