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Abstract. This Paper presents an approach which dynamically and transparently
improves the data locality of memory references in Non-Uniform Memory Ac-
cess (NUMA) characterized systems. The approach is based on run-time data
redistribution via user-level page migration. It uses memory access histograms
gathered by hardware monitors to make correct decisions related to the place-
ment of shared data. First performance experiments on several applications show
the potential for a significant gain in speedup. In addition, a graphical user inter-
face has been developed showing the actual data movement thereby helping the
user to understand the behavior of the application and to detect performance bot-
tlenecks. This feature complements an already existing Data Layout Visualization
tool for the observation of memory locality.

1 Introduction

Due to the excellent price-performance ratio, clusters built from commodity PCs or
workstations have established themselves as reasonable alternatives in the area of par-
allel architectures. In addition, in combination with novel developments in intercon-
nection technologies, they have managed to break into the domain of shared memory
multiprocessors, an area which used to be dominated by tightly coupled systems with
Uniform Memory Access (UMA) organization, as it is given with Symmetric Multi-
processors (SMPs). Especially, loosely coupled machines with Non-Uniform Memory
Access (NUMA) characteristics are becoming increasingly popular because of their
scalability and straightforward implementation.

NUMA systems, however, are burdened with an additional performance problem
since any memory access to global memory can either be intended for local or remote
memory modules with significantly different latency properties. For the programmer,
this difference is generally indistinguishable as shared memory programming models
work on the assumption of a single uniform global address space. This situation can
lead to extensive remote memory accesses, especially with rising numbers of nodes,
and thereby to a higher percentage of remote memory access in the overall system.
Manual optimizations with respect to data placement can improve data locality, but they
can not solve this problem completely since this method is not capable of dealing with
applications with dynamically changing access patterns. In this case, also a dynamic ap-
proach for the locality optimization needs to be chosen which is capable of significantly
reducing remote data accesses via an automatic run-time data redistribution.
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Such an approach, called the Adaptive Runtime System (ARS), is explored in this
paper. ARS is intended to adjust the data distribution at run-time during the execution
of an application. It uses memory access histograms, gathered at runtime by a hardware
monitor, as the basis for its analysis of access patterns, and dynamically and transpar-
ently modifies the location of data. This improves the locality of memory accesses and
thus results in better performance.

This work investigates three page migration algorithms which vary in their moni-
toring information and criteria for making migration decisions. In addition, ARS uses
a graphical user interface to provide information about the actual data migrations. This
GUI is connected to a Data Layout Visualizer (DLV) [8] which is used to present an
application’s memory access behavior in a human–readable and easy-to-use way, thus
enabling the understanding of an application’s access pattern as well as the location of
memory access bottlenecks and communication hot spots. These two graphical repre-
sentation from both the DLV and the ARS therefore complement each other and give the
user a good overview of the behavior of the application in either a static or a dynamic
scenario.

The remainder of this paper is structured as follows. Section 2 briefly outlines a few
previous approaches for improving data locality via data migration. Section 3 discusses
the ARS approach, including the framework, the proposed migration algorithms, and
the graphical user interface. In Section 4, first experimental results are presented with
a comparison of the migration policies. The paper is rounded up with some concluding
remarks in Section 5.

2 Related Work

Data locality on NUMA machines has been addressed in many projects over the last
years. Among the projects focusing on improving data locality, a few approaches based
on page migration have been proposed; most of them, however, only target tightly cou-
pled architectures.

Verghese et.al. [9] study the improvements of performance on CC-NUMA sys-
tems, provided by OS supported dynamic migration and replication. This kind of page-
migration is based on the information about full-cache misses collected via instrument-
ing the OS. Hot pages, i.e., pages to which a large number of misses are occurring,
are migrated if referenced primarily by one process or replicated if referenced by many
processes. Results of their experiments show a performance increase of up to 29% for
some workloads.

Nikolopoulos et.al. [5] present two algorithms for moving virtual memory pages to
the nodes that reference them more frequently. The purpose of this page movement is
the minimization of the worst case latency incurred in remote memory accesses. Their
first algorithm works on iterative parallel programs and is based on the assumption that
the page reference pattern of one iteration will be repeated throughout the execution
of the program. The second proposed algorithm checks periodically for hot memory
areas and migrates the pages with excessive remote references. Both algorithms assume
compiler support for identifying hot memory areas.
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These proposed approaches and systems focus only on the migration algorithms
and their implementations. In fact, it is of the same importance to understand the data
movement and the behavior of the migration and to report this behavior back to the
user in an appropriate way. This requirement, however, has to our knowledge not been
followed by any current work.

3 The ARS Approach

ARS is motivated by the fact that shared memory programs running on NUMA ma-
chines suffer from excessive remote memory references. While the performance of
some applications can be improved by manually optimizing the source code with re-
spect to data placement, others that exhibit dynamically changing access patterns can
only be tuned by run-time redistribution of data or computation. ARS implements such
a mechanism that migrates shared data during the execution of a program.

The previously proposed approaches make the migration decisions according to the
memory access histograms gathered by software with support of the operating system,
the compiler, or other memory management mechanisms. This information has to be ei-
ther inaccurate, incomplete, or associated with a high probe overhead. In order to avoid
this problem, the ARS approach establishes its migration decision based on informa-
tion gathered by hardware monitors with only a minimal probe overhead and without
the involvement of compilers, the user, and any system software.

3.1 Framework

Currently, the hardware monitor is designed for our NUMA characterized SMiLE PC
clusters. SMiLE stands for Shared Memory in a Lan–like Environment and it is a project
[3] broadly investigates in SCI–based cluster computing 1. SCI (Scalable Coherent In-
terface [1]) is an IEEE–standardized [2] interconnection technology with extremely
low latency and very high bandwidth. In order to explore shared memory programming
on top of this architecture, a software framework, called HAMSTER [4] (Hybrid-dsm
based Adaptive and Modular Shared memory archiTEctuRe), is built within SMiLE en-
abling the establishment of arbitrary shared memory programming models on top of a
single core.

In order to allow an efficient solution for monitoring in this environment, a hard-
ware monitor has been developed. This is necessary because shared memory traffic
by default is of implicit nature and performed at runtime through transparently issued
loads and stores to remote data locations. In addition, shared memory communication is
very fine–grained (normally at word level). This renders code instrumentation record-
ing each global memory operation infeasible since it would slow down the execution
significantly and thereby distort the final monitoring to a point where it is unusable for
an accurate performance analysis. The only viable alternative is therefore to deploy a
hardware monitoring facility.

The SMiLE hardware monitor is designed to be attached to an internal link on cur-
rent PCI–SCI bridges, the so-called B-Link. This link connects the SCI link chip to the

1 More information at http://smile.in.tum.de/
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PCI side of the adapter card and is hence traversed by all SCI transactions intended for
or originating from the local node. Due to the bus–like implementation of the B-Link,
these transactions can be snooped without influencing or even changing the target sys-
tem and can then be transparently recorded by the SMiLE hardware monitor. The result
of monitoring are the so–called memory access histograms which show the number of
memory accesses across the complete virtual address space of an application’s working
set separated with respect to target node IDs. These histograms form the base of a data
migration decision by ARS migration mechanisms.

As the hardware monitor is still under development, an event-driven multiprocessor
simulator, called SIMT, has been developed within the SMiLE project. SIMT [7] was
originally designed to simulate the SMiLE hardware monitor and to provide the exact
monitoring information when a hardware monitor is not available. For this purpose,
SIMT simulates not only the hardware monitor itself, but also the processor model, the
shared memory, the programming interface and models, as well as the parallel execu-
tion of applications. Besides that, SIMT comprises functionality enabling a transparent
transfer between the simulation platform and a real cluster. Currently, the ARS migra-
tion algorithms are implemented on top of SIMT.

3.2 Page Migration Algorithms

Commonly used page migration mechanisms [9, 6] are based on competitive algorithms
which migrate a page if the difference between the number of local references and
the number of remote references from one node exceeds a predefined threshold. This
scheme is easy to implement; a similar one, called Out-U, is therefore also applied
within ARS. Besides this, we propose two novel page migration algorithms, called Out-
W and In-W, which use a larger decision base and are therefore likely to perform more
accurate and timely page migrations. The main difference between them is that they
base their migration decisions on different monitoring information: Out-W only looks
at outgoing memory traffic initiated by the local node, while In-W is based on incoming
traffic from remote nodes.

The Out-U Algorithm Out-U makes decisions whether to move a page from the local
node to a remote node. The decision is based on the references performed to the single
page from all remote nodes. If the difference between the biggest remote accesses and
the average accesses exceeds a threshold, the page is decided to move to the remote
node which accesses the page most frequently.

Using this algorithm, however, a correct migration decision can be made only after
a large amount of references have been issued, resulting in late migrations and thereby
a loss of performance. On the other hand, if a decision is made only based on a small
amount of references, many incorrect migrations may be caused. Therefore, we propose
another two algorithms which base their migration decisions on references performed
on many pages and therefore are able to make a migration decision earlier.

The Out-W Algorithm Out-W uses the number of relative references in order to decide
the location of a page. The number of relative memory accesses to page P from node
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N is calculated as the sum of weighted references from the same node to the pages
spatially neighboring page P , using the following formula:

RPN =
∑n

i=0 WiCi

In this formula, Wi is a weight representing the importance of the i th page to page
P and Ci is the number of references to page i, while n is the number of physical
pages located on node N . The weight is assigned according to the distance of a page
to page P , whereby a closer page is assigned a higher weight due to the spatial locality
of memory accesses. Besides that, the neighborhood is restricted to the pages located
on the same node of page P . This avoids the overhead of transferring the monitoring
information to other nodes, by using only the monitoring information provided by the
local hardware monitor.

To determine the location of a page, the numbers of relative references from all re-
mote nodes are compared. If the difference between the highest number and the average
accesses exceeds a threshold, the page is decided to move to the remote node owning
the biggest number. Here, the same threshold as in Out-U is used.

Examine the Out-U and the Out-W algorithm. Theoretically, spatially neighboring
pages have similar access behavior due to the spatial locality of memory accesses. This
means that if a node predominately accesses a page, it as well accesses the neighboring
pages of this page in the same way. Hence, by using the aggregated monitoring data
from a page and its neighboring pages, the information necessary to decide about a page
migration can be acquired earlier. This should result in a greater gain in performance if
the decision is correct. In order to investigate this, we have analyzed the memory access
pattern of all SPLASH2-Benchmark applications [10] and a few other numerical kernels
and found that for most applications most pages are frequently accessed only by a single
node. This indicates that Out-W can make correct decisions because there is only one
migration target. In addition, we have observed that for pages accessed by multiple
nodes the accesses are not equally distributed. Rather one node normally accesses a
page more frequently. Together with an adequate threshold, Out-W can therefore also
make correct decisions for these pages.

The In-W Algorithm While Out-W determines whether to move a local page to a
remote node, In-W decides whether to migrate a remote page to the local node. For this
purpose, it uses the monitoring results of memory accesses performed by the local node
to other nodes to determine the frequency of a remote page being accessed by the local
node.

To make the migration decisions, In-W calculates the number of relative references
to all remote pages accessed by the local node. It uses the same formula as the Out-W
algorithm, but involves remote pages into the calculation. If the difference between a
relative access and the average exceeds a threshold, the corresponding remote page is
decided to be brought to the local node.

In-W can potentially be more accurate than Out-W for some data allocation schemes,
like round-robin which allocates shared data cyclically over all nodes on the system.
For these allocation schemes Out-W takes pages, which are not directly neighboring in
virtual memory, since it only deals with local pages. In-W, however, handles all direct
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neighbors except those located on the local node. It therefore has the potential to better
use the spatial locality of the memory accesses. In-W, however, is more expensive. All
nodes, except the one where a page is located, have the ability to make a decision
about the location of this page. Hence, once a migration decision is made by a node,
all other nodes must be informed. This increases the communication overhead and the
complexity of the management.

3.3 Graphical User Interface

In order to show the run-time page movement, a graphical user interface has been de-
veloped and combined with the Data Layout Visualizer (DLV) [8], which has already
been implemented within the SMiLE project. It is an on-line tool that provides a set of
display windows to show the memory access histograms with different views, allowing
programmers to understand the execution behavior of their applications. It also projects
the memory addresses back to the data structures within the source code, enabling the
optimization of applications resulting in a better data locality at run-time.

Fig. 1. ARS GUI Display Windows.

The ARS GUI provides several representations to show the actual data migrations,
page movements, and data locations. Figure 1 illustrates three sample displays. The
runtime migration (middle) presents the actual page movements with source node on
the top of an item, destination on the bottom, and page number next to the arrow which
stands for the direction of moving. Items are dynamically added to the window accord-
ing to the real time migration. The page show (left) illustrates the page movement during
the complete execution. The most left rectangle stands for the initial location of an page
and the most right stands for the final location of this page, while the rectangle(s) in the
middle show intermediate nodes on which the page has resided for some time during
the overall runtime of the application. Ping-pong scenarios, such as occurred with page
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5, can easily be observed in this view. This enables the evaluation and improvement of
the data migration policies. The last window page location (right) shows the initial and
final location of all shared pages and thereby adds valuable information to the static
view given in the DLV.

4 Validation

As mentioned in section 3, the SMiLE hardware monitor is still under development. In
order to verify the ARS approach and to evaluate the migration algorithms, we have im-
plemented the first version of ARS on top of SIMT [7] and simulated a number of appli-
cations on a 4-node system. These applications are mostly chosen from the SPLASH2-
Benchmark suite [10] except the Successive Over Relaxation (SOR) code which is a
self-coded numerical kernel used to iteratively solve partial differential equations. The
simulated working set size is 2**14 data points for FFT, a 128 × 128 matrix for LU,
262144 keys for RADIX, 343 molecules for WATER, and a 200 × 200 grid for SOR.

For all migration schemes we use a constant threshold of two times of the aver-
age references performed to a page. This value is chosen to ensure minimal number of
Ping-Pongs. As mentioned in section 3.2, we have studied the access patterns of our
benchmark applications and found that most pages are predominately accessed by a
single node. Also, we have found that across all applications this dominant access is
about two times more than the other accesses, and between the other accesses no dis-
parity of two factors can be found. Therfore, using a factor of two in the threshold can
guarantee that no remote access exceeds the threshold in the case of dominating local
accesses (which are unobservable in the chosen monitoring approach), and on the other
hand that migrations are performed in the case of dominating remote accesses. In the
next line of this research work, a flexible threshold will be used with the ability of being
automatically modified during the run of an application depending on the changing of
the application’s access pattern.

Since SIMT, in contrast to the final hardware monitor, is capable of providing infor-
mation about local references, for both Out-U and Out-W an additional corresponding
algorithm is implemented which exploits local access information, in order to examine
the relevance of information about local references and to evaluate the ARS migration
algorithms. Should the local information be known, the greatest access number will not
be compared with the average accesses as it is the case for Out-U and Out-W, but with
the local references.

Figure 2 illustrates the experimental result by performing all migration algorithms
on various programs which use round-robin as the default allocation policy to initially
distribute data. In addition, simulation results of an unoptimized and a manually, but
statically optimized run are included for comparison. This kind of optimization is done
within the source code by explicitly placing pages on the nodes which most frequently
access them.

Examining the migration versions and the transparent default version, it can be seen
that all programs run faster after migration, no matter which migration algorithm is
deployed. The best performance improvement is gained by the SOR code, where a
speedup as high as 1.88 is achieved. This stems from SOR’s regular access behavior,
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Fig. 2. Simulation time for different programs using round-robin.

where a page is accessed by only one node. When comparing the migration result with
the manually optimized code, it can be observed that in most cases the optimized ver-
sion is better. This stems from the fact that manual optimization introduces an initial
correct data placement, timely and without introducing any overheads. However, the
WATER code behaves differently, where the migration version performs better than
the optimization version. This is caused by the dynamically changing access pattern of
WATER, which renders static optimization almost useless.

Application Out-U-local Out-W-local Out-U Out-W In-W
mig p-p mul err mig p-p mul err mig p-p mul err mig p-p mul err mig p-p mul err

FFT 41 0 0 0 89 0 0 0 69 0 0 0 27 0 0 0 96 0 0 3
LU 28 0 3 0 30 0 3 0 16 0 1 1 20 0 0 1 30 0 3 0
RADIX 81 0 0 0 191 0 0 0 98 0 1 1 98 0 0 0 106 0 0 0
WATER 26 0 0 0 89 0 29 0 48 0 1 0 119 0 43 0 33 1 1 0
SOR 24 0 0 0 24 0 0 0 25 0 0 1 27 0 0 2 26 0 0 2

Table 1. Migration behavior (mig: total number of migration; p-p: Ping-Pong; mul: multiple
migration; err: incorrect migration).

Comparing the individual migration schemes, it can be noted that the distance be-
tween the results of migration with or without local access information is insignificant.
In some cases, like for RADIX, the migration without local information is even better.
The information shown in Table 1 can give an explanation for this behavior. This Table
presents the number of total migrations, multiple migrations2, incorrect migrations3,
and Ping-Pongs. The numbers of incorrect migrations in this table show that the Out-
U and Out-W algorithms scarcely migrate a page mainly accessed by the local node

2 A page is moved to a node and then to another node.
3 A page is accessed most frequently by the local node but migrated to a remote node.
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to a remote node, even though the information about local references is not available.
Also, only one Ping-Pong is performed for all applications. Both indicate that the cho-
sen threshold is adequate. In addition, table 1 also explains the abnormal behavior of
WATER. It can be seen that many multiple migrations are performed, identifying that
pages are alternatively accessed by more nodes. A static optimization placing a page on
a fixed node is therefore not suitable and hence the migration result is better.

For the U- and the W-algorithm, Figure 2 shows that, as expected, Out-W outper-
forms Out-U in case of LU and WATER. For FFT, RADIX, and SOR, both algorithms
behave similarly. The gain in speedup by Out-W for LU and WATER is caused by more
migrations which can be seen in Table 1, where we can also observe that these ad-
ditional migrations are correct. In addition, we have analyzed these migrations using
the ARS GUI and found that they are performed in the earlier phase of the program’s
running. Programs thereby benefit, despite the overhead introduced by the migrations,
from the local references that would be remote if no migration was performed. For
In-W, however, the result is not as expected. In principle, In-W should be better than
Out-W since it should be able to better use the spatial locality of the memory accesses.
However, only the SOR code exhibits a gain. This is probably caused by the fact that
using the In-W algorithm every node can decide whether to move a page to itself. When
a page is accessed by multiple nodes, it can happen that the page is migrated and fixed
to the first node, but not to the one accessing the page most frequently. For the SOR
code, most pages are accessed only by one node, causing the migration not to rely on
the node order. The In-W scheme behaviors therefore better.

In summary, the results of these first experiments show that a significant improve-
ment has been achieved by ARS’s migration approach. It is expected that similar results
can be gained when running the applications on actual NUMA machines and with larger
and more complex applications.

5 Conclusions

High memory access locality is essential for good performance in NUMA–based en-
vironments. This is caused by the sometimes extreme differences in access latencies
between local and remote memory modules. In addition to static optimization mech-
anisms and tools, it is also beneficial to provide dynamic and adaptive mechanisms.
These can work without user interaction and require no prior knowledge of the appli-
cation or even code modifications. In addition, they are also applicable to dynamic or
irregular applications in which static optimizations fail.

This work presented a runtime system, called ARS, which is capable of performing
such dynamic locality adaptations. It uses memory access histograms, gathered through
a hardware monitor with low probe overhead, as input and evaluates this high–level
information to perform adequate page migrations. First experiments using three differ-
ent algorithms implemented within ARS show that ARS is capable of improving the
performance significantly in all cases.

As an important feature, ARS also includes a graphical user interface which is ca-
pable of reporting the dynamic runtime behavior of the application back to the user in
an on–line fashion. This gives the user, together with the DLV, a Data Layout Visualiza-
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tion tool, a deep insight into the memory access patterns of the application and thereby
enables further optimizations.
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