
 
 

Integrating CUMULVS into AVS/Express 
Torsten Wilde, James A. Kohl and Raymond E. Flanery, Jr. 

Oak Ridge National Laboratory 1 2 
 

Keywords: Scientific Visualization, CUMULVS, 
AVS/Express, Component-Based Design 

Abstract. This paper discusses the development of a CUMULVS interface for 
runtime data visualization using the AVS/Express commercial visualization 
environment. The CUMULVS (Collaborative, User Migration, User Library for 
Visualization and Steering) system, developed at Oak Ridge National 
Laboratory, is an essential platform for interacting with high-performance 
scientific simulation programs on-the-fly. It provides run-time visualization of 
data while they are being computed, as well as coordinated computational 
steering, application-directed checkpointing and fault recovery mechanisms, 
and rudimentary model coupling functions.  CUMULVS primarily consists of 
two distinct but cooperative libraries - an application library and a viewer 
library.  The application library allows instrumentation of scientific simulations 
to describe distributed data fields, and the viewer library interacts with this 
application side to dynamically attach and then extract and assemble sequences 
of data snapshots for use in front-end visualization tools. A development 
strategy will be presented for integrating and using CUMULVS in 
AVS/Express, including discussion of the various objects, modules, macros and 
user interfaces. 

1. Introduction 

Scientific simulation continues to be a field replete with many challenges. Ever-
increasing computational power enables researchers to investigate and simulate more 
and more complex problems on high-performance computers, to obtain results in a 
fraction of the time or at a higher resolution. The data processed and created by these 
simulations are huge and require much infrastructure to manipulate and evaluate. 
Scientific visualization and interactive analysis of complex data during runtime 
provides a cost-effective means for exploring a wide range of input datasets and 
physical parameter variations, especially if the simulation runs for days. It can save 
time and money to discover that a simulation is heading in the wrong direction due to 
an incorrect parameter value, or because a given model does not behave as expected. 

                                                           
1 Research supported by the Mathematics, Information and Computational Sciences Office, 

Office of Advanced Scientific Computing research, U. S. Department of Energy, under 
contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. 

2 This research was supported in part by an appointment to the ORNL Postmasters Research 
Participation Program which is sponsored by Oak Ridge National Laboratory and 
administered jointly by Oak Ridge National Laboratory and by the Oak Ridge Institute for 
Science and Education under contract numbers DE-AC05-84OR21400 and DE-AC05-
76OR00033, respectively 

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 864−873, 2002.
 Springer-Verlag Berlin Heidelberg 2002



 
 

A proper visualization environment allows scientists to view and explore the 
essential details of the simulated data set(s) [1].  For 2-dimensional (2D) data sets, a 
2D visualization environment is sufficient. But for 3-dimensional (3D) problems, a 
3D visualization environment is required to provide access to all the detailed 
information embedded in the data set. 

This paper describes work to integrate CUMULVS[2,3] into the AVS/Express[4] 
viewer environment, which provides a framework for data visualization, including 
both 2D and 3D capabilities. AVS/Express is unique in the way that it allows changes 
to the application structure and functionality during runtime. Applications are 
constructed by “drag & drop” of modules from the component library. The user can 
add and/or delete components dynamically, to change the application behavior on-the-
fly. This work is important in the sense that the integration of CUMULVS into 
AVS/Express will enable the user to use runtime scientific data sets for visualization 
instead of file or static data sets. 

2. Background 

2.1. CUMULVS 

CUMULVS (Collaborative, User Migration, User Library for Visualization and 
Steering) [2,3] provides an essential platform for interacting with running simulation 
programs.  With CUMULVS, a scientist can observe the internal state of a simulation 
while it is running via online visualization, and then can “close the loop” and redirect 
the course of the simulation using computational steering. These interactions are 
realized using multiple independent front-end “viewer” programs that can 
dynamically attach to, interact with and detach from a running simulation as needed.  
Each scientist controls his/her own viewer, and can examine the data field(s) of 
choice from any desired perspective and at any level of detail.  A simulation program 
need not always be connected to a CUMULVS viewer; this proves especially useful 
for long-running applications that do not require constant monitoring. Similarly, 
viewer programs can disconnect and re-attach to any of several running simulation 
programs. To maintain the execution of long-running simulations on distributed 
computational resources or clusters, CUMULVS also includes an application-directed 
checkpointing facility and a run-time service for automatic heterogeneous fault 
recovery. 

CUMULVS fundamentally consists of two distinct libraries that communicate with 
each other (using PVM[5]) to pass information between application tasks and front-
end viewers.  Together the two libraries manage all aspects of data movement, 
including the dynamic attachment and detachment of viewers while the simulation 
executes.  The application or “user” library is invoked from the simulation program to 
handle the application side of the messaging protocols.  A complementary “viewer” 
library supports the viewer programs, via high-level functions for requesting and 
receiving application data fields and handling steering parameter updates. 

The only requirement for interacting with a simulation using CUMULVS is that 
the application must describe the nature of its data fields of interest, including their 
decomposition (if any) across simulation tasks executing in parallel.  Using calls to 

865Integrating CUMULVS into AVS/Express



 
 

the user library, applications define the name, data type, dimensionality/size, local 
storage allocation, and logical global decomposition structure of the data fields, so 
that CUMULVS can automatically extract data as requested by any attached front-end 
viewers. Given an additional periodic call to the stv_sendReadyData() service routine, 
CUMULVS can transparently provide external access to the changing state of a 
computation.  This library routine processes any incoming viewer messages or 
requests, and collects and sends outgoing data frames to viewers. 

This manual instrumentation of application data can be alleviated by systems like 
DynInst [10] which do automatic run-time introspection of codes, however this type 
of analysis is not sufficient to fully describe distributed data decompositions; some 
user intervention is needed to specify the implied parallel semantics and the context of 
the local data in the overall global array. Unlike systems such as DICE [11], where 
whole copies of each data field are placed in a globally shared file structure using 
DDD [12] and HDF [13], in CUMULVS the data movement is demand-driven and 
the viewers dynamically extract only requested subregions of data fields from each 
application task. This reduces the application overhead in most cases and provides 
more flexible multi-viewer collaboration scenarios. 

When a CUMULVS viewer attaches to a running application, it does so by issuing 
a “data field request,” that includes a selection of desired data or “view” fields 
(constituting a “view field group”), a specific region of the computational domain to 
be collected (“view region”), and the frequency with which data “frames” are to be 
sent back to the viewer. CUMULVS handles the details of collecting the data 
elements of the view region for each view field.  The view region boundaries are 
specified in global array coordinates, and a “cell size” is set for each axis of the data 
domain, to determine the stride of elements to be collected for that axis, e.g. a cell 
size of 2 will obtain every other data element.  This feature provides more efficient 
high-level overviews of larger regions by using only a sampling of the data points, 
while still allowing every data point to be collected in smaller regions where the 
details are desired. CUMULVS has been integrated with parallel applications written 
using PVM [5], MPI [14] and InDEPS [15] and can be applied to applications with 
other arbitrary communication substrates. 

2.2. AVS/Express Visualization Environment 

AVS/Express[4] is a commercial environment for visualizing scientific data. It 
provides the user with a visual programming interface and includes standard modules 
for the most common visualization functions. Using AVS/Express the user can 
develop a custom viewer by “drag & drop” of modules (objects) and connecting 
together specific input and output ports of the objects (see Figure 1). This concept 
enables users to create a visualization without the need for programming custom 
code. Modules in AVS/Express represent single object instances in an object oriented 
programming language. They are the basic components of any AVS/Express program. 
Modules can be grouped into macros in order to create higher-level hierarchical 
objects. Macros can be grouped with other macros in order to create even higher-
order objects. Ultimately, one macro could represent a complete application.  Custom 
module creation can be done for AVS/Express via the following 4 steps: 

866 T. Wilde, J.A. Kohl, and R.E. Flanery



 
 

• Define parameters and values using AVS/Express primitive data types (e.g. 
integer, real, string) or groups of primitive types and other structures. 

• Add methods (functions) for the module processing. 

• Define the type of execution for the module methods ~ the user code can be 
compiled directly into the AVS/Express program or can be compiled as its 
own distinct program. 

• Define execution events for module methods and method behavior. 
 
The developer can specify which parameters are connected to which methods. 

There are four possible options here: 
• notify:  The method is called if the parameter value changes. 
• read:  The method reads the parameter. 
• write:  The method writes the parameter. 
• required (req): The method can only be called if the parameter has a valid 

value, as checked automatically before event processing. 
 

 

Fig. 1. AVS/Express application creation interface 

AVS/Express incorporates a data driven or “Event based” execution paradigm. It 
responds to events to execute different sets of instructions depending on which event 
occurs rather than following a pre-defined sequence of instructions. This means a 
module method can only be executed if a specific parameter has changed. Usually this 
principle is used where the program states are driven by the graphical user interface 
(GUI). Figure 2 shows the handling of function return codes in this paradigm. A 
“hand shake” approach is used, where the caller receives feedback regarding the 
processing state of the event, such as error-success information. An event change in 
Module A executes method XY. Because this event requires some processing in 

867Integrating CUMULVS into AVS/Express



 
 

Module B, the method changes the output port of A. This change triggers the input 
port of B (connected to the output port of A). Module B now reacts to this event by 
executing method XYZ. After finishing the execution XYZ writes the status 
information and/or return values to output port B. This changes the value of the 
corresponding input port of A, triggering the execution of the method 
check_return_code() which evaluates the return code and/or values and can inform 
other modules, or the user, about the status of the event processing. 

 

Fig. 2. Module Execution Paradigm Example 

Modules can use this principle to verify if another module has been connected. 
This is important for verifying the program state at all times, especially when dealing 
with changing connections or new modules at runtime.  AVS/Express allows multiple 
modules to be connected to the same module port. The GUI also can be dynamically 
extended as the application changes. 

3. CUMULVS Interface Design for Integration into AVS/Express 

The goal of this work was to integrate CUMULVS into AVS/Express in order to 
enable runtime data visualization and to create an AVS/Express viewer for the 
CUMULVS library. CUMULVS already supports several graphical viewers based on 
AVS5[6], Tcl/Tk[7], VTK[8] and the CAVE[9] environment. The AVS/Express work 
is especially interesting because of its component-based functionality. It is a complete 
viewer environment with components for everything needed to view scientific data, 
e.g. reading, filtering, transforming and visualizing the data. AVS/Express provides a 
dynamic application structure, e.g. viewers can be customized to an application on-
the-fly by adding or deleting components using the visual programming interface. By 
adding new modules to the AVS/Express module library the user can improve and 
extend the AVS/Express capabilities and construct custom viewers.  The following 
subsections describe the module structure and GUI for the CUMULVS AVS/Express 
viewer. 

3.1. CUMULVS Module Structure 

The CUMULVS functionality is divided into global modules for the AVS/Express 
viewer by analyzing program functionality paired with the required GUI blocks. 
Figure 3 shows this global module structure including 4 primary macros. 

868 T. Wilde, J.A. Kohl, and R.E. Flanery



 
 

The CUMULVS Main Macro handles all communication with the running 
application and provides the GUI for specifying the application name and other global 
parameters. It also provides information about the connected application, like 
available data fields for viewing, their bounds and data type, and whether the data is 
particle-based or a mesh decomposition. Because of its central role, this module must 
communicate with all other modules: 

- Sends View Field (VF) information to VF Modules 
- Get View Field Group (VFG) information from VFG Module for data collection 
- Sends application connection status to VFG Module 

 

Fig. 3. main object structure 

The VF Macro gets the VF information from the CUMULVS Main Macro and 
provides the GUI for selecting one VF from the possible VFs for viewing. Every VF 
requires one VF Macro, which stores all important information about the selected VF 
and transfers it to the VFG Macro. One VF Macro can only be connected to one VFG 
Macro, e.g. if the same VF is required for a second VFG, an additional VF module 
has to be instantiated for this VF. 

The VFG Macro combines connected VF Macros into one VFG. The VFG Macro 
calculates the global bounds and dimension from the connected VF values. For 
example, the global lower boundary could be the highest VF lower boundary found in 
the connected VFs and the global upper boundary could be the lowest VF upper 
boundary found. The VFG Macro provides base values for the User Interface (UI) 
Macro, which sets parameters like boundaries and cell size for each dimension, 
visualization frequency, etc. The UI Macro checks all user input for errors before 

869Integrating CUMULVS into AVS/Express



 
 

sending it to the VFG Macro. When input is forwarded to the Main Module, the data 
collection is started or appropriate changes to the data collection are made. 

In addition to data flow through the system, control parameters are also transferred 
between macros. Initially, only the Main Macro GUI is activated, but after successful 
connection to the application the VF Macro is then activated. Activation happens by 
setting a port connection to “true” (an integer value of 1). 

The VFG Macro is activated if at least one connected VF Macro has a valid VF 
selection. After the user connects the VFG to the application, the VFG information is 
sent to the Main Module together with the “connect” flag. Likewise if the user 
chooses to disconnect the VFG, the “disconnect” flag is sent to the Main Module.  
The connection status is transferred back from the Main Module to the VFG Macro 
and from there on to the VF Macro, and influences the GUI status of these modules. 

3.2. Graphical User Interface (GUI) Structure 

Because the user typically controls the CUMULVS-AVS/Express modules via the 
visual interface it is very important to design for flexible use and efficient overview of 
the vital information. The GUI consists of three main windows corresponding to the 
three main macros and their functionality. The first window allows input of the 
application name and is created from the Main Macro. A second View Field Info 
(VFI) window is also created by the Main Macro and provides a port for the VF 
Macro. The VFG Macro creates a third User Interface (UI) window. The structure of 
these latter two windows is shown in Figure 4. 

 

Fig. 4. View Field Info and User Interface Window Structures 

The VFI window displays important information about the available VFs, 
including name and boundaries for each dimension. Each instantiated and connected 
VF Macro adds a “selection box” for its VF to the VFI window. If the connection 
from the VF Macro to the Main Macro or the VF Macro itself is deleted, the 
corresponding “selection box” is also deleted. The VFI window resizes automatically. 

The UI window consists of three frames, which are positioned depending on the 
order of their connection to the window. This portion of the GUI enables the user to 

870 T. Wilde, J.A. Kohl, and R.E. Flanery



 
 

change the parameters for the collected VFG data set. The “apply/reset frame” allows 
the user to apply the changes to the VFG or reset to previous values. The “dimension 
frame” sets the boundaries and cell size for each dimension. This frame is constructed 
modularly with one “dimension property frame” per dimension of the VFG, e.g. for a 
3 dimensional VFG, 3 such frames are connected. The overall dimension frame is 
resized automatically. The user can adapt this interface to different problems 
(applications) on the fly. All global VFG parameters like visualization frequency can 
be changed using the “global VFG properties frame”. Each frame has a well-defined 
port connection to its parent frame or window. It is therefore possible for users to 
create their own customized GUIs using the provided frames, or by creating new ones 
implemented with the given input/output port connection specification. 

4. Results 

 

Fig. 5. Screenshot of the CUMULVS-AVS/Express Interface 

Figure 5 shows a sample snapshot of the GUI in action. The application name 
window is in the upper left corner. The next window below that is the “View Field 
Selection” window. Two data fields from the application are available for viewing; 
“density” has 3 dimensions with boundaries [1-60][1-60][1-120], and “plate” is 2 
dimensional with boundaries [1-60][1-60]. There are three view fields attached. The 
first two (“VF_macro”, “VF_macro#1”, see also Figure 6) are connected to one view 
field group (right interface window, “3d_vfg_macro”). The third view field builds its 
own VFG (middle interface window, “3d_vfg_macro#1”). The VFG windows are 
color-coded, with the VF_Macro name in the “View Field Selection” window colored 
like the VFG to which it belongs. In addition, a special letter code describes the type 
of the selected view field (“d” for mesh decomposition field and “p” for particle 
field). The two VFG windows are composed of the three frames described in 3.2. 
Values are initialized using default VFG parameters. Any user input is validated 
before changes are submitted to the VFG, after the “apply changes” button is pressed. 

871Integrating CUMULVS into AVS/Express



 
 

Because VF “plate” is two-dimensional in this example, the input for the third 
dimension is deactivated automatically in the corresponding UI window (left). 

Figure 6 shows a 3D visualization of an example application rendering from a 
simple LaPlace simulation. Surface rendering was used to visualize the data set. The 
inner surface was solid rendered and the outer surface in 65% transparent. 

 

Fig. 6. Visualization of LaPlace Simulation 

5. AVS/Express Concerns 

During this development several problems with AVS/Express for Linux were 
encountered. As a result, the CUMULVS viewer plug-in is currently only available 
for AVS/Express on SGI Irix systems. A crucial bug is related to the motif 
environment, which causes random crashes of AVS/Express if menus or buttons are 
accessed. AVS support verifies the problem, and there is an updated version of 
Motif1.2 available for Linux glibc2.1. Unfortunately this update does not seem to 
work for other glibc versions like glibc2.2. Also some stability problems were 
encountered with the new AVS/Express5.1 under Linux. The most stable overall 
environment seems to be Mandrake7.2, with the Motif update and AVS/Express5.0. 

The only know problem with AVS/Express5.1 under SGI Irix is that the user 
interface input field “UIfield” instantiates with a fixed field width independent of the 
value set in the object (Figure 5, bottom right window, for visualization frequency). 

As a developers note, it is important to point out that there is no clear order of 
module instantiation and method execution if a complex saved program or macro is 
instantiated. The order could in fact be opposite to the drag & drop program creation 
order, and the order of connections is also not guaranteed. It is therefore possible to 
introduce problems that are only visible during instantiation of the whole program, 
and not during component testing. Feedback loops can occur involving different high-
level macros.  Also, setting the “required” flag (see Sect. 2.3) for an array doesn’t 
ensure that all array values will be valid. Missing values inside the array are not 
detected by AVS/Express. This is especially problematic for pointer arrays where the 
access of an invalid pointer leads to program termination or critical failure. 

872 T. Wilde, J.A. Kohl, and R.E. Flanery



 
 

6. Summary/Future Work 

The integration of the CUMULVS functionality into AVS/Express enables 
CUMULVS users to take advantage of the powerful component-based AVS/Express 
viewer environment, and similarly AVS/Express users can collect and visualize data 
from running parallel/distributed scientific applications using CUMULVS. The event-
based execution paradigm and the highly scalable module approach make 
AVS/Express very flexible, but at a potentially high cost in complexity for internal 
module communication. The plug-in was tested using simple example applications. 
The next step will be to use it in real world applications. Future plans include solving 
the problems with AVS under Linux, integrating a steering interface into the 
CUMULVS plug-in and improving or rearranging the user interface based on user 
feedback. 

References 

[1] K.J. Weiler, “Topological Structures for Geometric Modeling”, Ph.D. thesis, Rensselaer 
Polytechnic Institute, Troy, NY, May 1986 

[2] G.A. Geist, J.A. Kohl, P.M. Papadopoulos, “CUMULVS: Providing Fault-Tolerance, Visualization 
and Steering of Parallel Applications”, INTL Journal of High Performance Computing Applications, 
Volume II, Number 3, August 1997, pp. 224-236. 

[3] J.A. Kohl, P.M. Papadopoulos, “CUMULVS user guide, computational steering and interactive 
visualization in distributed applications”, Oak Ridge National Laboratory, USA, Computer Science 
and Mathematics Division, TM-13299, 02/1999. 

[4] “AVS/Express Developer’s Reference”, Advanced Visual System Inc., Release 3.0, June1996. 

[5] G.A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, “PVM: Parallel Virtual 
Machine”, A User's Guide and Tutorial for Networked Parallel Computing, The MIT Press, 1994. 

[6] “AVS User’s Guid”, Advanced Visual Systems, Inc., Waltham, MA, 1992. 

[7] J.K. Ousterhout, “Tcl and the Tk Toolkit”, Addison-Wesley, Reading, MA, 1994. 

[8] Will Schroeder, Ken Martin, Bill Lorensen, “The Visualization Toolkit an object-oriented approach 
to 3D graphics”, 2nd Edition, Prentice Hall PTR, 1998  

[9] CAVERNUS user group, CAVE Research Network Users Society, 
http://www.ncsa.uiuc.edu/VR/cavernus 

[10] DYNINST - An Application Program Interface (API) for Runtime Code Generation  
 http:// www.dyninst.org 

[11] J.A. Clarke, J.J. Hare, C.E. Schmitt, “Distributed Interactive Computing Environment (DICE)”, 
Army Research Laboratory, Major Shared Resource Center, http://frontier.arl.mil/clarke/dice.html 

 
[12] J.A. Clarke, J.J. Hare, C.E. Schmitt, “Dice Data Directory (DDD)”, Army Research Laboratory, 

Major Shared Resource Center, see http://frontier.arl.mil/clarke/Dd.html 
 
[13] “Hierarchical Data Format (HDF)”, National Center for Supercomputing Applications 

[14] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, “MPI: The Complete Reference”, MIT 
Press, Cambridge, MA, 1996 

[15] R.Armstrong, P.Wyckoff, C.Yam, M.Bui-Pham, N.Brown, “Frame-Based Components for 
Generalized Particle Methods”, High Performance Distributed Computing (HPDC '97), Portland, 
OR, August 1997, http://glass-slipper.ca.sandia.gov/~rob/poet/ 

873Integrating CUMULVS into AVS/Express


	1. Introduction
	2. Background
	2.1. CUMULVS
	2.2. AVS/Express Visualization Environment

	3. CUMULVS Interface Design for Integration into AVS/Express
	3.1. CUMULVS Module Structure
	3.2. Graphical User Interface (GUI) Structure

	4. Results
	5. AVS/Express Concerns
	6. Summary/Future Work
	References

