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Abstract. In this paper we investigate the use of compactly supported
RBF kernels for nonlinear function estimation with LS-SVMs. The choice
of compact kernels recently proposed by Genton may lead to computa-
tional improvements and memory reduction. Examples however illustrate
that compactly supported RBF kernels may lead to severe loss in gen-
eralization performance for some applications, e.g. in chaotic time-series
prediction. As a result, the usefulness of such kernels may be much more
application dependent than the use of the RBF kernel.
Keywords. Support vector machines, nonlinear function estimation,
compactly supported kernels, direct and iterative methods.

1 Introduction

Recently kernel methods for pattern recognition and nonlinear function estima-
tion have received a lot of attention. Although the performances of these methods
is often excellent, one of the disadvantages is the upscaling to larger data sets.
This is caused by the fact that many optimization methods demand the storage
of a dense positive definite Gram matrix. Genton [1] recently showed an efficient
method for constructing kernels with compact support without destroying the
positive definiteness of the Gram matrix. In this paper we study the result of
the use of compactly supported RBF kernels. RBF kernels are frequently used in
nonlinear function estimation problems [2]. A compactified version of this ker-
nel could be computationally attractive. In this paper we apply this kernel to
a number of toy problems and real life data sets. As a result we observe that
on certain problems such as chaotic time series prediction the use of compactly
supported RBF kernels leads to loss in generalization performance, while for
other problems (e.g. in lower dimensional problems) the quality of the results is
comparable.

This paper is organised as follows. In section 2 we discuss the compactly sup-
ported RBF kernel. In section 3 we discuss methods for solving LS-SVM systems
and how to exploit sparseness in the Gram matrix. In section 4 illustrations on
artificial and real life data sets are given.

2 Kernel matrix and compactly supported kernels

The kernel functions that are used in the support vector literature [1] are func-
tions K : R

d × R
d → R : (x, z) 7→ K (x, z). One works with positive definite



kernels that satisfy the Mercer condition. Given a training data set {xi, yi}
N
i=1

with inputs xi ∈ R
d and outputs yi ∈ R this results in a kernel matrix or Gram

matrix Ω ∈ R
N×N that is positive definite, where Ωij = K (xi, xj).

In nonlinear function estimation frequently used kernels are the radial basis
function (RBF) kernel K (x, z) = exp(−‖x − z‖

2
/σ2). where σ ∈ R is a tuning

parameter of the model. These Gaussian kernels are special cases of the class of
Matérn type kernels [3]. An important property of this class of kernels is that
they can easily be transformed into compactly supported kernels. This means that
the kernel will be zero if ‖x − z‖ is larger than a cut-off distance θ′. As explained

in Genton [3] one can multiply the kernel by max{0, (1 − ‖x − z‖ /θ′)
ν′

} where
θ′ > 0 and ν′ ≥ (d + 1) /2 to ensure positive definiteness. The danger of cutting
off a kernel in another way is that one will loose positive definiteness. In this
paper we investigate the use of compactly supported Gaussian RBF kernel (CS-
RBF)

K (x, z) = max

{

0,

(

1 −
‖x − z‖

3σ

)ν′
}

exp

(

−
‖x − z‖

2

σ2

)

. (1)

In order to avoid having too many extra parameters we decided to take the cut-

off point θ′ = 3σ, where σ denotes the bandwidth of the Gaussian RBF kernel.
ν′ is chosen to be equal to the dimension of the input variables for the odd cases;
when the dimension is even, it is augmented by one.

3 Nonlinear function estimation using LS-SVMs

We test the CS-RBF kernel in the context of LS-SVMs for nonlinear function
estimation. This method is closely related to regularization networks, Gaussian
processes and kernel ridge regression [1, 2]. The emphasis in the LS-SVM formu-
lation is on primal-dual interpretations as in standard SVM, but simplified to
a ridge regression formulation in the primal weight space which can be infinite
dimensional. In the primal weight space one has the model yi = wT ϕ(xi)+b+ei

with ϕ(·) the mapping to a high dimensional feature space as in standard
SVMs. ei denotes the error for the i-th training data point. One minimizes

minw,b,e(1/2)w
T w + γ

∑N

i=1
e2

i s.t. yi = wT ϕ(xi) + b + ei for i = 1, .., N . For
this constrained optimization problem one constructs a Lagrangian. The dual
problem gives the KKT system

[

0 1T
v

1v Ω + IN/γ

] [

b
α

]

=

[

0
y

]

(2)

with α = [α1; ...;αN ], y = [y1; ...; yN ] , 1v = [1; ...; 1]. The resulting model

f̂(x) =
∑N

i=1
αiK (x, xi) + b with application of the kernel trick K(xi, xj) =

ϕ(xi)
T ϕ(xj). These models can be robustified and sparsified as explained in [7].

Many algorithms for solving the linear system require a positive definite ma-
trix which is not the case here. Therefore one can transform this system into
Hη = 1v and Hν = y with H = Ω + IN/γ positive definite. From this we find
that b = ηT 1v/s and α = ν − bη where s = ηT 1v.



One of the standard numerical methods for solving the linear systems with
matrix H is the Cholesky factorization [5]. An important disadvantage is that
the matrix has to be completely stored in memory. As a result of the CS-RBF
kernel one gets a sparse matrix. The memory requirements become proportional
to the number of non-zero elements nz. The computational cost is reduced by
making efficient use of the zero elements in the matrix. There exist different per-
mutation algorithms (column count permutation, symmetric minimum degree,
reverse Cuthill-McKee,...)[4] on the elements of the sparse matrix that give a
higher degree of sparseness in the Cholesky factor.

A second important class of methods to solve linear systems are Krylov meth-
ods. Such iterative methods are suitable for solving large scale problems. The
conjugate gradient (CG) method can only be applied to positive definite ma-
trices [6],[5]. The most demanding part in this algorithm is the matrix-vector
product between H and the conjugate directions. This can also be reduced by
a CS-RBF kernel. The number nz can be exploited at this point. In the CG
method the κ (H) determines the convergence (note that this also depends on
the regularization constant γ and σ).

4 Examples

We investigate here the use of the CS-RBF kernel on a number of artificial and
real-life data sets.

4.1 Sinc toy problem

Here we compare CS-RBF and RBF kernels for a noisy sinc function f(x) =
sin(x)/x estimated by LS-SVMs. The tuning parameters are selected as γ = 1.5
and σ = 3.7. The inputs were take between -20 and 20 with an interspacing
of 0.03. We added Gaussian noise to the inputs with zero mean and standard
deviation 0.1. Fig.1 shows that the performance of regression with the RBF
and CS-RBF are almost the same. CS-RBF gives a slightly larger bias and less

smooth results. The pointwise variance of f̂(x) is larger for the CS-RBF kernel.
An advantage of the CS-RBF kernel is the sparse kernel matrix. For large

data sets this results in a memory reduction. In the example of the sinc-function
with 1334 training points, the number of non-zero elements decreases from
13342=1779556 to nz =850160. In this one-dimensional problem the Gram ma-
trix also has a very clear band structure. Notice that the H matrix is independent
of the yi values of the training set. This means that for each regression problem
with the same xi values for the training set and hyperparameter set (γ, σ) the
H matrix has this sparse band structure. This band structure, in combination
with the sparseness in the matrix, makes that there is a speed-up in the training
procedure. Depending on the used methods (Cholesky or Conjugate Gradient)
the time needed to solve the two systems is the following: the Cholesky factoriza-
tion needs 9.7450 sec. cpu-time to solve the two linear systems for the Gaussian
RBF and 4.3270 sec for the compactly supported RBF. The conjugate gradient
method needs respectively 4.1470 sec and 2.6540 sec. Hence, we typically ob-
serve that the compactly supported kernel results in a memory reduction and a
speed-up of about 50%.
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Fig. 1. LS-SVM results for nonlinear function estimation on the The middle and bot-
tom part show respectively the bias and variance of both estimates for both kernels.

We also tested the influence of the localization on the condition number of
the matrix H. Fig.2 shows that there is only a small deference in the condition
number of the matrix H for the different values of (γ, σ) . Therefore, the speed
of convergence for CG with RBF or CS-RBF kernels is comparable.

4.2 Boston Housing data

As a second example we tested the Boston housing data set. This data set
consists of 506 cases in 14 attributes. We trained LS-SVMs on 406 randomly
selected training data and used 100 points as test set. We normalized the data
except the binary variables. In Table 1 we show the performances of the LS-SVM
for different values of the hyperparameter σ where γ = 30 is kept constant. The
performances of RBF and CS-RBF kernels were comparable on all performed
tests. We see that by decreasing σ, the Gram matrix will become more and more
sparse as a result of the localization of the kernel.

σ = 1.5 σ = 2.0 σ = 10

MSEtr 5.8e-3 1.3e-2 1.20e-1
MSEtest 1.1e-1 1.0e-1 8.45e-2
nz/N2 0.37 0.84 1

Table 1. Performance for different values of bandwidth σ for CS-RBF kernels onthe
Boston housing data. MSEtr and MSEtest are respectively the mean squared error on
the training and test set. The ratio nz/N2 characterizes the degree of sparseness in the
Gram matrix.
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Fig. 2. This figure shows the logarithm of the condition number for different hyperpa-
rameters (γ, σ). (Left) RBF kernel; (Right) CS-RBF kernel. Notice that the condition
number is not significant larger for the CS-RBF.

4.3 Santa Fe chaotic laser data time series prediction

In a third example we use LS-SVM for time series prediction on the Santa
Fe laser data set. The model that we use here is based on a trained one step

ahead predictor ŷk = f (yk−1, yk−2, ..., yk−n) with n = 50 where yk denotes the
true output at discrete time instant k. In Fig.3 we see that a good iterative
prediction performance is obtained for the RBF kernel with hyperparameters
(γ, σ) = (70, 4) found by 10-fold crossvalidation. For the same hyperparameters
the CS-RBF kernel has a very bad performance as can be seen in Fig.3. For
almost similar performance either the cut-off point has to be increased θ′ = 50σ
or the bandwidth of CS-RBF kernel has to increase. Unfortunately, both reduce
the degree of sparseness in the Gram matrix to zero.
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Fig. 3. Santa Fe laser data prediction: (a) (-) real data, (- .) RBF kernel (- -) CS-RBF

kernel; (b) (- -) CS-RBF with cut-off point θ
′

= 50σ having no sparseness; (c) MSE on

testdata with respect to cut-off point θ
′

, showing bad results for smaller θ
′

, i.e. sparse
Gram matrix.



5 Conclusion

We have studied the use of compactly supported RBF kernels based on recent
work by Genton. RBF kernels are frequently used for many applications. The
use of compactly supported kernels could decrease the computational cost and
memory requirements. In our study we have seen that for certain problems the
generalization performance is comparable as well as the conditioning of the ma-
trices towards iterative methods of conjugate gradient. However, on a problem
of chaotic time series prediction the compactly supported RBF kernels fails to
produce good results when having a sparse Gram matrix. As a result one may
conclude that compactly supported RBF kernels may be useful for some specific
applications but one should be careful to use it in a general context.
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