
Stochastic resonance and finite resolution in a network

of

leaky integrate-and-fire neurons

Nhamoinesu Mtetwa

Department of Computing Science and Mathematics

University of Stirling, Scotland

Thesis submitted for the degree of Doctor of Philosophy

2003

ProQuest Number: 13917115

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13917115

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

D eclaration

I declare that this thesis was composed by me and that the work contained therein is my

own. Any other people’s work has been explicitly acknowledged.

i

A cknow ledgem ents

This thesis wouldn’t have been possible without the assistance of the people acknowledged

below. To my supervisor, Prof. Leslie S. Smith, I wish to say thank you for being the best

supervisor one could ever wish for. I am specifically thankful for giving me the freedom to

walk into your office anytime. This made it easy for me to approach you and discuss any

research issues as they arose.

Dr. Amir Hussain, a note of thanks for advice on the signal processing aspects of my

research.

Dr. Mike Roberts and Dr. Douglas McLean, I appreciate your significant help on the

mathematical aspects of this thesis.

Katie Howie, I am grateful for your help with the statistical analysis of the results.

CSG (Sam, Graham and Claire) and Frank, you were excellent on assisting me with

the technical aspects of my work.

Dr. David Sterratt and Dr. Catherine Breslin, thank you for taking time to read the

thesis and providing useful comments.

Laura Kelling, you are a genius at proofreading, much appreciated.

Dr. Hans Plesser, your work was the original inspiration to this thesis. I thank you for

your readiness to answer any questions during the conducting of this research.

CCCN, thank you for useful feedback during research seminars.

Stirling University, thank you for funding my research. This work would not have been

possible without the funding.

Last but not least, I wish to thank Thandi for being there for me during the highs and

the lows of this work.

ii

A bstract

This thesis is a study of stochastic resonance (SR) in a discrete implementation of a leaky

integrate-and-fire (LIF) neuron network. The aim was to determine if SR can be realised

in limited precision discrete systems implemented on digital hardware.

How neuronal modelling connects with SR is discussed. Analysis techniques for noisy

spike trains are described, ranging from rate coding, statistical measures, and signal pro­

cessing measures like power spectrum and signal-to-noise ratio (SNR). The main problem

in computing spike train power spectra is how to get equi-spaced sample amplitudes given

the short duration of spikes relative to their frequency. Three different methods of comput­

ing the SNR of a spike train given its power spectrum are described. The main problem is

how to separate the power at the frequencies of interest from the noise power as the spike

train encodes both noise and the signal of interest.

Two models of the LIF neuron were developed, one continuous and one discrete, and the

results compared. The discrete model allowed variation of the precision of the simulation

values allowing investigation of the effect of precision limitation on SR. The main difference

between the two models lies in the evolution of the membrane potential. When both models

are allowed to decay from a high start value in the absence of input, the discrete model

does not completely discharge while the continuous model discharges to almost zero.

The results of simulating the discrete model on an FPGA and the continuous model

on a PC showed that SR can be realised in discrete low resolution digital systems. SR

was found to be sensitive to the precision of the values in the simulations. For a single

neuron, we find that SR increases between 10 bits and 12 bits resolution after which it

saturates. For a feed-forward network with multiple input neurons and one output neuron,

SR is stronger with more than 6 input neurons and it saturates at a higher resolution.

We conclude that stochastic resonance can manifest in discrete systems though to a lesser

extent compared to continuous systems.

Contents

1 Introduction 1

1.1 Aim of the t h e s i s 2

1.2 Methodology .. 2

1.3 Contribution to knowledge.. 3

1.4 Outline of thesis chapter by ch ap te r... 4

2 Background 6

2.1 Neurophysiology of neurons ... 7

2.2 Neuronal m odelling... 8

2.2.1 Detailed m odels.. 9

2.2.2 Simple m odels... 11

2.3 Noise in neurons .. 18

2.3.1 Origins of noise in neu rons... 18

2.3.2 Some benefits of noise ... 19

2.3.3 Noise and signal processing .. 20

2.3.4 Noise and neural c o d in g .. 21

2.4 Models of n o is e ... 23

2.4.1 Noisy th re sh o ld .. 24

2.4.2 Noisy reset .. 25

2.4.3 Noisy in teg ra tio n ... 26

2.5 Artificial neural networks in hardw are.. 27

iv

2.5.1 Mapping ANN onto h a rd w are ... 28

2.5.2 Quantisation and limited precision in DSPs 28

2.6 Field Programmable Gate A r ra y s ... 31

2.6.1 FPGA A rch itec tu res... 33

2.6.2 Static RAM Technology ... 34

2.6.3 Fuse and A n ti-fu se .. 35

2.6.4 Hardware description languages.. 36

2.6.5 Applications... 39

2.7 Summary .. 42

3 Stochastic R esonance 44

3.1 What is Stochastic Resonance? .. 45

3.2 History of stochastic resonance .. 48

3.3 Quantifying stochastic resonance in n e u ro n s .. 50

3.3.1 Power spectrum ... 51

3.3.2 Interspike interval h is to g ram s... 51

3.3.3 Signal-to-noise ratio ... 53

3.3.4 Other m easures... 55

3.4 Aperiodic vs periodic stochastic re so n an ce ... 55

3.5 Stochastic resonance in neuronal m o d e ls ... 56

3.5.1 Threshold d e te c to r .. 56

3.5.2 Stochastic resonance in n eu ro n s .. 57

3.6 Tools for modelling S R .. 60

3.6.1 Digital sim ulation.. 61

3.6.2 Analogue s im u la tio n ... 61

3.6.3 Physiological experiments .. 62

3.7 Some of the benefits of stochastic re so n a n c e .. 62

3.8 Some misconceptions about stochastic resonance.. 64

3.9 Summary .. 65

v

4 M easurem ents from spike trains 67

4.1 Stochasticity in spike t r a i n s .. 67

4.1.1 Spike trains as a point process... 68

4.2 Neural codes.. 70

4.2.1 Rate as a spike c o u n t... 71

4.2.2 Rate as a spike d en s ity .. 72

4.2.3 Rate as a population activity ... 73

4.2.4 Phase based codes .. 74

4.2.5 Correlation c o d e s ... 74

4.2.6 Population and correlated co d es .. 75

4.2.7 Discussion: spikes or rates? .. 75

4.3 Interspike interval d is tr ib u tio n s .. 76

4.3.1 Coefficient of v a ria tio n .. 76

4.3.2 Spike count distribution and Fano f a c to r .. 78

4.3.3 Estimating ISI distribution p a ram ete rs ... 79

4.4 Autocorrelation fu n c tio n .. 80

4.5 Power sp ec tru m .. 81

4.5.1 Sampling spike tra in s ... 81

4.5.2 Treatment as a continuous process ... 82

4.5.3 Treatment as a point process ... 83

4.5.4 Power spectrum of a spike t r a i n .. 86

4.6 Signal-to-noise ra tio .. 88

4.6.1 Method 1 .. 89

4.6.2 Method 2 .. 89

4.6.3 Method 3 .. 90

4.6.4 Comparison of the m e th o d s .. 91

4.7 D iscussion.. 93

4.8 Summary .. 95

vi

5 Sim ulation m odels 97

5.1 Network m o d e l ... 97

5.1.1 Network arch itec tu re ... 98

5.1.2 Model in d e t a i l .. 99

5.1.3 Related w o r k .. 105

5.1.4 Model comparison with related w o r k .. 107

5.2 Floating point m o d e l... 108

5.2.1 Discretised floating point m o d e l.. 109

5.3 Integer m o d e l ... 110

5.3.1 Model transformation... I l l

5.4 Implementation of the floating point m odel... 112

5.4.1 Floating point implementation.. 112

5.4.2 Floating point numbers in J a v a .. 114

5.4.3 Floating point Java m odels................ ... 115

5.5 Integer model im plem entation.. 115

5.5.1 RC1000-PP board .. 116

5.5.2 FPGA mimicked in J a v a ... 120

5.5.3 Handel-C implementation ... 121

5.6 Comparison of the m o d e ls .. 125

5.6.1 32-bit floating point versus 64-bit floating p o i n t 125

5.6.2 Floating point versus discretised floating p o in t 127

5.6.3 Simulated decay versus analytical decay .. 127

5.6.4 Integer model vs floating point m o d el.. 129

5.7 D iscussion.. 130

5.7.1 The time step and the accuracy of the Euler m e th o d 130

5.7.2 Effect of quantisation on ac tiv a tio n .. 131

5.8 Summary .. 133

vii

6 Stochastic resonance in sim ulated system s 135

6.1 Methodology .. 136

6.1.1 Network parameters ... 138

6.2 Stochastic resonance in the input neurons ... 139

6.2.1 SR in floating point input neuron m o d e l .. 139

6.2.2 SR in integer input neuron m o d e l... 140

6.2.3 Limited precision SR in the input neuron .. 142

6.2.4 Floating point versus integer S R .. 144

6.3 Stochastic resonance in the output n e u r o n ... 146

6.3.1 Floating point output neuron model SR .. 147

6.3.2 Integer-based output neuron S R .. 148

6.3.3 Comparison of output neuron floating point and integer-based SR . 149

6.4 Comparison between input and output neurons .. 151

6.4.1 Floating point m o d e l... 152

6.4.2 Integer m o d e l.. 153

6.4.3 Integer versus floating point m o d e l ... 154

6.5 Bandpass properties of stochastic resonance .. 156

6.6 Effect of network param eters... 157

6.7 D iscussion.. 163

6.8 Summary .. 164

7 C onclusion 165

7.1 Summary of re su lts ... 165

7.1.1 Power spectrum of spike trains .. 166

7.1.2 Signal-to-noise ratio ... 166

7.1.3 Modelling r e s u l t s ... 167

7.1.4 Reduced resolution stochastic resonance .. 168

7.1.5 Improvement in stochastic re so n an ce .. 168

7.1.6 Significance of the network topology .. 169

viii

7.2 Conclusion... 170

7.3 Further work ... 172

A Single neuron power spectra 191

B M ultip le neurons power spectra 194

ix

List of Figures

2.1 Schematic representation of a canonical neuron ... 8

2.2 Perfect and leaky integrate-and-fire neuron m o d e l .. 13

2.3 Variability of neuronal responses . .. 23

2.4 Structure of an F P G A .. 32

2.5 Different FPGA a rch itec tu re s ... 34

3.1 Stochastic resonance in equi-potential w ells... 46

3.2 Linearisation by noise... 48

3.3 Power spectrum of a spike t r a i n .. 52

3.4 Interspike interval h istogram .. 53

3.5 SNR of a Spike t r a i n ... 54

3.6 Stochastic resonance in threshold d e te c to r ... 57

3.7 Stochastic resonance on a c i r c le .. 58

4.1 Sampling a spike t r a i n .. 82

4.2 Continuous signal from a spike train ... 85

4.3 Illustration of method 1 of computing S N R ... 90

4.4 Illustration of method 2 of computing S N R ... 91

4.5 Illustration of method 3 of computing S N R ... 92

4.6 Comparison of the 3 m e th o d s ... 93

4.7 Effect of signal w id th ... 94

5.1 Network m o d e l ... 98

x

5.2 Class d iag ram .. 113

5.3 The RC1000-PP board la y o u t ... 116

5.4 Handel-C design f lo w ... 121

5.5 Signal and threshold qu an tisa tio n ... 124

5.6 Comparison of 32-bit and 64-bit floating point m odels................................... 126

5.7 Comparison of 32-bit floating model and discretised 32-bit floating point

m o d e l .. 127

5.8 Comparison of the numerical decay with the analytical solution decay. . . . 128

5.9 Integer model mimicked in J a v a .. 129

5.10 Normalised membrane potential decay .. 130

5.11 Membrane potential d e c a y ... 132

6.1 Number of gates versus network size .. 137

6.2 SR in the power s p e c tru m ... 140

6.3 Floating point input neuron S R .. 141

6.4 Integer based SR in the power s p e c tru m .. 142

6.5 Integer based input neuron stochastic resonance... 143

6.6 Different integer resolutions S R .. 144

6.7 Reduced resolution S R .. 145

6.8 SR in the power s p e c tru m ... 147

6.9 Floating point versus integer S R .. 148

6.10 Spike-based S R ... 149

6.11 12 bits resolution S R ... 150

6.12 Effect of limited precision on S R .. 151

6.13 Differences of floating point and integer-based S R .. 152

6.14 Comparison of output neuron floating point and integer-based S R 153

6.15 Input neuron versus output n e u r o n .. 154

6.16 Integer-based output neuron S R .. 155

6.17 Integer versus floating 7-neuron network o u t p u t ... 156

xi

6.18 Floating point neuron bandpass properties

6.19 Integer neuron bandpass properties

List of Tables

5.1 Symbols used in chapter 5 .. 100

5.2 Accuracy difference between float and double.. 134

6.1 Multiple comparison of reduced re so lu tio n ... 146

xiii

Chapter 1

Introduction

This thesis is concerned with the realisation of stochastic resonance in a leaky integrate-

and-fire (LIF) neural network, modelled discretely and a comparison with what has been

observed in floating point based LIF neurons. Stochastic resonance can be loosely defined

as the amplification of signals using noise. The original inspiration of this work comes

from the observed apparent randomness of spike trains from in vivo recordings when a

neuron is presented with the same stimulus several times. This suggests that neurons

communicate using a noisy code. Neurons achieve feats which programmed systems cannot

yet achieve using this noisy looking code. The spike trains appear noisy to us because we

do not understand the code that neurons use to communicate. It also turns out that

the models that researchers develop are often able to reproduce results from real neurons

when noise is deliberately added one way or another to the models. This suggests that

there is a certain type and amount of noise which neurons require to function properly. In

electronic systems, engineers invest a lot of time and money in trying to minimise noise

(Ott, 1976) yet neurons seem to need noise to function properly (Mainen and Sejnowski,

1995). The tools scientists and engineers have developed are generally not intended for

handling noisy signals. Stochastic resonance provides a constrained way of realising certain

benefits of noise. Stochastic resonance is well established in continuous systems but not well

established in discrete systems. This thesis discusses discrete-based stochastic resonance

1

CHAPTER 1. INTRODUCTION 2

in an integrate-and-fire type neural network and compares it with the well established

continuous based stochastic resonance.

1.1 A im of th e thesis

The aim of this thesis is to determine whether stochastic resonance relies on the underlying

continuous nature of a system or whether a linearly discretised system is able to display

stochastic resonance. A follow on question to this is that of how discrete-based stochastic

resonance would be affected by varying the precision of the values in the simulations.

The thesis is primarily about a comparison between the realisation of stochastic res­

onance in single LIF neurons, and in a small network of LIF neurons both implemented

on two different platforms. The first platform is floating point (Java on a PC) hence high

resolution, while the second platform is discrete and low resolution (Handel-C on Field

Programmable Gate Array (FPGA)). On the integer platform we were able to vary the

resolution (or word length) at which computations are done.

1.2 M ethodology

In order to realise the aims outlined above, we developed a floating point based LIF neu­

ron network model and implemented it in Java. We then derived an integer (discrete)

model from the floating point model using an approximation. The integer model was im­

plemented on an FPGA using Handel-C. The two network models were run using the same

input except that the integer model received quantised versions of what the floating point

model received. Spectral analysis was performed on the resulting spike trains to ascertain

stochastic resonance. In the process of developing the models and analysing the subse­

quent results, we made some interesting observations which we present under contribution

to knowledge.

CHAPTER 1. INTRODUCTION 3

1.3 C ontribution to knowledge

The underlying goal of the project from which the thesis topic emerged was to try to bring

the work of modelling noisy neurons closer to what could possibly be used in a real life

gadget for a reasonable amount of money. Literature abounds with neuronal models whose

practical viability has not been tested. By implementing neuronal stochastic resonance

on a precision-constrained digital platform of the FPGA type we aim to bring neuronal

modelling closer to its application in an as yet undefined application. Prosthetic devices

like hearing aids would be a good target. Floating point realisation would require either

huge, expensive Application Specific Integrated Circuits (ASICs) or huge FPGAs. We aim

to come up with limits in terms of the numerical precision required for an integer model

to approximate what has already been achieved by floating point models.

There are two main contributions to knowledge from this thesis. The first concerns the

realisation of stochastic resonance in discrete systems. We show that discretised systems

can display stochastic resonance though to a reduced extent compared with continuous

systems. This is important to know because it means that one can develop real-time

stochastic resonance based digital electronic systems. This is hard to achieve with floating

point representation as it requires a large amount of chip area. In addition, it makes FPGA

implementation possible.

The second contribution is the discovery that discrete based stochastic resonance is

sensitive to the precision of the numbers within the simulation. Our results show that

with a resolution of 12 bits one can realise discrete stochastic resonance which is almost

comparable to that of continuous systems. This is good news because it means that one

can get real-time performance with reduced chip area using commercially available FPGA

chips. Because the resolution of the values in the simulations is inversely proportional to

chip area, smaller resolutions allow us to build bigger networks than one could with the

bigger resolutions associated with floating point representation.

CHAPTER 1. INTRODUCTION 4

1.4 O utline o f thesis chapter by chapter

Chapters two and three are mainly review chapters but we also raise some questions which

our models answer in subsequent chapters. The rest of the thesis describes the modelling

work that was done and the analysis and discussion of results. The techniques used for

analysing the results are also discussed.

Chapter 2 deals with general neurophysiology and how some of this physiology is repre­

sented in computer models of neurons. We begin with a description of a canonical neuron

according to Amit (1989). Modelling of spiking neurons plays an important role in this

thesis and therefore a large part of this chapter is devoted to their discussion. We note that

neurons can be modelled at different levels of detail by describing detailed models like the

Hodgkin-Huxley type to simplified models such as the integrate-and-fire type. The issue

of noise is also central to the thesis. Accordingly, a section is devoted to discussions on

the origins of noise in the central nervous system and how models cope with noise. After

discussing the modelling of neurons in detail we then introduce the issue of how these

models are implemented in digital hardware especially of the FPGA type. This brings in

the issue of precision limitation because of the discrete nature of digital hardware.

Chapter 3 is devoted to stochastic resonance. We start by defining stochastic resonance,

followed by a description of its origins. This chapter also discusses how stochastic resonance

is measured and how it manifests in neuronal models of the integrate-and-fire type.

Chapter 4 deals with the techniques that we use in the thesis to analyse noisy spike

trains and to quantify stochastic resonance. We describe the various measures that can

be derived from spike trains which include neural codes, statistics like the coefficient of

variation and correlation functions, and signal processing-based measures like the power

spectrum and signal-to-noise ratio.

Chapter 5 is concerned with models that were used to simulate continuous based and

discrete based stochastic resonance in single LIF neurons and in a small network of LIF

neurons. We start by describing the network topology used in the models followed by

the floating point based LIF neuron model. We then derive the integer model as an

CHAPTER 1. INTRODUCTION 5

approximation of the floating point LIF neuron model. We describe a discretised floating

point model which is midway between the floating point model and the integer model. This

model was necessitated by the fact that the integer model and the floating point models

are too far apart. We also compare these models. After introducing the models and the

network topology, next we describe the Java classes for implementing the floating point

model and the hardware (Field Programmable Gate Array) and Handel-C (a hardware

compilation language) for implementing the integer model.

In chapter 6 we present and discuss the results of simulating stochastic resonance on

the two platforms. We identify the quantisation of the activation as the main source of

differences between the integer and floating point models. We also report results on the

effect of precision limitation on stochastic resonance.

Finally, in chapter 7 we list what has been achieved in this thesis and what it means

to the neuroscience and digital design communities. We finish with suggestions for further

work on the thesis topic.

Chapter 2

Background

This chapter provides background material to neuronal modelling. Since our particular

interest is stochastic resonance, we will limit what would otherwise be an impossibly large

review to only those aspects of neuronal modelling which support the main subject of

interest.

The task of analysing neurons begins by looking at models which completely neglect

the dendritic tree and replace the conductance-based description of the spiking process by

one of two canonical descriptions. These two steps dramatically reduce the complexity

of the problem of characterising the electrical behaviour of neurons. Instead of solving

coupled non-linear differential equations, we are left with a single ordinary differential

equation. Such simplifications allow us to treat formally networks of large numbers of

interconnected neurons, as exemplified in the neural network literature, and to simulate

dynamics. Understanding any complex system always entails choosing a level of description

that retains key properties of the system while removing those properties which are not

essential for the purpose at hand.

In this chapter we will discuss some neural models and how they are affected by noise

and it is this noise aspect that brings in the issue of stochastic resonance. We will also

discuss the problems associated with implementing some of these models on digital hard­

ware.

6

CHAPTER 2. BACKGROUND 7

Section 2.1 deals with the main components of a neuron from a functional and modelling

point of view. This is followed by a discussion of the various levels at which neurons can be

modelled in section 2.2. Section 2.3 discusses the noisiness of neurons and we follow this

up with a discussion of how noise is incorporated into neuronal models in section 2.4. In

section 2.5 we discuss the problems we face when we try to map artificial neural networks

onto hardware. FPGAs, which is the hardware that is used in this thesis are described in

section 2.6. The chapter ends with a summary in section 2.7.

2.1 N europhysiology of neurons

There are a large variety of neurons in the nervous system of animals and humans, with

variations in structure, function and size. We will restrict ourselves in this thesis to a

canonical neuron (Amit, 1989), which presents the underlying functional skeleton for all

neurons. The canonical neuron is divided into three parts (see figure 2.1), an input part

(the dendritic tree), a processing part (the soma), and a signal transmission part (the

axon). There are arguments about how much processing takes place on the dendrites.

We will restrict ourselves to the processing that takes place at the soma. The detailed

physiology of a real neuron is too complicated to discuss here, let alone attempt to model

in a network. In this section we discuss the basic functions of a neuron. Even this basic

description is still not simple enough for most modelling purposes.

Neurons communicate via synapses, which are the interfaces between the dendrites of

the post-synaptic neurons and axons of presynaptic neurons. There is a small number of

branches of dendritic trees entering the soma of the neuron. Usually, one axon leaves the

soma and then, downstream, it branches repeatedly to communicate with many postsy-

naptic neurons, i.e., the neurons the specified neuron is talking to.

Having described the three main components of a neuron, next we discuss some of the

models used to simulate real neurons. In the next section we will discuss some of the levels

at which neurons are modelled. It was discovered that even the canonical neuron that we

have just described results in complicated models consisting of coupled non-linear differ­

CHAPTER 2. BACKGROUND 8

Dendrites

Soma

Hillock

Axon

Synaptic
buttons

Figure 2.1: Schematic representation of a canonical neuron, from Amit (1989).

ential equations which are not mathematically tractable and are expensive to implement

in hardware.

2.2 N euronal m odelling

Neuronal activity can be described at several levels of abstraction. On a microscopic level,

there are a large number of ion channels (Kandel et al., 2000; Breslin and Smith, 1999),

pores in the membrane which open and close depending on the voltage and the presence

(or absence) of various chemical messengers. Although one can model these individually, it

CHAPTER 2. BACKGROUND 9

is more common to lump them together and model patches of membrane. Such models are

called compartmental models. Compartmental models are used to model neurons at this

level of detail (Maass and Bishop, 1999), they can also be used to model the morphology

of neurons.

At a higher level of abstraction, we do not worry about the spatial structure of a

neuron nor about the exact ionic mechanisms. We consider the neuron as a homogeneous

unit which generates spikes if the total excitation is sufficiently large (Koch, 1999). This is

the level of the integrate-and-fire neuron model (an example of the so called threshold-fire

neural models).

Threshold-fire neuron models should be contrasted with rate models which are reviewed

further on in this chapter. Rate models neglect the pulse structure of the neuronal output,

and therefore have a higher level of abstraction. On a yet coarser level would be models

which describe the activity in, and interaction between, cortical columns or even whole

brain areas.

2.2.1 D eta iled m odels

In this subsection we briefly discuss some of the neuron models which are used to model

certain functionalities of real neurons in detail. The models reflect the level of abstraction

at which the neurons are being modelled.

H odgkin-H uxley m odel

The classic description of neuronal spiking dates back to the work of Hodgkin and Huxley

(reviewed in Kandel et al. (2000) but based on the original 1952 paper by Hodgkin and

Huxley) who summarised their extensive experimental studies on the squid giant axon with

four coupled nonlinear differential equations. Using these equations and an appropriate

set of parameters, Hodgkin and Huxley were able to explain data from experiments on the

giant axon of the squid. This model takes into account the exact properties of neurons,

expressed in terms of membrane potential and the ionic conductances and potentials. Ac­

CHAPTER 2. BACKGROUND 10

tion potentials, corresponding to pulse-like depolarisations of the neuron’s transmembrane

potential, are the result of ionic current flows. This model has an inherent threshold. It

is however obvious that such an approach is too detailed for modelling large networks of

neurons, at least, with current technologies.

The system of equations proposed by Hodgkin and Huxley is rather complicated (Maass

and Bishop, 1999). For this reason, several simplifications of the Hodgkin-Huxley equations

have been proposed. The most common reduces the set of four equations to a system of

two equations (Koch and Segev, 1999). One such resulting two dimensional model is called

the FitzHugh-Nagumo model. For a review of the methods and results see the article

by Rinzel and Ermentrout in the review collection (Koch and Segev, 1999). Even this

is still not simple enough for most modelling purposes. This model also has an inherent

threshold. Even though it is considerably simpler than the Hodgkin-Huxley model, it

is still too complicated to be mathematically tractable. For a further reduction of the

Fitzhugh-Nagumo model to an integrate-and-fire model see (Abbott and Kepler, 1990).

C om partm ental m odels

The neuron model described so far does not take into consideration the spatial structure of

the neuron. A neuron has been considered to be a point-like element and the main focus

has been on the process of spike generation. Compartmental models provide a more de­

tailed description of neuronal dynamics and morphology by explicitly taking into account

the spatial structure of the dendritic tree and by modelling the synaptic transmission at

a greater level of detail. Additionally, other ionic currents beyond the sodium and potas­

sium currents incorporated in the Hodgkin-Huxley model are included in these models.

Compartmental models also allow non-homogeneous placing of ion channels.

Conductance-based and compartmental models are more suitable for modelling single

neurons in detail (Maass and Bishop, 1999). The amount of detail they involve render them

unsuitable for modelling large networks. There is not a large literature which discusses the

implementation of neuronal stochastic resonance using these detailed models. Some of

CHAPTER 2. BACKGROUND 11

the attempts to model stochastic resonance in detail include the works of Hutcheon et al.

(1996), Lee et al. (1998), and Lee and Kim (1999). It is worth noting that there are

hardware versions of these detailed models as evidenced by the work of Mahowald and

Douglas (1991). This level of detail will not be cheap to model in hardware so next we

discuss simplified models which are more likely to be realisable cheaply on digital hardware

platforms as networks.

2.2.2 Sim ple m odels

In this subsection we discuss reduced versions of the models discussed above which are more

amenable to the simulation of large networks. We will discuss rate-based and integrate-

and-fire models.

R ate-based m odels

In standard neural network theory, neural activity is described in terms of spike rates. The

rate Vi of neuron i is an analogue variable which depends non-linearly upon the excitation

Ui of the neuron:

Vi = g(m) (2 .1)

where g(.) is usually taken as the sigmoidal function with g(u) —>• 0 for u —»■ — oo and

g(u) —> 1 for u —> oo (Maass and Bishop, 1999). The excitation is given by a linear sum

over all input connections:

Ui = J 2 wijvj (2.2)
j

where Vj is the output rate of a presynaptic neuron j . The sum runs over all neurons which

send signals to neuron i. The weight factors W{j give the weight attributed to connections

from j to i. w{j is the synaptic weight, equations 2.1 and 2.2 can be combined into a single

equation 2.3:

v i = 9 (Y l w i jv3) (2 -3)
j

CHAPTER 2. BACKGROUND 12

which is the starting point of standard neural network theory (Hertz et al., 1991). Equation

2.3 is a static equation. It applies to situations where a stationary input (a set of firing rates

Vj) is mapped to stationary output (the rate Vi). Equation 2.3 is not useful for investigating

stochastic resonance in its current state because stochastic resonance deals with time-

varying signals. It is possible to make the equation time-dependent. A straightforward

way to introduce dynamics into the rate equation is to replace it by a differential equation

(Koch, 1999; Abbott, 1991)

T ~ < ¥ = ~ V i + W i j V j S) (2 ‘ 4) j
with a time constant r. For stationary input and output, the left-hand side of 2.4 disappears

and it reduces to 2.3.

Equation 2.4 provides a convenient way to introduce some time dependence in the rate

model but can it be considered a realistic description of neuronal activity? As pointed

out by Maass and Bishop (1999), an analogue variable described by a spike count measure

requires a long temporal averaging window. It can therefore be only used if the input

and the output change on a slow time scale. Considering the fact that, for example, the

visual input changes due to saccades on average every 200 ms (Kandel et al., 2000), a

slowly changing input cannot always be assumed. It has therefore been argued that the

rate equation (2.4) refers to a population average rather than to a temporal average (Koch,

1999). The details of temporally averaged rates and other types of spike-based rates are

discussed in chapter 4.

Integrate-and-fire m odels

The integrate-and-fire model is an important example of the so called “threshold-fire”

models. It comes in two types, namely, the perfect integrate-and-fire (IF) and the leaky

integrate-and-fire (LIF) models (figure 2.2). The perfect integrate-and-fire model is simple

but quite powerful. This model assumes that the neuron integrates its inputs and generates

a spike when a voltage threshold is reached. In mathematical terms it is described in its

CHAPTER 2. BACKGROUND 13

A Integrate-and-fire spikes

B Leaky Integrate-and-fire spikes

Figure 2.2: Variants of the integrate-and-fire model. Common to both are passive inte­

gration with a single compartment for subthreshold domain and a voltage threshold Vth-

When the membrane potential V reaches threshold V^, a pulse is generated and the cir­

cuit is short circuited. (A) Perfect or non-leaky integrate-and-fire model. (B) Leaky (or

forgetful) integrate-and-fire model unit accounts for the decay of the membrane potential

by an additional component, a leak resistance R.

subthreshold form by equation 2.5 (Koch and Segev, 1999):

c<K = m, (2.5)

where I(t) is the input current, integrated to yield the membrane voltage V(t). C represents

the capacitance of the model cell. The equation specifies the evolution of the membrane

potential in the subthreshold domain. A spike is generated when V(t) reaches the threshold

Vth and the membrane voltage is reset to VQ (where VQ is the reset value often set to zero

for simplicity) immediately after a spike. This model will sum linearly two subthreshold

inputs irrespective of their temporal separation because it has no decay term.

The model which will be used in this thesis is the leaky integrate-and-fire neuron.

This model idealises the neuron as a capacitor C in parallel with a resistor R to resemble

CHAPTER 2. BACKGROUND 14

the ion channels and pumps in real neurons (figure 2.2). In the absence of input, the

potential difference across the capacitor will be V = V0 where Vo = 0 without a battery.

The effective input current I (t) may hyperpolarise or depolarise the membrane. Once the

neuron is sufficiently depolarised for the potential V(t) to reach the threshold V^, a spike

is discharged and V(t) is set to V0. This results in the following equation for the dynamics

of the neuron (Tuckwell, 1988a):

cdT = - l +m (2.6)

Equation 2.6 describes the subthreshold dynamics of the leaky integrate-and-fire model.

The leak term R represents the resistance to current flowing out of the cell and C is defined

as it is in equation 2.5.

With a normalisation of the capacitance C, equation 2.6 can be rewritten as:

~ = + (2.7)
at r

where r = RC is the membrane time constant. The action potential generation is not

an inherent part of the model as in more complex models. Equations 2.5 and 2.7 do not

have a threshold as part of it hence they are only valid for subthreshold voltages. Spike

generation and the reset of the membrane potential have to be added explicitly to fully

describe the neuron. Equation 2.7 is a first order differential equation that describes the

membrane potential dynamics in between firing events. When V(t) reaches a threshold Vth->

the membrane potential is reset to Vq and an output spike is generated. For recent results

on the leaky integrate-and-fire model from a computational point of view see Bugmann

(1991); Tal and Schwartz (1997); Maass and Bishop (1999).

With the initial condition V(t0) = Vo, the solution to equation 2.7 reads (Scharstein,

1979)

V(t) = V'oe-<‘- to>/T + / ' I(u)e^~t)/rdu. (2.8)

CHAPTER 2. BACKGROUND 15

R efractoriness

In a real neuron, for a few milliseconds after a spike has been fired, it may be virtually

impossible to initiate another spike. This is called the refractory period. For a longer

interval known as the relative refractory period, lasting up to tens of milliseconds after a

spike (Dayan and Abbott, 2001) depending on the type of neuron, it is more difficult to

evoke a spike. Recordings from real neurons have revealed that the absolute refractory

period (period of total silence) lasts about 12 ms on average (Koch, 1999). The reason

for the inability of the membrane to discharge again immediately after a spike is the

inactivation of certain currents.

It is straightforward to include an absolute refractory period into the LIF neuron model.

After a spike at time t ^ \ we force the threshold Vth to a very high value K and keep it

there during a time tref. At time + tref we bring Vth back to its original value. This is

how the absolute refractory period is implemented in the models discussed in chapter 5. It

is also common to implement the relative refractory period by bringing Vth gradually back

to its original value.

W hy LIF?

The LIF will be the model of choice to investigate stochastic resonance in this thesis

because it gives priority to simplicity and speed. By omitting fine-grained detail of neuronal

behaviour, it promotes the simulation of large neural networks at a level that can be

considered only slightly lower than connectionist-style models. The leaky integrate-and-

fire model is widely used in neuronal modelling and indeed stochastic resonance because it

captures much of the important dynamics of real neurons (Koch (1999)), and it can cope

very well with continuously time varying signals (Smith, 1996, 1998; Glover et al., 1999). It

captures the two key aspects of neuronal excitability: a passive, integrating subthreshold

domain and the generation of stereotypical impulses once a threshold has been exceeded.

These models (IF and LIF) despite being considered as over simplified, play an indis­

putable role in computational neuroscience. The seemingly simple LIF model has success­

CHAPTER 2. BACKGROUND 16

fully been used to explain the high temporal precision achieved in the auditory system

(Gerstner et al., 1996) and visual system (Marsalek et al., 1997) in spite of the compar­

atively long membrane time constants. It has also been employed widely in the ongoing

debate about the origin of spike-rate variability in cortical neurons (Troyer and Miller,

1997; Bugmann et al., 1997; Feng, 1997), and as spike generator, in studies on synaptic

gain control (Abbott et al., 1997). This arguably makes it the most widespread model in

studies on neuronal information processing. A comparison of the integrate-and-fire model

with the Hodgkin-Huxley model, when both receive a stochastic input current finds that

the threshold model provides a good approximation (Plesser, 1999). It has been shown

mathematically that the LIF corresponds to a first-order approximation of the full Hodgkin-

Huxley model (Kistler et al., 1997; Stevens and Zador, 1998). The LIF is very popular in

the study of stochastic resonance in neurobiology. The work of Stemmier (1996) showed

that realistic models like the Hodgkin-Huxley model exhibit a stochastic resonance phe­

nomenon that is comparable to that of an LIF neuron model when both models receive the

same type of input. LIF neurons have also been shown to be used as powerful computing

systems (Maass (1996, 1997)) and they are quite straightforward to implement in either

software or hardware (Wolpert and Micheli-Tzanakou, 1996; Jahnke et al., 1997; Grass-

mann et al., 2002). A recent review of the integrate-and-fire model, giving details of the

various variations of the model and comparisons with both experimental data and other

models, is provided by Koch (1999).

Based on the belief that one should use the simplest model that can account for a given

phenomenon, the integrate-and-fire model will be the only model used in this thesis. This

agrees with what Henry Tuckwell reminds the reader in his book Introduction to theoretical

neurobiology (Tuckwell, 1988b)

... one fundamental principle in neural modelling is that one should use the

simplest model that is capable of predicting the experimental phenomena of

interest.

CHAPTER 2. BACKGROUND 17

D isadvantages o f th e LIF m odel

The LIF neuron model lacks the spatial structure seen in real neurons (Tuckwell, 1988a,

1989). All the external currents arriving at the neuron are included in the variable I(t),

meaning that all the synaptic inputs are treated as if they were arriving at a single point.

This is why LIF neurons are sometimes called point neurons. Thus the model does not

account for the position of synaptic inputs on the soma and the corresponding travel times

of the postsynaptic potentials. The model typically lacks any of the specific currents that

underly spiking, and thus the complex mechanisms by which the sodium and potassium

conductances cause action potentials to be generated are not part of the model. An impor­

tant assumption is also that synaptic inputs interact in a linear manner, so that phenomena

involving nonlinear interaction of synaptic inputs, such as pulse-paired facilitation or de­

pression (Shepherd, 1990) and synaptic inputs that depend upon postsynaptic currents,

are neglected.

In this section we have described two types of models. We noted that compartmental

and conductance-based models are more suitable for modelling single cells in detail, espe­

cially complex cells. The level of detail involved in the models makes them unsuitable for

simulating on digital hardware, even at single neuron level, let alone as networks of such

neurons. On the other hand, integrate-and-fire type models are simple enough to simulate

on digital hardware.

There are two ways of looking at the models just described here. We can either treat

them as deterministic models or non-deterministic. The choice between the two is guided

by the type of input I(t) that we supply. Non-deterministic models are considered when

the input has a random element in it and deterministic models are considered when the

input has no random element in it. The random element is usually referred to as noise. In

the next section we will discuss the merits of this randomness and where it originates from

in real neurons. In section 2.4 we discuss ways of introducing noise into an LIF neuron

model.

CHAPTER 2. BACKGROUND 18

2.3 N oise in neurons

In this section we will begin by looking at some of the possible sources of noise in the cen­

tral nervous system and also discuss some of the benefits of the noise to the functioning of

neurons. The term noise usually denotes something negative that blurs the signal process­

ing. However, in some cases it could be a message by itself or a highly desirable part of the

message important for its processing. The problem is that without understanding all the

details of the neural code, we cannot distinguish signal from noise. Prom a mathematical

point of view the introduction of stochasticity into the description of a neuron represents

an increase in complexity. On the other hand, from the point of view of biological realism

it simplifies the task substantially, as all the features considered at the current stage to

be marginal can be attributed as a system noise. In chapter 4 the techniques used in this

thesis to process noisy spike trains will be discussed.

2.3.1 O rigins o f noise in neurons

Some of the possible sources of noise in the nervous system are the membrane, the state

of arousal, the spike generation mechanism, synapses and uncorrelated input signals.

For the membrane, noise comes from the gating of channels and the pumping of ions,

which are discrete processes, giving rise to fluctuations (Kandel et al., 2000). Noise anal­

ysis techniques are used to analyse the noisiness of the membrane potential (Bryant and

Segundo, 1976; Traynelis and Jaramillo, 1998). For example, when a voltage-dependent

ion channel undergoes random transitions between open and closed states, the result is a

fluctuating current. This current introduces a voltage noise (noise in the membrane poten­

tial) that is sensed not only by this channel, but also by other voltage-dependent channels.

However, it is believed that the sheer number and supposed independence of channels and

pumps averages the fluctuations to a level where they are largely irrelevant to the operation

of the neuron (Plesser, 1999). The membrane is thus not a major source of irregularities.

Larger irregularities are generated at the chemical synapses: each signal transmission

between pre- and postsynaptic neuron is achieved by the release of a random number of

CHAPTER 2. BACKGROUND 19

vesicles of neurotransmitters (Senn et al., 1998). This results in measurable fluctuations

in post-synaptic currents and potentials. The stochastic nature of synaptic transmission is

exemplified by the fluctuations in both the number of quanta released by a nerve terminal

in response to some stimulus and the number of postsynaptic receptors activated by the

neurotransmitter release (Traynelis and Jaramillo, 1998).

The other source of irregularity in neuronal activity is not at the molecular or synaptic

level. Experiments by Mainen and Sejnowski (1995) demonstrated that the irregularity in

firing patterns of cortical neurons can largely be traced back to the irregularity of the input

impinging on these neurons. This is consistent with the observation that neurons fire in a

more apparently random way when recorded from living animals, while generating regular

spike sequences in slice preparations.

2.3.2 Som e b enefits o f noise

At this point it is appropriate to note that noise does not always hinder signal transmission.

The work of Marsalek et al. (1997) proved that the transmission of a signal between input

to neurons and output from neurons is relatively noise free. In this paper they measured

the amount of jitter in an input spike train and then measured the amount of jitter in the

output spike train and they discovered that the ratio of the input jitter to the output jitter

is always less than 1. This result shows that even though synapses are a source of noise, the

noise does not hinder the transmission of signals but somehow it can aid the propagation of

the signal. This will be pursued further when we look at a network and show that the signal-

to-noise ratio improves as a signal propagates across the network. Maass and Natschlager

(1999) also confirmed this result by showing both theoretically and in simulation that the

known unreliability of synapses does not impede useful computation. Rather, it allows fast

analogue computation in the time-domain. Independently, Gerstner (2000) has shown that

noisy synaptic functionality can stabilise populations of spiking neurons and random noise

clearly plays an important constructive role in real neural systems (Godiver and Chapeau-

Blondeau, 1996). Indeed, noise can even improve performance in networks as far removed

CHAPTER 2. BACKGROUND 20

from biological plausibility as the Multilayer Perceptron, as shown by the work of Murray

and Edwards (1993).

The central nervous system (CNS) is, therefore, a noisy environment. The noise seems

to mainly originate from synaptic activity and the stimuli which impinge on sensory neu­

rons. The presence of noise affects the behaviour of relatively simple systems, such as

motor neurons, whose discharge is a function of the weighted contribution of multiple in­

puts (Traynelis and Jaramillo, 1998). The question to be asked then is: is this noise merely

a consequence of the underlying stochastic process or does noise play an active (or other­

wise) role in information processing? The notion that noise could play a constructive role

abounds in literature (Volgushev and Eysel, 2000; Benzi et al., 1982; Murray and Edwards,

1994). Several strategies have been conceived to use noise in a useful fashion.

We view neurons as signal processing devices which means one can look to conventional

signal processing techniques for methods to deal with, and indeed take advantage of, noisy

neural output.

2.3.3 N oise and signal processing

A common initial reaction is that a random signal with ill-defined properties can have

little place in any scientific theory of signal analysis, but the opposite is nearer to the truth

(Lynn, 1989). Suppose, for example, it is desired to send a message along a telegraph

link. It is almost valueless to send a known, deterministic, message since the person at the

receiving end learns so little by its reception. As a simple example, it would be pointless

to transmit a continuous sinusoidal tone, since once its amplitude, frequency and phase

characteristics have been determined by the receiver, no further information is conveyed.

But if the tone is switched on and off as in Morse-code, the receiver does not know whether

a “dot” or “dash” is to be sent next, and it is this nonstationarity or uncertainty about

the future of the signal that conveys useful information (Shannon, 1948). Viewed in this

light, it is no surprise that spike trains from in vivo recordings appear quite noisy. It looks

like neurons naturally generate random signals which are rich in information content. The

CHAPTER 2. BACKGROUND 21

irony though, is that, even with this randomness in the neural activity, there is a high

degree of consistency in most perceptual and cognitive tasks. In our view, this apparent

paradox is the key to cracking the elusive neural code.

In signal processing, noise has a not entirely undeserved reputation for difficulty and

obscurity. This is due partly to the complexity of systems in which noise is significant

and partly to the unfamiliar nature of the mathematical tools involved (Robinson, 1974).

For most of the analysis of spike trains we shall be using the language of signal processing

theory, where the emphasis is on the frequency or spectral components of the signal and

the noise in a system, and for this purpose the most useful concept in this thesis for the

analysis of neuronal data is that of the power spectrum of the spike train.

In the next subsection we discuss the link between noise and neuronal activity. This

is important because there are a number of useful results which have been reported in the

literature as a result of adding noise to neuronal models.

2.3 .4 N oise and neural cod ing

Experimental data recorded from very different neuronal structures and under different

experimental conditions suggest the presence of stochastic variations in neuronal activity

(Tuckwell, 1988b; Lansky and Lanska, 1997). We may assume that there is a random

component, generally considered as noise contained in the input and/or output signal.

For many years scientists have known that the brain’s response to outside information,

such as a visual image, depends on the background of the internal signals that pervades

the brain. As a result, if one provides a stimulus to a single neuron, it does not respond

the same way each time. Most early researchers assumed that the brain resolves this

issue by not relying on any one neuron. They thought that the redundancy of the neural

system should ensure that if some cells are distracted or confused, many more will be

alert and responding appropriately. This means that the brain was envisioned as averaging

the output from perhaps hundreds of thousands of individual neurons to eliminate the

variability due to anything but some common signal such as the visual image. This is a

CHAPTER 2. BACKGROUND 22

good idea based on a faulty assumption, as observed by Grinvald in RalofF (1996) because

such an averaging would only help if each neuron is influenced by different sources of

noise than that which affects its neighbours. It turns out, however that these neurons are

listening simultaneously to the same chorus of voices.

In the context of neural coding, “noise” is used to mean anything other than a strictly

deterministic response of a neuron to the identified signal (Mar et al., 1996). “Noise” is

also used to refer to stochastic aspects of the “signal” (such as synaptic vesicle release

or photon arrival times), or to anything “non-signal” . When neural responses are said

to be “noisy” one of two things is meant: either the neural response is irregular or is

unreproducible. The regularity of spike trains has to do with the fact that a cell firing 100

spikes a second on average is not necessarily firing 1 spike every 1/100 of a second like a

clock; the distribution of intervals between spikes may be very wide. The reproducibility

of spike trains has to do with the difference in neural response from trial to trial when

the same stimulus is presented, especially with respect to the precision of the timing of

individual action potentials. In an experiment involving rat neocortical slices Mainen and

Sejnowski (1995) observed that constant stimuli led to imprecise spike trains, whereas

stimuli with fluctuations resembling synaptic activity produced spike trains with timing

reproducible to less than 1 millisecond. These data suggest a low intrinsic noise level in

spike generation, which could allow cortical neurons to accurately transform synaptic input

into spike sequences, supporting a possible role for spike timing in the processing of cortical

information by the neocortex.

In this section we have discussed the issue of noise in neuronal models and the possible

sources of the noise in the central nervous system. Also described in this subsection is how

noise affects the techniques that are used to analyse noisy spike trains. In the next section

we look into the issue of how to introduce noise into the LIF neuron model. It is through

this introduction of noise that makes an LIF neuron exhibit stochastic resonance.

CHAPTER 2. BACKGROUND 23

_co
aJ

CO -♦—»

§ 5oo

0

I I I I I I
I I I I I

I I I I N I I I

I N I
II I I
I I I
I I

0

10 r

0

I I I I
I I 1 1 .

50

50
time [ms]

100

100

Figure 2.3: Variability of neuronal responses. The figure shows a raster plot of 10 individual

spike trains to the same stimulus. Each small line in the raster plot marks the time of

occurrence of a single spike. The bottom panel shows the Peri-Stimulus-Time Histogram

(PSTH) resulting from counting the number of spikes in 1 ms bins. Adopted from Sterratt

(2002).

2.4 M odels of noise

Noise is omnipresent in biological systems due to non-zero temperatures and finite numbers

of molecules, vesicles and ion channels. The effects of noise include failures in synaptic

transmission and different responses of a neuron to the same input (see figure 2.3). We

discuss here ways of introducing stochasticity into neuronal models by looking at a LIF

neuron model.

CHAPTER 2. BACKGROUND 24

There are various ways to introduce noise into a LIF neuron model. Here we discuss

three, but we concentrate on one for implementation purposes in chapter 5. The three are

(a) noisy threshold, (b) noisy reset and (c) noisy integration. In all cases we are interested

in the effect of the noise on the firing period. In each case we give the expressions derived in

Maass and Bishop (1999) for predicting when a spike will occur next given that it occurred

just now.

In the presence of noise we can no longer predict the exact time of firing. Instead we

ask the following question: what is the probability that the next spike occurs between t

and t + A t given that the last spike occurred at and that the total input in the noiseless

case is I (t)? For A t —» 0 this defines the probability density for firing:

P,(t | i (0)) (2.9)

which we would like to calculate for each of the three noise models. We can interpret

Pi(t | t ^) as the distribution of intervals in the presence of input potential I. The lower

index is a reminder that the distribution depends on the time course of I (t') for t ^ < t ' < t .

We now discuss each of the three models of noise in turn.

2.4.1 N o isy threshold

In this first noise model, we assume that the neuron can fire even though the formal

threshold Vth has not been reached and might not fire, even though Vth has been exceeded.

To do this consistently, we introduce an escape rate p which depends on the distance

between the momentary value of the membrane potential V and the threshold Vth'

P = f (V — Vth) (2.10)

In the mathematical literature, the quantity p would be called a stochastic intensity (Cox

and Lewis, 1966). The choice of the function / is arbitrary. A reasonable assumption is

an exponential dependence:

p = — exp[(3(V - Vth)) (2.11)
To

CHAPTER 2. BACKGROUND 25

which can be motivated by the Arrehenius formula for chemical reaction rates (Plesser

and Gerstner., 2000). (3 and r0 are parameters. Note that the escape rate p is implicitly

time-dependent, since the membrane potential V(t) = r)(t — t ^) + I (t) varies over time.

The kernel rj(t) describes the response of a neuron i to its own spikes.

Let us now calculate P j (t ^ / t ^) , the probability density of having a spike at t ^ given

that the last spike occurred at t in the presence of input potential I (t) for t > . At

each moment of time, the value of V(t) determines the escape rate p(t). In order to emit

the next spike at time the neuron has to “survive” the interval without firing

and then fires at t Given the escape rate p(t), the probability of survival from to

without firing is given by equation 2.12 (Maass and Bishop, 1999):

rtW
S p{t{1) | t {0)) = e x p JtW p{t)dt) (2.12)

The probability density at time is p (t^) , thus from equation 2.12 we have:

P f (t (1) | t (0)) = p(£(1)) e x p (- ^ o) p(t)dt) (2.13)

which is the desired result. Also see Cox and Miller (1965) and Gerstner and van Hemmen

(1992) for a more detailed derivation of equation 2.13.

2.4.2 N o isy reset

In this noise model, firing occurs on V (t ^) reaching Vth from below, i.e. V (t ^) = Vth-

Noise is induced into the formulation of reset and refractoriness.

Let us consider the Integrate-and-Fire neuron with absolute refractoriness. The dura­

tion of refractoriness t ref is not fixed, but chosen stochastically from a distribution P (t ref)

with mean t. Naturally we have to require P(x) to vanish for x < 0. This is equivalent to

replacing the term rj(t — t) by rj(t — t — t ref).

As with the preceding noise model, we are interested in calculating the firing density

P i (t ^ \ t ^) given some input potential I(t) . To simplify matters we will assume that the

input is constant I(t) = Iq. The first spike has occurred at The firing time of the

CHAPTER 2. BACKGROUND 26

next spike can now be found from the threshold condition Vth = p (t^ — tref)+IG. In the

absence of noise and for a refractory period £, the next firing would occur at t ^ = t ^ + T

where T is the interspike interval. If due to the noise, the value of the refractory period is

tref 7̂ t ? then the interval is t^ — t = T + tref — t. The firing probability density in the

presence of noise is therefore:

| t (0)) = p(£(1) - £(0) - T + t) (2.14)

where p(.) is the distribution of the refractory period. This result can be explained as

follows: a change in the absolute refractory period shifts the trajectory horizontally. A

stochastic component in the refractory period generates a stochastic shift in the firing time.

Although a stochastic shift in the refractoriness is probably not realistic, it is a convenient

way to introduce noise in a system (Koch and Segev, 1999).

2.4.3 N o isy in tegration

The final and most popular way for introducing noise into an integrate-and-fire model is

by adding on the right hand side of equation 2.7 a stochastic noise current I noise{t)'

“77" = ----- + I{ t) + Inoise(t) (2.15)at r

with vanishing mean and finite variance. This choice of noise term could be motivated

either by spontaneous openings of ion channels, or else by stochastic arrival of excitatory

and inhibitory inputs on dendrites of cortical neurons. The noise can cause the actual

membrane trajectory to drift away from the noiseless reference trajectory. To get the

distribution P i(t^ | £^) we have to solve the first-passage time problem of equation 2.15

with initial value Vq and absorbing boundary condition at Vth- Although equation 2.15

looks simple, it turns out that the first-passage time problem for arbitrary input current

I(t) is rather difficult to solve analytically (Tuckwell, 1988b; Plesser, 1999). Solutions for

the first-passage time problem for constant input I(t) = / 0 can be found in textbooks

(see for example (Tuckwell, 1988b, 1989)). Most work investigating stochastic resonance

in neuroscience is based on the LIF model with noisy integration (equation 2.15) which

CHAPTER 2. BACKGROUND 27

is similar to the Langevin equation (Plesser, 1999). In subsequent chapters equation 2.15

will be revisited as it forms the basis of the simulation models for this thesis.

Having discussed neuronal modelling and the issue of noise in these models, next we

discuss the issues which arise when these models are implemented on digital hardware as

pointed out earlier in the chapter. This is of interest because the LIF model has been

implemented in digital hardware before (see the work of Smith et al. (1998) for comparing

hardware and software implementations of LIF neurons for sound processing and Glover

et al. (1999) for hardware implementation of LIF neurons) but not for the purposes of

investigating the effect of limited precision which is what we intend to do. Implementing

a noisy LIF neuron model on digital hardware raises some interesting questions. We have

different sources of noise interacting. The digitisation process introduces quantisation noise,

the input has a noise component which is also digitised introducing noise upon noise. It is

not clear how all these forms of noise affect stochastic resonance.

2.5 Artificial neural networks in hardware

The motivation for digital implementation of artificial neural networks (ANN) is as diverse

as the background of the researchers (biologists, mathematicians, physicists and engineers)

who contribute to the field (Maass and Bishop, 1999). On one side there are those who

need detailed simulations of a single neuron while on the other side there are those who

need to simulate networks of simpler neurons. In this section we will discuss some of the

issues to be considered when mapping an artificial neural network model onto hardware.

Some of the issues to be discussed include quantisation, limited precision, and restraining

complexity. We will concentrate mainly on digital implementations of neural networks

with particular attention to Field Programmable Gate Array implementation examples of

which can be found in the works of Perez-Uribe and Sanchez (1997) and Waldemark et al.

(1998). Due to programmability, digital hardware offers a high degree of flexibility and

provides a platform for simulation on neuronal level as well as network level.

CHAPTER 2. BACKGROUND 28

2.5.1 M apping artificial neural netw orks onto hardware

In order to take advantage of the parallelism offered by artificial neural networks, hard­

ware implementations are a good option. They offer the possibility of large performance

increases, allowing networks to run at or near real time, and also large improvements in

size, allowing those near real-time neural networks to be incorporated in other equipment.

However, most neural network models were not designed for hardware implementations,

hence adaptations are needed. There are many technologies for realising artificial neural

networks on hardware (digital, analog electronics, optics, and hybrid techniques). Even

though these implementations are different, the common denominator is mapping neural

network algorithms onto reliable, compact and fast hardware. According to Moerland and

Fiesler (1997), any hardware implementation has to optimise three main constraints: ac­

curacy, space and processing speed. The design of hardware implementations is governed

by a balancing of these three constraints. Analog implementations, for instance, are very

efficient in terms of chip area and processing speed, but suffer from limited accuracy of

the network components. In general, this amounts to a trade-off between the accuracy of

the implementation and the reliability of its performance. In mapping neural networks on

to silicon hardware, the first choice is analogue or digital (Hecht-Nielsen, 1989). Analogue

networks suffer from noise problems, and also tend to be temperature sensitive. It can also

be difficult to maintain weight values, without drift, over long periods (Forrester, 1993).

Indeed a common solution is to use a digital value for the weight and to convert it to

analogue when required (Glover, 1999). Digital networks require that all the values be

digitised, and this (as we see below) brings its own problems.

2.5.2 Q uantisation and lim ited precision in D S P s

In general, digital hardware is not fully implemented (Hecht-Nielsen, 1989), in the sense

that some elements of the digital hardware are used to represent more than one part of the

neuron. The best example is the synaptic multiplier (Bade and Hutchings, 1994), which, if

fully implemented would be replicated at each synapse, but this is costly in terms of chip

CHAPTER 2. BACKGROUND 29

area. For floating point, this is not possible. For fixed-point, it suggests a lower resolution

multiplier at each synapse. Partially implemented systems, in which the multiplier is shared

between many synapses, and possibly even between many synapses on different neurons,

could use floating point, but this then requires careful multiplexing of inputs and outputs.

For simulations on workstations, floating point representation is a natural choice. The

situation is quite different on digital hardware. These systems almost never provide a

floating point unit, because it would require large chip area. Quantisation is inevitable,

but with quantisation comes the question of what the representation precision should be.

We have two choices: fixed-point and integer representations. Regarding the representation

with fixed numbers, we have to know the required precision k.f, where k is the bit length

of the integer part and / is the bit length of the fraction part. The representation of

fixed-point compared to integer numbers has the advantage that we can change the scaling

by shifting the decimal point without changing the total word length k + / although we

then need to store the scale. The problem of limited precision is not peculiar to artificial

neural networks only, rather it is a general problem for digital signal processors (Ifeachor

and Jervis, 2002). Any digital signal processor suffers from three sources of error due to

limited word length in measurement and processing of the signal:

• limited precision due to word length when analog signal is converted to digital form;

• errors in arithmetic due to limited precision within the processor;

• limited precision due to word length when samples are converted back to analog.

These errors are often called “quantisation errors” . The effects of quantisation are both

nonlinear and signal-dependent. Nonlinear means that we cannot calculate their effect

using standard mathematics. Signal-dependent means that even if we could calculate their

effect, we would have to do so separately for every type of signal we expect, which is

unrealistic. The effect of quantisation on digital signal processors can be analysed by

mathematical models which regard the quantisation noise as if it were a source of random

noise (Xie and Jabri, 1992).

CHAPTER 2. BACKGROUND 30

Lim ited precision in artificial neural networks

Hardware implementations of neural networks use a representation of the network param­

eters with a limited accuracy because the use of high precision does not match the goal

of developing fast and compact implementations. The main effect of limited precision on

artificial neural networks is that certain word lengths result in weight update values (for

backprop-type of networks) and activation values (for integrate-and-fire type of networks)

which are below the quantisation step resulting in these values not changing (Forrester,

1993). For back-propagation type of networks learning is affected by reduction in weight

precision. Moerland and Fiesler (1997) report that there is a critical weight precision value

n below which training fails for backpropagation, since we are reliant on taking many small

weight steps in training. However, once the network has been trained, we can reduce the

weight accuracy during the recall phase without having too large an effect on performance

(Hohfeld and Fahlman, 1992). This value n is problem dependent. Sackinger (1997) stud­

ied the degradation caused by finite precision within the 4 to 16 bits range on three pattern

recognition algorithms - an optical character recogniser, a pen-based handwriting recog-

niser and a speech recogniser. His results showed that these algorithms can be implemented

with 8-bit arithmetic while incurring a negligible loss in recognition accuracy.

Clearly, the earlier results on limited precision do not really supply definite guidance

on what the effect of limited precision will be in stochastic resonance systems. It is not

clear whether the reduction in precision will affect stochastic resonance, and if so, in what

ways.

In this section we discussed the issues to do with mapping artificial neural networks

onto hardware. The common thing between the different technologies for implementing

artificial neural networks in hardware is the optimisation of three constraints: accuracy,

speed and space. The next section will discuss FPGAs which is the development platform

for this thesis.

Using FPGAs as the digital platform, this thesis investigates the effect on neuronal

stochastic resonance of limited precision using a small LIF network model which is also

CHAPTER 2. BACKGROUND 31

implemented using floating-point representation in Java for comparison purposes. Next we

discuss the technology behind FPGAs.

2.6 Field Program m able G ate Arrays

A Field Programmable Gate Array is an array of configurable logic modules that commu­

nicate with one another and with user-programmable I/O-blocks via wires within routing

channels. In an FPGA, existing wire resources that run in horizontal and vertical columns

(routing channels) can be connected via programmable connection points.

Thus there are three types of programmable elements in an FPGA (see figure 2.4),

• Logic cell modules or configurable logic blocks (CLBs) implement most of the logic in

FPGAs. The logic inside these modules connects to the programmable interconnect

resources outside the block.

• Connection points between wires in routing channels connect logic cell modules with

each other and the I/O-blocks.

• I/O-blocks provide the interface between the outside world and the internal logic.

In order to implement a system on an FPGA, the system to be implemented must first be

split into pieces that are small enough to be placed in logic cell modules. Then the pieces

are connected, both with each other as well as with input and output blocks. This process

is called place-and-route and is done by software which the manufacturer of the FPGA

supplies. The end result of this process is a configuration that can be loaded to the FPGA

quickly.

The individual cells are interconnected by a matrix of wires and programmable switches.

Each logic cell implements the logical function of gates. In most hardware that is used

in computing today, the logical functions of gates are fixed and cannot be modified. In

FPGAs, however, both the logic functions performed within the logic blocks and the con­

nections between them can be altered by sending signals to the chip. These blocks are

CHAPTER 2. BACKGROUND 32

□ □ □ □ □ □ □ □ / ^ g i c Block

:= £
I/O Block "H D

□ □ □ □ -------- / -
□
□

□
□ □ □ □ □ □

□

□
□ □ □ □ □ □

□

□
□ □ □ □ □ □

□

I n t e r c o n n e r t ^ ^ ^ ^
Resources □ □ □ □ □ □ □ □

Figure 2.4: Structure of an FPGA

structurally similar to the gate arrays used in Application Specific Integrated Circuits

(ASICs), but whereas standard gate arrays are configured during manufacture, the config­

urable logic blocks in FPGAs can be rewired and reprogrammed repeatedly, long after the

integrated circuit has left the factory. A user’s design is implemented by specifying the

simple logic function for each cell and selectively closing the switches in the interconnect

matrix. The array of logic cells and interconnect form a fabric of basic building blocks for

logic circuits. Complex designs are created by combining these basic blocks to create the

desired circuit.

Field programmable means that the FPGA’s function is defined by the user’s program

(in the “field”) rather than by the manufacturer of the device (in the “factory”). A typical

integrated circuit performs a particular function defined at the time of manufacture. In

contrast, the FPGAs function is defined by a program written by someone other than the

device manufacturer. Depending on the particular device, the program is either ’burned’ in

permanently or semi-permanently as part of the board assembly process, or is loaded from

an external memory each time the device is powered up. This user programmability gives

the user access to complex integrated designs without the high engineering cost associated

CHAPTER 2. BACKGROUND 33

with AISCs.

The key that has opened the door to reconfigurable computing is the design of new

FPGAs that can be configured extremely quickly. The earliest FPGAs required several

seconds or more to change their connections.

2.6.1 F P G A A rchitectures

A generic description of an FPGA is a programmable device with an internal array of logic

blocks, surrounded by a ring of programmable input/output blocks, connected together

via programmable interconnect. There are a wide variety of sub-architectures within this

group. The secret to density and performance in these devices lies in the logic contained

in their logic blocks and on the performance and efficiency of their routing architecture.

There are two primary classes of FPGA architectures: coarse-grained, and fine-grained.

Coarse-grained architectures consist of fairly large but powerful configurable logic blocks.

A single logic block often contains two or more look-up tables and two or more flip-flops

and it is capable of adding or comparing two binary digits (Bostock, 1996). In a majority

of these architectures, a four-input look-up table implements the actual logic.

The other architecture type is called fine-grained. In these devices, there is a large

number of relatively simple logic blocks. The logic block usually contains either a two-

input logic function or a 4-to-l multiplexer and a flip-flop.

Another difference in architectures is the underlying process technology used to man­

ufacture the device. Currently, the highest-density FPGAs are built using static memory

(SRAM) technology, similar to microprocessors. The other common process technology

is called anti-fuse, which is described subsequently, which has benefits for more plentiful

programmable interconnect.

The architecture of a FPGA can be symmetric, asymmetric, or arranged as a sea-

of-gates. These are illustrated in figure 2.5. For simplicity, inputs and outputs are not

illustrated in the figure. More information about these and other types of architectures can

be found elsewhere (Bostock, 1996; Brown and Rose, 1996). In a symmetric architecture,

CHAPTER 2. BACKGROUND 34

the logic cell modules and channels form a symmetric pattern. An asymmetric structure,

which is also called row-based structure, contains logic cell modules and channels placed

in rows. The sea-of-gates structure contains many small logic cell modules.

Routing channels
symmetric

□ □ □ □
□ □ □ □
□ □ □ □
□ □ □

asymmetric

Logic block cell

sea of gates

Figure 2.5: Different FPGA architectures

2.6.2 S tatic R A M Technology

In the Static RAM FPGA, programmable connections are made using transistors, trans­

mission gates, or multiplexers that are controlled by SRAM cells. This is similar to the

technology used in static RAM devices in microprocessors but with a few modifications.

The RAM cells in a memory device are designed for the fastest possible read/write per­

formance. The RAM cells in a programmable device are usually designed for stability

instead of read/write performance. The advantage of this technology is that it allows fast

CHAPTER 2. BACKGROUND 35

in-circuit reconfiguration. The major disadvantage is the size of the chip required by the

RAM technology.

Because static memory is volatile, SRAM-based devices are “booted” after power-on.

This makes them in-system programmable and re-programmable, even in real-time. As a

result, SRAM-based FPGAs are common in reconfigurable computing applications where

the device’s function is dynamically changed. The configuration process typically requires

only a few hundred milliseconds at most (Brown and Rose, 1996). Most SRAM-based

devices can boot themselves automatically at power-on much like a microprocessor. Fur­

thermore, most SRAM-based devices are designed to work with either standard byte-wide

Programmable Read Only Memories (PROMs) or with sequential-access serial PROMs.

They require some form of external configuration memory source. The configuration mem­

ory holds the program that defines how each of the logic blocks functions, which I/O blocks

are inputs and outputs, and how the blocks are interconnected together. The FPGA either

self-loads its configuration memory or an external processor downloads the memory into

the FPGA. When self-loading, the FPGA addresses a standard byte-wide PROM much

like a processor addresses its boot PROM or uses a special sequential-access serial PROM.

When downloaded by a processor, the FPGA appears much like a standard microprocessor

peripheral.

In this thesis we use one of Xilinx’s SRAM based FPGAs which will be described in

more detail in chapter 5.

2.6 .3 Fuse and A nti-fuse

Fuse technology was the original programming technology for programmable logic. A fuse

is a metal link (connection) that can be programmed by passing a current through the

fusible fink and vaporising the link. Fuse technology is one-time programmable (OTP).

Like the fuse, anti-fuse devices are also one-time programmable. Once programmed,

they cannot be modified, but they also retain their program when the power is off. Anti­

fuse devices are programmed in a device programmer either by the end user or by the

CHAPTER 2. BACKGROUND 36

factory or distributor. The anti- part of anti-fuse comes from its programming method.

Instead of breaking a metal connection by passing current through it, a link is grown

to make a connection. They are usually physically quite small. Consequently, anti-fuse

technology has benefits for creating programmable interconnect. However, they require

large programming transistors on the device.

Having discussed the different technologies there is for FPGAs, next we look at how

FPGAs are programmed. There are two different ways of looking at FPGAs. We can

look at FPGAs from an engineering point of view in which case we design circuit diagrams

using schematic tools and use the output of these to configure the FPGA. The other way of

programming FPGAs is to design algorithms and then code the algorithms using hardware

description/compilation languages to program the FPGA. In this thesis we will concentrate

on the latter technique.

2.6 .4 H ardware descrip tion languages and program m ing F P G A s

A hardware description language is similar to a software programming language, but in­

stead of software a hardware description language describes hardware.

Hardware description languages have made hardware design significantly faster com­

pared to traditional schematic approaches. In many cases, a high level description is enough

because the low level details of a circuit can be synthesised from a behavioural (the be­

havioural description defines the structure and behaviour of a design) or Register-Transfer

Level (RTL) level description. This is not always true however. Sometimes the only pos­

sibility is to use a detailed structural description, which in practice is a massive textual

description of a schematic. These descriptions tend to be hard to maintain because it is

not easy to see the structure from, say, several hundreds of lines of code written in some

hardware description language.

In virtually every hardware description language (HDL) it is possible to use libraries of

components containing all the details. However, it can be a very hard job to create these

libraries.

CHAPTER 2. BACKGROUND 37

V H D L

The VHSIC (Very High Speed Integrated Circuit) Hardware Description Language (VHDL)

was developed by the US Department of Defence and standardised by the IEEE in 1987

(David, 1989; Cohen, 1999; Holmstrum, 2000). This language was intended to assist in

the development, documentation and exchange of designs. Since its development, VHDL

has been widely accepted by the design community as a description language and they

have developed a wide range of tools for capture (using graphical front-ends), simulation,

debugging, verification and synthesis. VHDL supports gate-level and behavioural level

descriptions as well as RTL descriptions. Descriptions written in VHDL can be synthesised

to almost any FPGA on the market today. The drawback for VHDL, however, is that it

has a complicated structure.

Hardware com pilation and th e H andel-C language

Hardware compilation is a powerful tool for hardware/software codesign. Conventionally,

it is common to draft a system using a high level programming language, like C, and then

realise the hardware part of that system using a hardware description language like VHDL.

Hardware compilation using Handel-C simplifies the design process, since it provides the

convenience of a C-like high-level programming language to generate the hardware as well.

Handel-C is a programming language designed for compiling programs into hardware

images of FPGAs or ASICs. It is basically a small subset of C, extended with a few con­

structs for configuring the hardware device and to support the generation of efficient hard­

ware. It comprises all common expressions necessary to describe complex algorithms, but

lacks processor-oriented features like pointers and floating point arithmetic. The programs

are mapped into hardware at the netlist level (A netlist file describes how the individual

components of a circuit are connected together). It must be noted though that Handel-C

itself does not offer support for pre-placing components, but this can be achieved by us­

ing macros (Lawrence, 1997). The current Handel-C compiler v3.1 supports most Xilinx

products.

CHAPTER 2. BACKGROUND 38

Opposed to other approaches of high-level language hardware design, which actually use

C to describe the behaviour and simply translate it into netlist, Handel-C targets hardware

directly, and provides a few hardware optimising features. A big advantage, compared to

the C-translators, is that variables and constants can be given certain widths, as small as

one bit. When using C as the describing language, the smallest integer is possibly 8 bits, if

not 16 bits, which means that one wastes at least 7 bits when declaring a simple flag. Also,

Handel-C provides bit manipulation operators and the possibility of parallel processing of

single statements or whole modules. This can not be realised with other approaches based

on a sequential language.

Language com parisons

There exist several hardware description languages, for instance Handel-C (Aubury et al.

(1996)) and VHDL. The language Handel-C has a simple syntax and it offers a convenient

way to describe hardware on a high level (Holmstrom and Sere, 1998). VHDL is supported

by a huge number of tools which support almost any type of FPGA. Signals in Handel-C

are different from signals in VHDL; they are assigned to immediately, and only hold their

value for one clock cycle. The complexity of VHDL, on the other hand, led us to believe

that a simpler approach will provide a better foundation on which to build the neural

models. Between Handel-C and VHDL, VHDL is the one that can be used for practically

any FPGA on the market today. It is an industry standard and is supported by a wealth

of tools. Compared to Handel-C, however, VHDL has a rather complicated syntax and it

is also too verbose.

Comparing Handel-C and VHDL shows that the aims of these languages are quite

different. VHDL is designed for hardware engineers who want to create sophisticated

circuits. It provides all the constructs necessary to craft complex, tailor made hardware

designs. By choosing the right elements and language constructs in the right order, the

specialist can specify every single gate or flip-flop built and manipulate the propagation

delays of signals throughout the system. This means that VHDL expects that the developer

CHAPTER 2. BACKGROUND 39

knows about gate-level hardware and requires him or her to continuously think about the

gate-level effects of every single code sequence. This quite easily distracts from the actual

algorithm or functional subject and ties up a lot of the designer’s attention.

In contrast, Handel-C is not designed to be a hardware description language, but a high-

level programming language with hardware output. It does not provide highly specialised

hardware features and allows only the design of digital, synchronous circuits. Instead of

trying to cover all design particularities, its focus is on prototyping and optimising at the

algorithm level. The low-level problems are hidden completely, all the gate-level decisions

and optimisation are done by the compiler so that the programmer can focus his or her mind

on the task he or she wants to implement. As a result, hardware design using Handel-C is

more like programming than hardware engineering, and in fact, this language is developed

for programmers who have no hardware knowledge at all.

To sum up, hardware design with Handel-C is very much like programming. Unlike

with hardware description languages, the designer is not confronted with gate-level prob­

lems like fan-in and fan-out or choosing the appropriate type of gates or registers to be

used. Apart from freeing the programmer’s mind from low-level decisions, it is much faster

and more convenient to describe the system’s desired behaviour at the algorithmic level.

The fast compilation, combined with a high-level simulator, allows one to try out several

implementation strategies within a very short time. However, Handel-C is not without its

own weaknesses. There are not many synthesis tools for Handel-C which means it is only

usable on a select set of FPGAs. The main inefficiency for Handel-C is that the existing

synthesis tool requires a great deal of place and route optimisation.

2.6.5 A pplications

FPGAs have gained acceptance over the past decade because users can apply them to a wide

range of applications. Algorithms that contain a high degree of binary-level operations, for

example cipher and integer calculations are well suited for FPGAs, while multiplication

with high precision and floating-point operations are not well suited.

CHAPTER 2. BACKGROUND 40

A typical traditional FPGA application is prototyping designs to be implemented in

gate arrays using one or more FPGAs. Another application is the emulation of entire large

hardware systems via the use of many interconnected FPGAs. After creating and testing

the prototype, the FPGA can either be used as such in the target system or be replaced

by an ASIC. The FPGA is the best solution for small systems where delivery time and

price are more important than having the fastest possible circuit. Producing an ASIC is a

complicated process that usually only a third-party vendor can handle. Delivery time for

ASICs is long compared to the time for configuring an FPGA. Because of the high costs,

ASICs are a more expensive alternative than FPGAs except for large quantities. Another

benefit of using FPGAs is the possibility to correct possible design flaws later on by simply

reconfiguring the circuit as opposed to ASICs that cannot be corrected once it is produced.

Despite verification efforts, there is no guarantee that a design is error-free.

It used to be the case that the FPGAs in a system were for the most part configured

only when the system was started up. However, FPGAs can in principle be reconfigured

an infinite number of times. Nowadays the full flexibility of the FPGA is more commonly

used than before. FPGAs are now quite often used together with microprocessors in so-

called reconfigurable (custom) computing systems. FPGAs form the core of reconfigurable

computing systems.

R econfigurable com puting

Reconfigurable computing systems can be defined as FPGAs combined with external mem­

ories and processors (van den Bout et al., 1992). The FPGA is the core component of such

a system (Celoxica, 2000). Reconfigurable systems can also be defined as computing plat­

forms whose architectures can be modified by software to suit the application at hand.

Computing devices can make use of configurable elements in many different ways. The

least demanding technique is to switch between functions on command — the hardware

equivalent of quitting one program and then running another. Slow reconfiguration, on

the order of several seconds, may well be acceptable in such an application. Fast program­

CHAPTER 2. BACKGROUND 41

ming times permit dynamic design swapping: a single FPGA performs a series of tasks in

rapid succession, reconfiguring itself between each one. Such designs operate the chip in a

time-sharing mode and swap between successive configurations so rapidly that it appears

the FPGA is performing all its functions at once. A good example of this approach was

reported by Villasenor and Mangione-Smith (1997). They built a single-chip video trans­

mission system that reconfigures itself four times per frame. It thus requires only a quarter

of the hardware that would be needed for a fixed ASIC. The FPGA first stores an incoming

video signal in memory, then applies two different image-processing transformations and

finally transforms itself into a modem to send the signal onward.

The most challenging and potentially most powerful form of reconfigurable computing

involves the hardware reconfiguring itself on the fly as it executes a task, refining its own

programming for improved performance. An image-recognition system might tune itself in

response to a tentative identification of the object it is looking at: if an image contained a

car or a truck, parts of the circuitry originally intended for tracking high-speed aircraft or

slow-moving people could be reconfigured to focus instead on land vehicles. FPGAs offer

many possibilities for reconfigurable computing.

D isadvantages o f F P G A s

Not all computations can be implemented efficiently with today’s FPGAs: they are well

suited to algorithms composed of bit-level operations, such as pattern matching and in­

teger arithmetic, but they are ill-suited to certain types of numeric operations, such as

high-precision multiplication or floating-point calculations. Dedicated multiplier circuits

such as those used in microprocessor and digital signal chips can be optimised to perform

more efficiently than multiplier circuits constructed from configurable logic blocks in an

FPGA. Furthermore, FPGAs currently provide very little on chip memory for storage of

immediate results in computations; thus, many configurable computing applications re­

quire large external memories. The transfer of data to and from the FPGA increases

power consumption and may slow down the computations. This high power consumption

CHAPTER 2. BACKGROUND 42

has kept FPGAs out of the ever-growing hand-held devices market.

2.7 Sum m ary

The main purpose of this chapter was to give some background knowledge about the neural

modelling, mapping artificial neural networks on to hardware, and a description of FPGAs

which is the digital hardware platform on which some the simulations will be done.

In section 2.1 of this chapter we discussed the basic physiology of neurons as consisting

of a dendritic arbor, a soma and the axon, and concluded that even that basic physiology

is still too complicated to model in its entirety in software, let alone in hardware. We

looked at the different levels at which neurons are modelled. A model can be single­

channel plus morphology or compartmental (in which ion channels are lumped together)

or single compartment (point neuron). We concluded that the more detailed models like

conductance-based models and compartmental models are more suitable for modelling

single neurons in detail while simplified models of the threshold-fire type are more tailored

to modelling large networks of neurons. We discussed in detail the LIF neuron model which

provides a neuronal model of complexity and sophistication at a level between that of

McCulloch-Pitts and Perceptrons, and biologically realistic multiple models. We conclude

that the LIF neuron model is good for modelling stochastic resonance.

We also noted that the natural parallel nature of artificial neural networks renders them

suitable to hardware implementation. Unfortunately the way neural network models were

original designed does not make their realisation on hardware an easy thing to do. Despite

there being many technologies for realising artificial neural networks in hardware, they

all have the common denominator of mapping neural networks algorithms onto reliable,

compact and fast hardware. We also noted that mapping artificial neural networks onto

hardware boils down to optimising four main constraints: accuracy, space, cost and pro­

cessing speed. The different technologies are just a trade-off of these three constraints. For

instance analogue implementations are very efficient in terms of chip area and processing

speed, but suffer from limited accuracy of network components.

CHAPTER 2. BACKGROUND 43

This chapter also discussed FPGAs as one of the development platforms for one of the

models we will use in this thesis. We noted that FPGAs are the best solution for small

systems where delivery time and price are more important than having the fastest circuit

possible. FPGAs are generally preferred to ASICs which is the more expensive alternative

type because they offer the possibility of correcting possible design flaws later by simply

reconfiguring the circuit, as compared with ASICs that cannot be corrected once they are

produced.

In the next chapter we discuss the concept of stochastic resonance and how it connects

with neuronal modelling.

Chapter 3

Stochastic Resonance

Periodically modulated stochastic processes have been studied intensely over the last two

decades under the paradigm of stochastic resonance (SR). The concept of stochastic res­

onance has met with particular attention in the neurosciences. The brain achieves an ex­

traordinarily good signal processing performance in the presence of noise from a wide range

of sources, ranging from stochastic membrane channel openings on a molecular level, to

highly irregular firing patterns of individual neurons and distracting stimuli in perception.

The improvement of signal transduction by noise on all levels has now been demonstrated

experimentally Bezrukov and Vodyanoy (1997a); Douglas et al. (1993); Stemmier et al.

(1995) and may help to improve cochlear implants for the deaf as shown by the work

of Morse and Evans (1996). Recently, the behavioural relevance of stochastic resonance

has been reported by Usher and Feingold (2000), underlining the importance of stochastic

resonance.

In this chapter we start by describing stochastic resonance and then focus on stochastic

resonance in neuronal systems using the leaky integrate-and-fire neuron model. Section 3.1

defines stochastic resonance and the history of stochastic resonance is discussed in section

3.2. The measures used to quantify stochastic resonance are given in section 3.3 and the

connection between stochastic resonance and neuronal modelling is introduced in section

3.4. Sections 3.5 and 3.6 discuss some of the tools for modelling stochastic resonance and

44

CHAPTER 3. STOCHASTIC RESONANCE 45

the possible benefits of stochastic resonance respectively. The chapter ends with some

concluding remarks.

3.1 W hat is Stochastic Resonance?

Stochastic resonance describes a phenomenon that is manifest in non-linear systems whereby

generally feeble input information (such as a weak signal) can be amplified and optimised

by the assistance of noise (Gammaitoni et al., 1998).

The concept of stochastic resonance is best described by way of an analogy. One

imagines a ball sitting in one of two wells (figure 3.1) with a gentle force rocking the whole

system to and fro. This force corresponds to some weak periodic signal. Under its influence,

the ball rolls around in the bottom of one well. If the ball’s movements are detectable only

when it jumps from one well to another, this weak periodic force will remain hidden. One

might think that adding noise to the system by shaking the container, for example, would

be likely to mask the rocking motion further. In fact it does the opposite. The weak force

coupled with noise can, on occasion, give the ball enough energy to surmount the barrier

between the two wells. Over time, the ball appears to jump back and forth apparently at

random. The theory of stochastic resonance relies on the fact that these jumps are not

entirely unpredictable: the chance that the ball switches wells from one moment to the

next is far greater if the weak periodic force is at its peak (Moss and Wiesenfeld, 1995).

The timing of the jumps reveals something about the periodicity of the driving force. The

appearance of stochastic resonance in general can roughly be explained as follows: the

system in question will generate discernible output every time its internal state surmounts

a barrier. If the deterministic input signal is too weak to induce crossings, the system

will be silent in the absence of noise, and weak noise will induce only rare, incoherent

crossings. Strong noise on the other hand, will induce frequent but random transitions.

At an intermediate noise intensity though, the rate of noise-induced crossings will coincide

with the timescale set by the input signal, yielding a coherent output signal. Stochastic

resonance is thus a cooperative effect between signal and noise (Plesser, 1999). The effect

CHAPTER 3. STOCHASTIC RESONANCE 46

requires three basic ingredients (Gammaitoni et al., 1998): (i) an energetic barrier or, more

generally, a form of threshold; (ii) a weak coherent input (such as a weak periodic signal);

and (iii) a source of noise that is inherent in the system, or that adds to the coherent input.

Given these features, the response of the system undergoes resonance-like behaviour as a

function of the noise level; hence the name stochastic resonance.

Figure 3.1: Stochastic resonance in double wells. Adopted from (Gammaitoni et al., 1998).

The ball will start in one well. If we apply a weak periodic force which lowers and raises

the wells sinusoidally, the ball will be rocking within one well. The lowering of the wells is

similar to rocking the system. If we couple this force with shaking the system then from

time to time the ball will hop from one well to the other depending on the strength of

the shaking. The shaking of the system is a way of introducing noise to the system. The

synchronicity of these hops depends on the size of the shaking. Too much shaking will result

in the ball hopping between wells in a haphazard manner, too gentle shaking results in rare

and incoherent hopping. There is an optimal amount of shaking which synchronises the

hopping of the ball with the periodicity of the lowering of the wells. Basically this system

depicts stochastic resonance in that: no shaking means no hopping, too much shaking

results in frequent but random hopping, and optimal shaking synchronises the hopping

with the periodicity of the rocking force.

Over time, the original notion of stochastic resonance has widened to include a number

CHAPTER 3. STOCHASTIC RESONANCE 47

of different mechanisms (Gammaitoni et al., 1998). The unifying feature is that noise can

improve a system’s sensitivity to weak signals, such as periodic inputs. One measure of

sensitivity is the output signal-to-noise ratio (SNR) and a signature for stochastic resonance

is when this ratio passes through a maximum as a function of the applied noise intensity

(Barbi et al., 2000). The earliest research focused on bistable systems, but later research

includes excitable systems that have a single rest-state (Longtin, 1993; Collins et al., 1995a;

Marino et al., 2002). The study of these systems was motivated by the potential relevance

of stochastic resonance to neuronal dynamics.

Stochastic resonance should not be confused with ’dithering’ also known as stochas­

tic linearisation, a technique where in periodic or random forcing, noise is intentionally

introduced to overcome regions of ’dead’ dynamical behaviour in self regulating systems

(French et al., 1972; Gammaitoni, 1995; Chialvo et al., 1997). An example of dithering is

the linearisation of the firing rate r(I) — current I curve in an LIF neuron model. If we

take an LIF neuron with constant input I without noise and plot the firing rate r as a

function of / , then r(I) = 0 for / < /*, where I* is that input strength where the mem­

brane potential first reaches threshold, i.e. Vth/R, in figure 2.2 B. At /*, r(I) has infinite

slope, and as I increases, r(I) rises, while the slope of r(I) goes down; r(I) looks like a log

curve (see figure 3.2).

If we plot the same figure, but for various noise intensities: the part of r(I) around I*

will become more and more linear as the noise increases (see figure 3.2). This is essentially

linearisation by noise: the input-output relation of the neuron becomes linear over a range

of inputs. This is good for signal transmission, because if signal parameters are such that

the input is only within the range where r(I) is (roughly) linear, one has linear signal

transmission, i.e. the signal is transmitted undistorted. Dithering is also used in electronic

circuits, e.g. CD-players: the digital-analog converter should produce a smooth analog

output from a digital ’’staircase” input. To this end, a little bit of noise is added to the

output to smear out the steps.

In this section stochastic resonance was described and we drew a distinction between

stochastic resonance and linearisation by noise. In the next section we will give a brief

CHAPTER 3. STOCHASTIC RESONANCE 48

o input current without noise
x Input current with low noise
v Input current with high noise

°>40

0.90.5 (
Input current

0.6 0.70.2 0.3 0.4

Figure 3.2: Noise linearisation. Without noise the firing rate above I* is not linear (o).

With the introduction of noise, the firing frequency immediately above I* is linearised (+

and v).

discussion of the history of stochastic resonance.

3.2 H istory of stochastic resonance

The term stochastic resonance first appeared in 1981 to describe “the cooperative effect

between internal mechanism and the external periodic forcing” in some nonlinear dynam­

ical system (Benzi et al., 1981). This concept was originally put forward to explain the

periodically recurrent ice ages on Earth. Statistical analysis of ice volume variations shows

that ice ages have a periodicity of 105 years. The only other variable with that time scale in

Earth dynamics is the modulation period of its orbit eccentricity, with ensuing variations

in solar radiations on the earth surface of 0.1 percent.

It was suggested that short term climate fluctuations, such as annual fluctuations in

solar radiations, could amplify the effects of periodical variations of the Earth’s orbit.

CHAPTER 3. STOCHASTIC RESONANCE 49

In the model of Benzi et al. (1981) the Earth’s climate was represented by a double­

well potential, with one well corresponding to an ice age period, and the other a warmer

climate. The small modulation of the earth’s orbital eccentricity is represented by a weak

periodic forcing. The periodic variations of the Earth’s orbit were too small to cause well-

hopping. The short term climate fluctuations were modelled by Gaussian white noise. If

the noise is properly tuned, synchronised hopping between the cold and warm climate could

significantly enhance the response of the earth’s climate to the weak perturbations caused

by the Earth’s orbital eccentricity, according to arguments by Benzi et al. (1981, 1982).

Benzi et al. coined the term stochastic resonance because the driven system only resonates

with the forcing system in the presence of noise. Short-term climatic fluctuations, such

as the annual fluctuations in solar radiation, are modelled by Gaussian white noise. It is

interesting to note that this paradoxical explanation of the periodicity of the Earth ice ages

remains today unconfirmed and is still a subject of debate, whereas the general phenomenon

of stochastic resonance has been firmly established in a large number of physical systems.

Experimentally, stochastic resonance was first demonstrated with a noise driven elec­

tronic circuit known as a Schmitt trigger (Fauve and Heslot, 1983); this work was also

the first to characterise the phenomenon in terms of signal-to-noise ratio (SNR). It took

several years before the interest of physicists (who have done most of the theoretical anal­

ysis) ignited, sparked by the demonstration of stochastic resonance in a bistable ring-laser

experiment (Weisenfeld and Moss, 1995). Stochastic resonance has been reported in a

wide variety of physical systems and the general theory is well in hand. Now stochastic

resonance has crossed disciplinary boundaries: its role in sensory biology has been explored

in experiments on single crayfish neurons (Douglas et al., 1993), cat visual cortex (Ander­

son et al., 2000), cricket cereal sensory system (Levin and Miller, 1996), human memory

retrieval (Usher and Feingold, 2000) and perspective brain function by experiments on

people’s ability to resolve ambiguous figures (Riani and Simonotto, 1994). Today, we know

that stochastic resonance is even more general than the bistable picture implies. Even sim­

pler systems, including those with a single potential well and integrate-and-fire dynamics

can exhibit stochastic resonance or stochastic resonance-like properties. The nonlinearity

CHAPTER 3. STOCHASTIC RESONANCE 50

in integrate-and-fire models is simply the on/off nature of the output. Stochastic reso­

nance is also reported to occur in non-dynamical and threshold-free systems (Bezrukov

and Vodyanoy, 1997b).

Under the widened notion of stochastic resonance, the first non-bistable systems dis­

cussed were excitable systems (Longtin, 1993). In contrast to bistable systems, excitable

systems have only one stable state (the rest state), but possess a threshold to an excited

state which is not stable and decays after relatively long time (in comparison to the relax­

ation rate of small perturbations around the stable state) to the rest state. Soon afterwards

threshold detectors were discovered as a class of simple systems exhibiting stochastic res­

onance (Jung, 1994; Wiesenfeld et al., 1994).

The development of stochastic resonance took a large leap forward when its potential

relevance for neurophysiological processes was recognised. Longtin et al. (1991) observed

that interspike interval histograms of periodically stimulated neurons exhibit a remarkable

resemblance to residence-time distributions of periodically driven bistable systems. The

framework developed for excitable and threshold dynamical systems has paved the way for

stochastic resonance applications in neurophysiology.

In this section we gave a brief historical perspective of how the term stochastic res­

onance came into being. We also pointed out that the problem which gave rise to the

phenomenon of stochastic resonance is still unresolved but the concept of stochastic reso­

nance is flourishing in neurophysiological circles. In the next section we will present some

of the measures which are used to quantify stochastic resonance.

3.3 Q uantifying stochastic resonance in neurons

Having discussed the main physical ideas of stochastic resonance in the preceding section,

we next define the observables that actually quantify the effect. There is no consensus

in the literature on how to measure stochastic resonance but signal-to-noise ratio seems

to be the preferred choice for periodic stochastic resonance. The observables should be

physically motivated, easily measurable, and/or be of technical relevance (Gammaitoni

CHAPTER 3. STOCHASTIC RESONANCE 51

et al., 1998). Prom these functions, a measure of the coherence of the system’s output

signal with the input signal can be obtained. Monitoring the changes in the coherence

measure as the relevant parameters (signal frequency and noise strength) are changed will

allow us to establish the existence of stochastic resonance. Stochastic resonance is exhibited

by showing that the coherence measure goes through a maximum as the input noise is

increased. For the double well systems, the only events that transmit some information

about the weak periodic forcing are the well to well transitions, not the intra-well motions.

Therefore, more generally, stochastic resonance will be quantified by measuring the changes

of state of a system, not the fluctuations within one state. The measures to be discussed

here are power spectrum, interspike interval histograms and signal-to-noise ratio.

3.3.1 Pow er spectrum

In the seminal paper by Benzi et al. (1981), stochastic resonance was quantified by the

intensity of a peak in the power spectrum. Figure 3.3 shows how the height of the peak

at 20 Hz starts off low for low noise, rises to a high value for optimal noise and falls back

to a low value again as the high noise dominates. Observables based on power spectrum

are indeed very convenient in theory and experiment, since they have immediate intuitive

meaning and are readily measurable. The details of how to obtain the power spectrum for

spike trains are presented in chapter 4.

3.3.2 Interspike interval histogram s

Although the power spectrum is the most widely used measure for comparing the output

and the input, it is not the only possibility. An alternative is the residence-time probabil­

ity distribution more familiarly known to experimental neuro-biologists as the interspike

interval histogram (ISIH). This measure is composed of a set of peaks which are widely

spread for very low noise values but become more coherent for larger noise intensity (see

figure 3.4). This qualitative structure of the histogram is very common, and is not in

itself a signature for stochastic resonance. Rather, stochastic resonance is identified with

CHAPTER 3. STOCHASTIC RESONANCE 52

low noise optimal noise high noise
2500 2500 2500

2000 2000 2000

1500 1500 1500

O 1000 1000 1000

500 500 500

0 50 100 100 10050

Frequency In Hz

Figure 3.3: Power spectrum from a spike train of a leaky integrate-and-fire neuron receiving

a 20 Hz subthreshold periodic signal plus Gaussian white noise at different amplitudes. The

peak at 20 Hz is small for small noise, highest for optimal noise and small again for high

noise. This is a sample result from simulations to be discussed in chapter 5.

the more particular behaviour shown in figure 3.4 where the amplitudes of the lower-order

peaks pass through a maximum with increasing noise intensity. It must be pointed out

that the typical shape of ISIHs under stochastic resonance is not unique to stochastic

resonance. Similar histograms from both neuron models and actual biological prepara­

tions show stochastic resonance or at least a strong connection between the ability of a

sensory neuron to transmit coherent information and its internal and external noise (Gam­

maitoni et al., 1998). Quantifiers that are based on the interval distributions emphasise

the synchronisation aspect of stochastic resonance. The resemblance of interspike interval

histograms and residence-time distributions of noise driven bistable systems, connected

stochastic resonance research with neuronal processes.

CHAPTER 3. STOCHASTIC RESONANCE 53

optimal noise high noise

In tersp ike In tervals In m illiseco n d s

Figure 3.4: Interspike interval histograms for spike trains from a leaky integrate-and-fire

neuron model receiving a 20 Hz subthreshold periodic signal plus Gaussian white noise of

varying amplitude. This is a sample result from simulations to be discussed in chapter 5.

3.3 .3 S ignal-to-noise ratio

The most common way of quantifying stochastic resonance is through the SNR. This

is readily obtained from the output spike train by forming the power spectrum, which

measures the frequency content of a time series. The signature of stochastic resonance

is that this SNR is zero for zero added noise (that is, no noise implies no switching or

threshold crossings, hence no output), and rises sharply to a maximum at some optimal

noise intensity, and decreases gradually for larger noise intensity as randomisation overrides

the cooperative effect (Gammaitoni et al., 1998). The detailed shape of this curve depends

on the input signal frequency and the other system parameters (see section 6.6 in chapter

6 for a discussion of the effect of neuronal parameters on stochastic resonance). A typical

SNR plot illustrating the stochastic resonance effect is shown in figure 3.5.

In this work, the phenomenon of stochastic resonance for periodic input will be exhibited

by showing a non-monotonic variation of the SNR as a function of the input noise. The use

CHAPTER 3. STOCHASTIC RESONANCE 54

O 25

3520
Noise amplitude

Figure 3.5: SNR plot from the spike trains of a leaky integrate-and-fire neuron model

receiving a 20 Hz subthreshold periodic signal plus Gaussian white noise of varying ampli­

tudes. This is a sample result from simulations to be discussed in chapter 5.

of SNR to measure periodic stochastic resonance in this thesis was motivated by the work

of Stemmier (1996). Using the spike count over a fixed time window as an estimate of the

firing rate, Stemmier (1996) derived an expression for the Fisher information for an LIF

neuron and discovered that a strikingly similar formula holds for the spike output signal-to-

noise ratio of an LIF neuron in response to a sinusoidal input. And he went on to show that

the two expressions become identical in the limit of low firing rates. This means that SNR

is a credible substitute for entropy based methods (Godivier and Chapeau-Blondeau, 1998;

Heneghan et al., 1996) for quantifying stochastic resonance especially for periodic input. In

conclusion Stemmier argued that despite the close similarity between the formulae for SNR

and the entropy based Fisher information, the more fundamental definition of stochastic

resonance in neuronal models is in terms of the Fisher information.

CHAPTER 3. STOCHASTIC RESONANCE 55

3.3.4 O ther m easures

In the case of non-periodic inputs (which give rise to aperiodic stochastic resonance (Collins

et al., 1996a), not considered in this thesis), an input/output cross-correlation measure is

used (Chialvo et al., 1997). Recently, studies have been carried out to quantify stochastic

resonance from an information theory point of view (Heneghan et al., 1996; Godiver and

Chapeau-Blondeau, 1996; Robinson et al., 1998). These two measures will not be discussed

further because they will not be used in this thesis.

3.4 A periodic vs periodic stochastic resonance

The input signal to a simple model such as the leaky integrate-and-fire unit can be constant,

periodic or arbitrarily varying in time. Regardless of the nature of the signal, the relevant

information quantities have the same asymptotic scaling properties as a function of the

noise amplitude (Stemmier, 1996). Whether we wish to determine the mutual information

between input and spike output, the SNR for the sinusoidal input, or the probability of

correctly detecting a constant signal within a limited time—for subthreshold inputs, these

quantities are given by the class of equations for stochastic resonance (Stemmier, 1996):

A2
SNR, d', / , P(.) oc cr-a exp(- 0 - ^) (3.1)

where

• SNR is the signal-to-noise ratio;

• d! is the Mahalonobis distance (a normalised measure of how far apart two probability

distributions are);

• I is the mutual information;

• P(.) is the probability of detecting a signal within a limited time;

• a is the standard deviation of the input noise;

CHAPTER 3. STOCHASTIC RESONANCE 56

• A is the effective input current threshold;

• The exponents a and (3 depend on the quantity on the left hand side and may differ

for different models of spiking neurons.

This result shows that results for periodic stochastic resonance can be extended to aperiodic

stochastic resonance without any loss in generality. In keeping with our desire to keep the

model used in this thesis simple we will only model periodic stochastic resonance.

Power spectrum, interspike interval histograms and SNR were identified as the main

quantifiers for stochastic resonance. In the next section we discuss the connection between

stochastic resonance and neuronal modelling.

3.5 Stochastic resonance in neuronal m odels

In this section we discuss the realisation of stochastic resonance in neuronal models. We

note that stochastic resonance in neuronal models was motivated by stochastic resonance

in threshold detectors, hence we will discuss stochastic resonance in threshold detectors

first.

3.5.1 T hreshold d etector

Even though stochastic resonance was first put forward in bistable systems, it was later

demonstrated in a non-dynamical threshold system, with the benefit of greatly simplify­

ing the problem by removing all dynamical complications. The simplest explanation of

stochastic resonance is found in threshold detectors.

Consider a threshold detector that outputs 1 if the input is larger than a threshold value

Vth and 0 otherwise, as illustrated in figure 3.6. In this case, the minimum requirements for

a system to exhibit stochastic resonance are (Moss et al., 1994; Hess and Albano, 1998):

• a form of threshold

• a subthreshold coherent input

CHAPTER 3. STOCHASTIC RESONANCE 57

threshold

Figure 3.6: Threshold detector: Left: Subthreshold input. Right: noisy threshold-reaching

input. Adapted from Hohn (2000)

• a source of noise intrinsic and/or extrinsic to the system that adds to the input signal.

For a threshold detector, in the absence of noise, the subthreshold input signal is

by definition too weak to alone exceed the threshold, so that there will be no threshold

crossings and the output SNR will be zero. Adding noise, the threshold is crossed at times

more or less correlated with the weak input signal (as shown in figure 3.6), and the SNR

increases. When the noise intensity becomes too large, the input crosses the threshold

randomly and the SNR is small again. Consequently there exists an optimum non-zero

noise value for which the SNR is maximum. Stochastic resonance in threshold detectors,

and more generally in a threshold non-linearity, is well understood. Simple cartoon versions

of excitable systems known as threshold detectors have been studied intensively because

they are accessible to full analytical treatment. In these models, the detector responds (by

sending out a pulse, for example) whenever the sum of the signal and the noise crosses a

threshold.

3.5.2 S tochastic resonance in neurons

The basic concepts of stochastic resonance and a mathematical description of neurons

having been introduced in the previous sections and chapter, a more detailed presentation

CHAPTER 3. STOCHASTIC RESONANCE 58

of stochastic resonance in neurons can now be given.

The application of stochastic resonance to neurons first arose as a consequence of the

similarity between interspike interval of periodically stimulated neurons and the residence­

time distributions of periodically driven bistable systems (Longtin, 1993).

Even though the relationship between neurons and stochastic resonance was first based

on bistable dynamics, the firing state of a neuron is not a stable state and a description

as a nonlinear non-bistable system is more appropriate. From equation 2.7, neurons can

be modelled as threshold detectors with a deterministic reset after firing. This means that

neurons can be described as having one stable fixed point, their resting value, and one

unstable fixed point, their threshold value. Such a description was first put forward by

Wiesenfeld et al. (1994) and Moss et al. (1994) and was coined “stochastic resonance on a

circle” due to the way this concept was illustrated (see figure 3.7).

Figure 3.7: Representation of stochastic resonance for a monostable system (after Wiesen­

feld et al. (1994)). The dot represents the stable state, and the cross the firing state. The

state point is most of the time in the neighbourhood of the dot. When the state point

passes the cross, e.g. when the threshold is crossed, the state point goes deterministically

back to the dot following the arrow.

The reset mechanism makes the study of such nonlinear systems much more complicated

CHAPTER 3. STOCHASTIC RESONANCE 59

than the simple threshold detector presented in the previous section.

Stochastic resonance in neurons has been the subject of a considerable number of stud­

ies using neuron models with different levels of complexity. They range from all-numerical

studies of networks of real neurons requiring computer intensive simulations to analytical

studies of single integrate-and-fire neurons. The FitzHugh-Nagumo (FHN) neuron model

has been especially widely studied in the context of stochastic resonance, by using analyt­

ical approximations (Wiesenfeld et al., 1994) , electronic models (Moss et al., 1993) and

numerical simulations (Pei et al., 1995; Kanamaru et al., 1999).

Stochastic resonance in an LIF

We can add noise to the LIF neuron by adding an extra term to the LIF equation as

we suggested in the noise models in section 2.4. In between two spikes, the membrane

potential of the LIF is governed by:

T<̂ = -V { t) + I{t) + <j(,{t) (3.2)

where r is the membrane time constant and £(£) is Gaussian white noise which is from

sources that are uncorrelated to I (t) and is additive to the input I(t) and a is the noise

amplitude. As the potential reaches threshold Vth, a spike is recorded and the potential

is reset to V(t) = Vo. The evolution of the membrane potential V(t) is equivalent to an

Ornstein-Uhlenbeck process with drift I(t) and absorbing boundary V(t) = Vth (Tuckwell,

1988b). The output of the neuron is modelled as a sequence of delta pulses f (t) = ^2k 6(t —

t k) at the times of threshold crossings tk = {t\V(t) = Vth). This spike train is a stochastic

point process, specified entirely by the spike times tk. For quite some time this biologically

plausible model escaped a rigorous analysis. The main reason for that was problems

caused by the reset after each spike. Because of this, the analysis has to be done for each

interspike interval separately and then the pieces put together to obtain the spike train

as a whole. The signal processing performance of the neuron is judged by the SNR of

the output spike train (see section 4.6 for the computation of the SNR for a spike train).

The SNR is maximal at an optimal noise amplitude for fixed stimulus frequency and at a

CHAPTER 3. STOCHASTIC RESONANCE 60

resonance frequency for fixed noise amplitude. The latter resonance is a result of a time

scale matching between stimulus and membrane time constant.

An important step in the analysis of integrate-and-fire neurons was a study by Bulsara

et al. (1996) in which the first-passage time density, i.e. the probability density for the

membrane potential to cross the threshold, was first approximated using the so called

method of images (see Tuckwell (1988b) for a discussion). Plesser and Geisel (1999) and

Burkitt and Clark (2000) also analysed the first-passage time density for a leaky integrate-

and-fire neuron model using a Markov Chain method. People have to resort to numerical

solutions for the first-passage time problem for an LIF neuron because there is no known

analytical solution.

Stochastic resonance has also been widely studied in networks of neuronal models as

evidenced by the works of Gluckman et al. (1996) and Shimokawa et al. (1999). We will

be looking at stochastic resonance in a network of LIF neurons in chapters 5 and 6.

The connection between neuronal modelling and stochastic resonance was through the

similarity between the residence time distributions of periodically driven bistable systems

and the ISIHs for periodically stimulated neurons. Neuronal stochastic resonance is more

related to threshold detectors than to bistable systems because neurons have one stable

state, the rest state. Having discussed fundamentals of stochastic resonance in the previous

sections we now turn our attention to some of the tools and techniques that are used to

investigate this phenomenon.

3.6 Tools and techniques o f m odelling stochastic res­

onance

The seminal paper by Benzi et al. (1981) provoked no immediate reaction in the literature.

Apart from a few early theoretical studies by Nicolis and Nicolis (1982) and Benzi et al.

(1982), only one experimental paper (Fauve and Heslot, 1983) addressed the phenomenon

of stochastic resonance. One reason may be that the simulations required needed faster

CHAPTER 3. STOCHASTIC RESONANCE 61

machines than were easily available to researchers at the time. The experimental article

by McNamara et al. (1988) marked a renaissance of stochastic resonance, which has devel­

oped and flourished ever since in different directions. The present knowledge of stochastic

resonance has been reached through a variety of investigation tools. In this section we will

outline the most popular ones.

3.6.1 D ig ita l sim ulation

The first demonstration of stochastic resonance was produced by simulating the model of

climate change by Benzi et al. (1981) on a Digital Instruments minicomputer (model PDP

11), an advanced computer at the time. Nowadays accurate digital simulations of either

continuous or discrete stochastic processes can be carried out easily on desktop computers.

Regardless of the particular algorithm adopted in the diverse cases, digital simulations

proved particularly useful in the study of stochastic resonance in numerous cases.

3.6.2 A nalogue sim ulation

This type of simulation allows more flexibility than digital simulation and for this reason has

been preferred by many researchers as evidenced by the works of Dykman et al. (1990a,b);

Gingl et al. (1995a,b); Kaufman et al. (1996); Luchinsky et al. (1999b) and Luchinsky

et al. (1999a). Analogue simulators of stochastic processes are easy to design and assemble

(Gammaitoni et al., 1998). Their results are not as accurate as digital simulations but offer

some advantages: (a) a large range of parameter space can be explored rather quickly; and

(b) high dimensional systems may be simulated more readily than by computers, though

systematic inaccuracies must be estimated and treated carefully. Noise is also not easy to

control in analogue systems and their inherent nonlinearities make them difficult to deal

with.

CHAPTER 3. STOCHASTIC RESONANCE 62

3.6.3 P hysio logical experim ents

To date there are a few experiments where stochastic resonance has been firmly established

in a physiological experiment. Gluckman et al. (1996) report on observing stochastic

resonance in mammalian Hippocampal slices and Douglas et al. (1993) report on stochastic

resonance being exhibited in the tail fan of a crayfish. The most recent human related

evidence of stochastic resonance comes from the work of Mori and Kai (2002). In their

study, Mori and Kai shone light signals into the eyes of five students while measuring

their electroencephalogram. The researchers shone periodic signals onto the right eyelids

and noisy signals onto the left eyelids of the students as they rested, and measured the

intensity of their alpha brain waves. They found a sharp peak at 5 Hz, the frequency of

the periodic signal. But when they increased the strength of the noise signal relative to the

periodic signal, a ’harmonic’ peak emerged in the alpha waves at 10 Hz. As the noise signal

became stronger, this peak first intensified and then diminished, a feature characteristic of

stochastic resonance.

In this section we described some of the tools which were instrumental to the devel­

opment of stochastic resonance. The results presented in this thesis portray stochastic

resonance modelled on a PC and on an FPGA. The details of the techniques and models

used are discussed in chapter 5. In the next section we discuss some of the benefits of

stochastic resonance to neuronal modelling.

3.7 Som e of the benefits of stochastic resonance

It is in the simplest systems that a positive role of noise is becoming particularly evident.

This thinking has been driven by the discovery of stochastic resonance in excitable sys­

tems. For biological systems that exhibit a threshold, such as spike-generating neurons,

subthreshold signals have no effect on the output of the system. In other words, all in­

formation present in the signal is lost. It is now evident that given the existence of a

threshold, noise arising from different sources can enhance signal detection by allowing the

CHAPTER 3. STOCHASTIC RESONANCE 63

system to reach threshold. It may be argued that such a strategy would bypass the thresh­

old as a safety device against “false positives” , for example a cell with a 5 mV threshold

might specifically have been designed to avoid detecting a 3 mV stimulus. However, for

some sensory systems, such false positives do not exist. For example, hair cells in the

mechanosensory receptors of the vestibular and auditory systems, respond in a graded

fashion to the smallest motion (Traynelis and Jaramillo, 1998). A signal too weak to trig­

ger afferent firing is essentially lost. As shown in experimental work, stochastic resonance

could improve sensory systems in several ways.

Stochastic resonance has been described in the past as a nonlinear co-operative effect

by virtue of which the response of a system to a weak periodic signal is enhanced by the

addition of an optimal amount of noise. We discuss a few observations about this definition

to help illustrate how widespread this effect is.

• In addition to simple threshold and bistable potential systems, stochastic resonance

is also seen in the reset-and-fire excitable system. This system, much like a neuron,

integrates a stimulus until a threshold is reached, at which time the system “fires”

and resets. It has been shown that noise can improve the quality of transmission in

the nervous system. More recent experiments in the cricket cereal sensory system

have shown that the transmission of signals by the sensory cereal, measured in bits

per action potential, is also enhanced by noise (Levin and Miller, 1996). Furthermore,

these signals were fairly broad banded (5-400Hz), indicating that stochastic resonance

can exist across the spectrum of frequencies present in axons.

• The signal need not be periodic: although periodic signals are commonly used ex­

perimentally, sensory systems are rarely subject to a pure periodic stimulus. How­

ever, recent experiments on rat cutaneous mechanoreceptors indicate that noise can

enhance the transmission of aperiodic stimuli, again suggesting a role for noise in

enhancing sensory transmission of biologically relevant signals (Collins et al., 1996b;

Gluckman et al., 1996).

• Noise need not be optimised: for the relatively simple systems discussed in the lit­

CHAPTER 3. STOCHASTIC RESONANCE 64

erature there is an optimum noise level. Below this ideal level the system is not

optimised, whereas beyond it the SNR is degraded. However, such a dependence is

not an obligatory feature for all systems that exhibit stochastic resonance.

• It should be noted that although white noise is often used to model stochastic res­

onance, coloured noise can effectively produce similar behaviours (Capurro et al.,

1998; Nozaki et al., 1999). An example is the noise generated by the random gating

of ion channels. This noise, rather than white, has spectral characteristics that are

determined by the transition rates between different states.

• Noiseless neurons typically have a very limited dynamic encoding range. If a constant

stimulus is subthreshold, no spikes occur, if it is suprathreshold, firing at a constant

rate occurs. This rate is not dependent on the value of the stimulus given that it

is greater than threshold. Various authors have shown that noise can linearise the

firing frequency versus stimulus-amplitude relation of the neuron (Gammaitoni, 1995;

Shimokawa et al., 1999). Although it is still far from clear whether the encoding uses

mean spike rate, the interspike interval or the precise timing of the interspike intervals

in a spike train, it is interesting that the linearisation property arises naturally in the

LIF neuron model.

3.8 Som e m isconceptions about stochastic resonance

The existence of a maximum in output SNR at an optimised non-zero noise level induced

high expectations towards stochastic resonance as an extraordinary tool in signal processing

and transmission. Very often stochastic resonance is described using ambiguous statements

like “noise helps in detecting small signals...” or “stochastic resonance allows us to detect

small signals” . In these expressions, the ambiguity lies in the word “small” . Small can be

used to denote a subthreshold signal or a signal smaller than the noise in which it is hidden

— and the two meanings are quite different. In the case of small meaning “subthreshold” ,

a signal is small given a detector (for a lower threshold it is no longer small), while small

CHAPTER 3. STOCHASTIC RESONANCE 65

meaning “small compared to noise” is more of an absolute measure. In this thesis, small

will always be used to speak of a signal that is small compared with the threshold of the

LIF neuron, that is, a signal which does not make the LIF neuron fire.

It is worth emphasising that the problems of amplifying a signal or detecting it when

masked by noise are quite different, in spite of the fact that the two words (amplification

and detection) are often used in an equivalent way. Traditionally the most used methods for

detecting small signals (small compared to the root mean square (RMS) of its fluctuations)

are spectral analysis and averaging. Spectral analysis can be realised by using FFT, wavelet

transforms, or by using narrow-band filters.

In this section we described some of the benefits of stochastic resonance to neuronal

modelling. We also noted that some of the things stochastic resonance is associated with

are much better done using other techniques. For instance, extracting a signal buried in

noise can be done using spectral analysis techniques like wavelet transforms.

3.9 Sum m ary

The purpose of this chapter has been to introduce the concept of stochastic resonance and

how it applies to neural systems.

Stochastic resonance was roughly defined as a co-operative effect between noise and

signal to aid the detection of the signal. It was originally developed to explain the changes

in the Earth’s climate but has since been extended to explain phenomena in fields such

as neuroscience and optics. There are basically two kinds of systems in which stochastic

resonance occurs: bistable dynamic systems (systems with two stable states) and excitable

systems (systems with a threshold and one stable state). In both cases a clear maximum in

the output signal and in the output coherence measure occurs at “tuned” values of the input

noise. Neurons are examples of excitable systems. In neuroscience, stochastic resonance is

quantified by interspike interval histograms, power spectrum and signal-to-noise ratio.

The tools and techniques used in investigating stochastic resonance in neuroscience

range from analogue and digital simulation to actual experimental work.

CHAPTER 3. STOCHASTIC RESONANCE 66

In summary, stochastic resonance might be a general strategy employed by the central

nervous system for the improved detection of weak signals. However, the effects of stochas­

tic resonance in sensory processing might extend past an improvement in signal detection.

As information flows towards progressively more central relay stations, it is handled by

systems that might exhibit stochastic resonance, resulting in improved information pro­

cessing. This enhancement might start to take place at the earliest stages of processing,

as recently suggested by the enhanced vowel coding obtained with the addition of noise to

cochlear implants and the amplification of amplitude modulated signals on the auditory

nerve fibre by the neurons of the cochlear nucleus.

In our view there is nothing very special about stochastic resonance, it is just one of the

many ways that the CNS may be using to encode signals in a noisy environment. It also

provides a constrained way of investigating the role of noise in the central nervous system.

Chapter 4

Measurements from spike trains

The purpose of this chapter is to discuss some of the techniques used in analysing noisy

spike trains. In section 4.1 we mainly look at the stochasticity of spike trains and some

of the statistical distributions that are used to characterise them. Spike trains are used

by some neurons to communicate information. Section 4.2 describes some of the potential

coding schemes we believe neurons might use to convey information to each other. In

section 4.3 we describe some statistical measures that are used to characterise the degree

of randomness in a spike train relative to a Poisson distributed spike train. Section 4.4

describes the autocorrelation function. In section 4.5 we describe the power spectrum. We

start by reviewing the different methods of sampling spike trains to obtain their Fourier

components. We then describe how the power spectrum of a spike train can be computed.

Finally, in section 4.6 we describe how to compute the signal-to-noise ratio of a spike train

from its power spectrum.

4.1 S tochasticity in spike trains

A key property of many neurons’ spike trains is their seemingly stochastic or random

nature. This randomness is apparent in the highly irregular discharge pattern of a central

neuron to a sensory stimulus whose details are rarely reproducible from one trial to the

67

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 68

next (Mainen and Sejnowski, 1995). The apparent lack of reproducible spike patterns has

been one of the principal arguments in favour of the hypothesis that neurons only care

about the firing frequency averaged over very long time windows (Koch, 1999). Such a

mean rate code is very robust but is relatively inefficient in terms of transmitting maximal

information per spike and is very slow at transmitting data. Encoding information in the

intervals between spikes is much more efficient, in particular if correlated across multiple

neurons and can also be much faster. Such a scheme does place a premium on postsynaptic

neurons that can somehow decode this information.

Because little or no information can be encoded into a stream of regularly spaced action

potentials (it codes only one value, namely the rate), this raises the question of how variable

neuronal firing really is. How can the observed randomness be explained on the basis of

the cell’s biophysics and synaptic input? The mathematical theory of stochastic point

processes and the field of statistical signal processing offer a number of tools suitable for

analysing the properties of spike trains. We will study these here and will relate them to

simple models of biophysics. This will enable us to infer something about the integrative

mechanisms underlying neuronal firing activities.

4.1.1 Spike trains as a point process

The simplest model of neuronal firing statistics is the Poisson model. The defining feature

of a Poisson process is that the firing of one spike occurs with some probability per unit

time, the rate, and this rate can depend on time but not on the occurrence times of the

other spikes (Tuckwell, 1988b).

A sequence of action potentials, or spike trains can be modelled by a one dimensional

point process. By definition, a regular point process is such that no more than one event

can occur in a sufficiently small interval, and that the probability of one event occurring in

a small interval is proportional to the duration of the interval (Cox and Miller, 1965). This

description of a neuron in terms of the probability of firing is consistent with the stochastic

nature of spike trains as introduced in the literature. The sequence of action potentials

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 69

produced by a neuron can be characterised in terms of a stochastic point process. The

simplification implies that spike duration and shape are neglected and all neuronal activity

is represented by uniform events appearing in time. This is a reasonable simplification

because spikes have been found to be similar in size and shape, and propagate with no

attenuation. This means that the only information the rest of the nervous system has from

spiking sensory neurons is the times of their spikes. This simplification also means that we

do not have to worry about the spatial size of the neurons that we model which would be

an issue because spiking neurons come in all shapes and sizes.

When all action potentials are taken to be identical and only their localised times of

occurrences are considered, one obtains a discrete series of time events, ti, £2 , •••, tn, where

U = time of arrival of the ith spike, characterising the spike train. It is this series of

events that is transmitted down the axon to all the cell’s target neurons and that contains

most, if not all, of the information the cell is conveying. It is worth noting here that not

all neurons produce spike trains. There are graded response neurons that do not produce

stereotyped action potentials and there are also neurons that produce chemical outputs —

hormones, such as oxytocin (a chemical messenger which is also a form of output) (Kandel

et al., 2000).

As mentioned previously, spike trains can be modelled by stochastic point processes.

Let U be a set of spiking times with a certain distribution. In computational neuroscience,

spikes are commonly represented by a delta function, and a spike train is therefore a simple

sum of delta functions, or 5-spikes:

z(*) = I4-1)
i

This mathematical representation can be confusing at first since real spikes have a finite

amplitude and width. A justification along the lines of Rieke et al. (1997) follows. Suppose

that a spike train recorded from an experiment is analysed with a discretised time bin At

such that there is at most one spike per bin. Define f (x) such that f (x) = 1 if \x\ < 0.5

and f (x) = 0 otherwise, and a function n(t) with value 1 if there is a spike in the bin

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 70

centred on t and value 0 otherwise. n(t) can be written as:

«W = E / (^ 1)- (4-2)

The average value of n(t) is the probability that a spike will occur in a bin of width At

centred on t. The firing rate r(t) is obtained by normalising n(t) by the bin size A t and

taking the limit A t —> 0. r(t) reads:

/ \ ••• (n M)r(t) = lim A
A f-K) A t

= (V ' lim 7—̂))xz^ A t-+ o A rv At n
%

= <*(*)> (4.3)

The firing rate r(t) is therefore the average spike rate, which justifies the choice of the

5-shaped spikes. Integrating the firing rate over a finite duration To gives the average

number of spikes present in this time window.

The assumption that there is at most one spike in a bin of width A t is in agreement

with the description of the spike train in terms of point processes. This is also possible

because of the absolute refractory period which means At will not need to be infinitely

small and because real spikes have a finite duration. In this thesis, the model neurons

considered are stimulated by a periodic external signal, for instance a pure tone for the

case of neurons along the auditory pathway.

In this section we introduced point processes as one way of representing neuronal spikes

as a time series which greatly simplifies the analysis of the spike trains. In the next section

we discuss some of the codes that may be used by neurons to communicate with each other.

4.2 Neural codes

Over the past hundred years, biological researchers have accumulated an enormous amount

of detailed knowledge about the structure and the function of the brain see, for example,

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 71

Kandel et al. (2000). In spite of all this detailed information about neurons and their

connections, one fundamental question is still unresolved: What are the codes used by

neurons or how do neurons use spikes to communicate with each other? Do neurons

communicate by a “rate code” or a “pulse code”? How the neural output is represented,

as a series of discrete pulses or as a continuous firing rate, relates to the code used by the

nervous system to transmit information between cells.

A quick survey of the experimental literature reveals that there is no unique and well-

defined concept of “mean firing rate” . There are about three different notions of rate which

are often confused and used simultaneously. The three definitions refer to three different

averaging procedures: either an average over time, or an average over several repetitions of

the same experiment, or an average over a population of neurons. In the following sections

we consider these three concepts.

4.2.1 R ate as a spike count

The first and most commonly used definition of a firing rate refers to a temporal average

which is essentially the spike count in an interval of a certain length divided by the interval

length. Given the pulse-like nature of spike trains, the standard procedure to quantify

the neuronal response is to count how many spikes arrived within some sampling window

T and to divide this number by T. This definition of rate has been successfully used in

many preparations. Classical results (see the pioneering work of Adrian reviewed in Rieke

et al. (1997)) show that the experimenter as an external observer can evaluate and classify

neuronal firing by a spike measure. This begs the question: is this really the code used by

neurons in the brain? In other words, is a neuron receiving a signal from a sensory neuron

only looking at and reacting to the number of spikes it receives in a time window of, say

200 ms?

It is quite clear that an approach based on a temporal average neglects all the informa­

tion possibly contained in the exact timing of spikes. It is therefore no surprise that the

firing rate concept has been repeatedly criticised (Koch, 1999) and is subject to an ongoing

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 72

debate.

It is important to understand the artificial nature of a rate based on spike count. Prom

behavioural experiments it is known that reaction times are often rather short. A fly can

react to new stimuli and change direction of flight within 30-40 ms as reported in the

work of Rieke et al. (1997) which is just enough time for a neuron to fire a few spikes and

certainly not enough time for counting spikes and averaging over some long time window.

This means the nervous system has to make a decision based on a few spikes at most.

Temporal averaging can work well in cases where the stimulus is constant or slowly

varying and does not require a fast reaction of the organism. This situation is only feasible

in an experimental setting, in the real-world, stimuli are hardly ever stationary, but change

on a fast time scale.

Despite its shortcomings, the concept of a temporal average rate code is widely used

not only in experiments, but also in models of neural networks. Collins et al. (1995b)

used a firing rate based model to establish stochastic resonance in a network of parallel

model neurons. The firing rate code has also led to the idea that a neuron transforms

information about a single input variable (the stimulus strength) into a single continuous

output variable (the firing rate). This is good for investigating stochastic resonance because

we can easily get spectral estimates of the spike train by suitably sampling the firing rate

which is a continuous variable (see section 4.5). Prom the point of view of rate coding,

spikes are just a convenient way to transmit the analogue output variable (firing rate) over

long distances. Furthermore, the randomness encountered in real spike trains of neurons in

the cortex must be considered as noise which should be averaged out over a large number

of spikes.

4.2.2 R ate as a spike density

There is a second definition of rate which works for stationary as well as for time-dependent

stimuli. In this case the experimenter records from a neuron while stimulating with some

input sequence. The same stimulation sequence is repeated several times and the neuronal

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 73

response is reported in a Peri-Stimulus-Time Histogram (PSTH). This results in a time-

dependent firing rate of the neuron. The time t is measured with respect to the start of the

stimulation sequence and At is typically in the range of a few milliseconds. We can easily

get the spike density r(t) by doing the following: we count the number of occurrences of

spikes Ai), which is the total number of spikes found in the interval (£, t + At) during

K repetitions of the stimulus, divided by the number of repetitions K. This is a measure

of the typical activity of the neuron between time t and t + At. A further division by the

interval length At yields the spike density of the PSTH (Gerstner and Kistler, 2002):

r W = I n ^ (4 4)

The obvious problem with this approach is that it cannot be the decoding scheme used by

neurons in the brain. If we consider a frog which wants to catch a fly, this decoding scheme

entails that the frog waits for the fly to make several runs along the same trajectory before

the frog catches the fly. The frog has to make a decision based on a single “run” — each

fly and each trajectory are different.

This coding scheme makes sense if there is a large population of independent neurons

that receive the same stimulus. Instead of recording from a population of N neurons in a

single run, it is easier to record from one neuron and average over N repeated runs.

The PSTH can be convolved with a smooth function like a Gaussian to produce a

continuous instantaneous rate variable which could be sampled to compute the power

spectrum of the spike train.

4.2 .3 R ate as a population activ ity

Often many neurons have similar properties and respond to the same stimuli. If we assume

a population of neurons with identical properties, particularly the same input and output

connections, we can then define a spike-based population activity variable which varies

rapidly and can reflect changes in stimulus conditions. The problem with this scheme

is that we have assumed a homogeneous population of neurons which is hardly realistic.

Nevertheless, rate as a population activity may be a useful coding principle in some areas

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 74

of the brain such as neurons in the primary visual cortex which exhibit synchrony when

separate stimuli can be considered as part of a whole, for example, the same image (Shalden

and Newsome, 1998).

4.2 .4 P hase based codes

We can apply a coding of “time-to-first-spike” also in the situation where the reference

signal is not a single event, but a periodic signal. In the hippocampus, in the olfactory

system, and also in other areas of the brain, oscillations of the same global variable (for

example the population activity) are quite common (Koch, 1999). These oscillations serve

as an internal reference signal. Neural spike trains then encode the information in the

phase of a pulse with respect to the background oscillation. If the input does not change

from one cycle to the next, then the same pattern of phases repeats periodically.

4.2 .5 C orrelation codes

We can also use spikes from other neurons as the reference signal for a pulse. For exam­

ple, synchrony between a pair or many neurons could signify special events and convey

information which is not contained in the firing rate of the neurons. One famous notion is

that synchrony could mean “belonging” together (von der Malsburg, 1994; Gerstner and

Kistler, 2002).

In an instantaneous firing rate, the generation of each spike is independent of other

spikes in the trains (neglecting the refractory period and bursting), only a single number,

the rate, matters. In a correlation code this assumption is abandoned in favour of coupling

among pairs, triplets, or higher order groupings of spikes.

A generic problem with the assumption of correlation codes is the question of decoding.

It is unclear what sort of biophysical mechanisms are required to exploit information hidden

in such correlations among spikes (Koch, 1999).

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 75

4.2 .6 P opu lation and correlated codes

We can distinguish two types of population codes, correlated ones and uncorrelated ones.

The latter are straightforward: here the information from numerous neurons is combined

into a population code but without taking into account any correlations among neurons.

There is plenty of good evidence for such codes in a great variety of different sensory

and motor systems, ranging from the cricket cereal interneurons encoding the direction

the wind is blowing from (Theunissen and Miller, 1991), to the larger ensembles encoding

the direction of sound in the Barn owl (Gerstner et al., 1997), and eye movements in the

mammalian superior colliculus, to the posterior parietal cortex in the monkey encoding its

representation of space (Lee et al., 1988).

Correlation population codes exploit the exact temporal relationships among streams

of action potentials. One way to discover such codes is to record from two or more neurons

simultaneously and to measure the cross correlation function.

Physiological evidence indicates that cross correlations among groups of neurons appear

to encode various stimulus features.

Under certain conditions this might be different, if a cell, say in the cortex, has access

to the spiking output of many cells with the same receptive field properties, the temporal

average of the single presynaptic neuron can be replaced by an ensemble average over a

population of neurons, thereby approximating the firing rate. In many cases population

rate coding cannot occur for lack of a sufficiently large cell population to average over.

In the insect, for instance, a very small number of clearly identifiable neurons code for

particular features of the sensory input and no ensemble averaging occurs.

4.2 .7 D iscussion: spikes or rates?

The dividing line between temporal codes and firing rate codes is not always clearly drawn.

Some codes which were first proposed as pure examples of pulse codes have later been inter­

preted as variations of rate codes (Koch, 1999). For example, a code based on population

activities introduced earlier as an example of a rate code may be used for very fast tern-

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 76

poral coding schemes, population activity reacts quickly to any change in the stimulus

(Gerstner, 2000). Thus rate coding in the sense of a population average is consistent with

fast temporal information processing, whereas rate coding in the sense of a naive spike

count measure is not.

We do not think it helps anyone to get mired in the debate of whether or not to call

a given code a rate code. What is important, in our opinion, is to have a coding scheme

which allows neurons to quickly respond to stimulus changes. A mere spike counting code

with a long time window is unable to do this, but many of the other codes are. The name

of such a code, whether it is deemed a rate code or not, is of minor importance.

In the next section we discuss interspike interval distributions and some statistics which

can be derived from them.

4.3 Interspike interval distributions

The variability of a neuronal spike train is a vital indicator of the processing a neuron

does on its synaptic inputs. One way of characterising the spike train is to look at the

distribution of interspike intervals (ISIs). We can calculate some statistics based on the

ISIs which give us clues about the type of processing that the neuron performs on its

synaptic input. As pointed out in Chapter 3, the distribution of ISIs is a good measure of

stochastic resonance, but it is not used to infer stochastic resonance only. It can also be

used as a measure of synchronisation. The mean and variance of ISIs are used to calculate

two measures which tell us the degree of variability in synaptic input to a neuron.

4.3.1 C oefficient of variation

The simplest of such statistics is the coefficient of variation (CV) of the ISIs. Cv is defined

as the standard deviation at of the ISI distribution normalised by the mean ISI fj,t :

Cv = - (4-5)

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 77

with
OO

fH — J t p(t)dt, (4.6)
o

and
OO

a *2 ~ I ^ ~ (4-7)
o

where p(t) is the probability density distribution of the ISIs. C y is a measure of spike train

irregularity (Christodoulou and Bugmann, 2001). The coefficient of variation is equal to 1

for Poisson spike trains, since at = pt- The C y = 1 for a Poisson spike train, indicates pure

randomness in the spike train. This means that C y values for other models are compared

with the Poisson model, the closer the C y is to 1 the more variability there is in that spike

train. For a Gamma distribution of order n, at2 = Pt2/n and C y = 1/y/n. Integrating with

an LIF neuron over a large number of small inputs gives rise to very regular spike trains as

the ISI tends towards a normal distribution (Koch, 1999; Brown et al., 1999). This result

can be explained by invoking the central limit theorem which states that as the number n

of independent variables Xi goes to infinity, the random variable defined by the mean of all

Zj’s, (x) = (1/77,)]££=i £*, has a Gaussian distribution. In the limit of an integrate-and-fire

neuron under constant current input, C y 0. A refractory period lowers the C y at high

firing rates because it tends to force regularity in the interspike interval duration. In the

ideal case of an absolute refractory period, the interspike interval probability density will

be shifted to the right of the time axis, p(t) -» pref(t) = p(t - tref) and the new coefficient

of variation is:

Cvref = (1 “ Ue f / p t) Cy , (4.8)

so that C y ref —»• 0 as pt -* Uef (Koch, 1999).

The membrane time constant r of an LIF neuron will also affect the coefficient of

variation in different ways. If nth > 1 (nth is the number of inputs summed) coincident

inputs are needed to fire the cell, a large r will regularise the spike train by averaging the

arrival of synaptic inputs over time, whereas a short r will increase sensitivity to coincident

inputs and thus boost variability.

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 78

4.3.2 Spike count d istribution and Fano factor

The Cy is a useful measure of short-term variability because it is obtained from the in­

terspike interval distribution. It yields a complete characterisation of variability only if

the occurrence of a spike depends exclusively on the time of the previous spike and not

on the past history of the spike train. This is the case for a spike train generated by a

renewal process. By definition, successive intervals of a renewal process are independent

and identically distributed (Cox and Lewis, 1966). Unfortunately the spike train of a leaky

integrate-and-fire neuron model with a refractory period and receiving noisy sinusoidal

input is not a renewal process. To make it a renewal process one would have to reset the

stimulus each time the neuron fires so that the stimulus always starts at the same phase

(Plesser and Tanaka, 1997).

Information on variability beyond the first interspike interval can be gleaned by the

distribution of spike counts measured over a time period of length T. If we consider a

Poisson spike train with mean firing rate f = 1/pt, then the probability p(n) of obtaining

n spikes in the observation window T is (Koch, 1999):

(fT)ne~fT
p(n) = [SI)J (4.9)

f L •

The variability in the spike count distribution is characterised by the ratio of variance,

V(T), to the mean, N (T), of p(n) (Koch, 1999):

F(T) = U T (4.10)

This quantity is called the “index of dispersion” or “Fano factor” . The Fano factor can

be viewed as a kind of ’noise-to-signal’ ratio; it is a measure of the reliability with which

the spike count could be estimated from a time window that on average contains several

spikes. In fact, for a renewal process spike generator, the distribution p(n) of spike counts

can be shown, by the central limit theorem (Feller, 1971), to be normally distributed

(asymptotically, as the number of trials becomes large) with mean fiT — T / fit and variance

(jT2 = T x a2t/nt, where at and (h are, respectively the standard deviation and mean of the

ISI distribution p(t). Thus the Fano factor is related to the coefficient of variation Cv by

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 79

Cy — y/F. For a Poisson spike train, F(T) = 1 because mean and variance have the same

value. Spike trains that are more regular than Poisson will have an index of dispersion

smaller than 1 (Koch, 1999).

4.3 .3 E stim ating ISI d istribution param eters

Initial estimates of the mean and variance of the ISIs from empirical data can be given by

the following sample estimates. The mean of ISI flt is given by:

(4.11)
K t=i

where f i , ..., tk are the observed ISIs. The variance of of ISIs is given by

&t = r E f t - A) 2 (4-12)
K i=1

In general, the accuracy of the estimates will depend on the extent of correlations

between successive interspike intervals of the spike train. The most favourable case is the

renewal process because successive intervals are independent. In this case, the variance of

f2t is given by of / k and decreases linearly with the number of observations from an initial

value equal to the variance, cf, of the ISI distribution. Unfortunately an LIF receiving a

periodic signal and Gaussian white noise is not a renewal process which means the estimates

given above may not apply to its output. A numerical way of obtaining the distribution of

the intervals for a noisy LIF neuron model is described by Plesser and Geisel (1999) and

Hohn (2000).

In this section we discussed the interspike intervals and the measures of variability

which can be derived from them. These measures of variability measure the degree of

randomness in the input to the neuron. We noted that the Poisson distribution is the

standard because it represents pure randomness. We also discovered that the distribution of

the ISIs for the noisy LIF neuron with time dependent input is not straightforward because

the intervals are not independent and identically distributed. In the next section we discuss

the autocorrelation function which measures the correlation between spikes separated by

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 80

1 or more spikes in between. The ISIs give us information about consecutive spikes but

sometimes we need to know the relationship between spikes separated by different time

lags. We also note later that the autocorrelation function has a very special relationship

with the power spectrum which we discuss in section 4.5.

4.4 A utocorrelation function

The mean spike count N(T) (discussed in section 4.3.2) is well suited to convey informa­

tion about static components of a stimulus in a time interval of length T , but stimulus

parameters that vary over time during such an interval cannot be encoded by N(T) alone.

Second-order changes in the dynamics of neuronal firing are captured in the autocorrela­

tion function of the spike train. Let x(t) be the spike train of a neuron, represented by a

sequence of 6 pulses at the time of spike occurrences, as defined in section 4.1.

The mean firing frequency for an ensemble of observations of x(t) is f = (x(t)) and is

assumed to be independent of t (i.e. we assume that the spike train is stationary). The

autocorrelation function with lag r is defined as the average joint probability density of a

spike at time t and t + r, minus their mean values:

R x x (j) = ((x(t) - r)(x(t + r) - f)) (4.13)

By time invariance (stationarity), R x x (r) is assumed to be independent of the absolute time

point t. It follows from this assumption that R xx{t) — Rxx{—t). For a Poisson process,

R x ^ t) = r8(r) (Koch and Segev, 1999). The ^-function at the origin corresponds to the

sure event of a spike at point t given a spike at point t , while for r 0, the autocorrelation

function R x X (r) vanishes, meaning that two spikes separated by an arbitrary time interval

r are completely uncorrelated (complete independence between two events which defines

a Poisson process).

The autocorrelation function is a measure of a neuron’s memory of previous spikes. It

is not used directly as far as measuring stochastic resonance is concerned. We introduced

the autocorrelation function in this section because it can be used to compute the power

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 81

spectrum of a spike train which is a quantifier of stochastic resonance.

4.5 Power spectrum

Analysis in the frequency domain offers a compact description of the moments of a stochas­

tic process and when applied to the input and output of a system, provides a means of esti­

mating the frequency response function and the coherence function of the system. Spectral

analysis provides a powerful technique for describing the lower order moments of a stochas­

tic process and interactions between two or more stochastic processes. A major problem

in the application of spectral analysis to neuronal spike trains is how to obtain equi-spaced

samples of spike trains which will give unbiased and alias-free spectral estimates. A number

of different ways of calculating the power spectrum of a spike train exist. We will review

some of them before we introduce the method that will be used in this thesis.

4.5.1 Sam pling spike trains

Because of the short duration of action potentials relative to their frequency of occurrence

in many situations, it has become commonplace to treat action potentials as “events” in

time and to assume that the only parameters of importance in neural coding depend in

some way on the occurrence times of the action potential. This representation presents

problems to the implementation of spectral analysis for neuronal spike trains. On the one

hand a continuous signal is desirable for implementation of the Fast Fourier Transform

(FFT) algorithm by regular sampling, and on the other hand treatment as a point process

is more acceptable and conventional but poses computational problems. For continuous

signals, we can sample them to produce a regularly spaced series of amplitudes for use in

the FFT. A series of action potentials, represented by equal amplitude spikes at irregular

times of occurrence, cannot be sampled in a similar manner. Figure 4.1 summarises the

problem we have when it comes to sampling spike trains so that we can perform algorithms

like FFT to get the spectral estimates of the spike train. A number of different approaches

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 82

Figure 4.1: Continuous signals, such as that illustrated in upper left, are sampled by use

of Dirac comb (lower left) to produce a regularly spaced series of amplitudes for use in

Fast Fourier Transform (middle left). A series of action potentials represented by equal

amplitude spikes at irregular occurrence, cannot be sampled in a similar manner by the

same Dirac comb (right).

to the problem using both possible presentations have been suggested or implemented. We

shall briefly review these approaches and their various characteristics.

4.5 .2 T reatm ent as a continuous process

If x(t) is a recording from a neuron, which is a continuous, bandlimited signal of finite

energy, then one could simply use the Nyquist criterion to choose an appropriate sampling

interval, At. However, because of the fast rise time of an action potential, the sampling

will be of the order of several thousand samples/second and processing on the computer

restricts the record length N to T = NAt. The spectral estimate so obtained will be

from an unreasonably short length of x(t) and will have a low resolution since the funda­

mental frequency / 0 of the spectral estimate is inversely proportional to the record length

(Priestley, 1982).

A criticism of this technique by French and Holden (1971) is that the spectral estimates

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 83

obtained from this technique will reflect the shape of the spikes, which depends on the

recording geometry. Since the spectrum obtained contains components determined by the

recording conditions, any change in these conditions will be reflected in spectral estimates.

4.5 .3 T reatm ent as a point process

If the spike train is to be considered as a series of events, there are several ways in which

it may be analysed: in terms of the series of interspike intervals, in terms of a counting

process, in terms of the instantaneous frequency of the spikes or in terms of a series of

delta-functions at the spike occurrence times.

Sam pling a series o f interspike intervals

If the spike train is considered in terms of its interspike intervals R then the power spectrum

of the intervals may be defined by the following equation (French and Holden, 1971):

1 00
S (/) = 2 E < W /) (4-14)

j — — OO

where / is frequency and the autocorrelation of the intervals is defined by:

q = Edli - T][Ii+j - I}) (4.15)

where / is the mean of the series Equations for unbiased estimators of the power

spectrum of an interval process are given in Cox and Lewis (1966). The spectral estimate

given above is an estimate of the spectrum of intervals of the spike train, rather than

the spike train itself, and this spectrum, although perhaps of interest in its own right, is

not readily interpretable. Furthermore, since the series Ii is not a function of time but

of interval number, the spectrum obtained by the above equation is not a function of

frequency. This makes the spectral estimates resulting from this technique unsuitable for

investigating stochastic resonance.

CHAPTER 4. M EASUREMENTS FROM SPIKE TRAINS 84

Sam plin g a stoch astic p o in t process

If the spike train is treated as a stochastic point process, specified by events labelled by

the random value of a continuous parameter (time), then it may be characterised by the

cumulative number n(t) of events which have occurred up to time t. This is called a

counting process. This characterisation of a spike train by the cumulative distribution

function n(t) does not make any assumptions about the way the signal is coded in the

spike train. A spectral estimate of this counting process can be obtained using methods

described by French and Holden (1971). Thus to sample a spike train, one need only count

the number of spikes in an interval. The problem with this technique is that the counting

introduces both bias and aliasing. This occurs because the sample obtained by the counting

procedure uses the result of an integration (to obtain n(t)) and a finite difference operation.

Sam plin g in stan tan eou s frequencies

One method of regularly sampling a spike train is to generate a continuous signal rep­

resenting the (average) instantaneous “frequency” (more properly the reciprocal of the

interspike interval) of the spike train and to sample this waveform at a rate faster than

half the average spike rate (French and Holden, 1971). When the sample instant falls on

a discontinuity in the wave form, the sample value at this point may be taken as equal to

the average of the adjacent instantaneous frequencies. This process is illustrated in figure

4.2. This technique is open to criticism. The instantaneous frequency <&, is related to the

preceding interval Jj_i by $ = 1/I*_i. For a fairly regular spike train, where deviations

from the mean carrier frequency are small, deviations in intervals are simply related to

deviations in instantaneous frequency by:

A /| -.1 = (4.16)
I Q

where A = U-i - / , = q% - q and I and q are the means of the intervals and

the instantaneous frequencies respectively. However, for an irregular spike train with large

deviations in frequency about the mean, there is no simple relationship between deviations

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 85

Figure 4.2: An irregular spike train as shown at the top of the diagram may be converted

into an instantaneous frequency function (centre). The instantaneous frequency function

has discontinuities at each spike occurrence time but may be sampled regularly to give

equispaced amplitudes (lower) if mean values are assumed at the discontinuities.

about the mean in interval and instantaneous frequency, and so the spectral estimates

from the samples of instantaneous frequency are not simply related to a spectral estimate

obtained from other techniques.

Sam pling Dirac delta functions

If the spike train is considered as a series of Dirac delta functions occurring at times t{

(equation 4.1), the spectrum can simply be estimated by evaluating a series of sine and

cosine terms at the occurrence times U (French and Holden, 1971):

S (f) = [(^ cos^) 2 + (^ 5in^) 2] (4.17)

This is a simple calculation but it involves as many calculations as the original discrete

Fourier Transform, which makes it computationally expensive.

In this section we have reviewed some of the techniques that could be used to sample

spike trains and then derive spectral estimates. We saw that most of the methods fall short

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 86

of the requirements. We would like a method which preserves the input signal frequency as

much as possible because stochastic resonance requires us to look at the coherence of the

output to the input signal in the frequency space. In the next subsection we will introduce

another method of estimating the spectra of spike trains. This method is described in

chapter 9 of Koch and Segev (1999) and explained in the next subsection. It is this

method that will be used to obtain the results presented in chapter 6 of this thesis.

4.5 .4 Pow er spectrum of a spike train

The power spectrum is defined as the square of the modulus of the Fourier transform

(Priestley, 1982). Because the autocorrelation is real and symmetric (i.e. R Xx { t) =

R xx(—t)), its Fourier transform:

+ oo

& * (/)= I (4.18)
— oo

is also real and symmetric. This means an alternative way of computing the power spectrum

is to find the Fourier transform of the autocorrelation function. Sxx(f) is a positive function

of frequency which represents a measure of the frequency content of the spike train.

The autocorrelation function can be expressed as the inverse Fourier transform of the

power spectrum:
1 +°°

Rxx(t) = 2 / Sxx(f)e~2'rliTdf (4.19)
— OO

For a Poisson process spike train, the Fourier transform of RxX(r) yields Sxx(f) = f, and

thus all frequencies are equally represented.

E stim ation o f power spectrum

The starting point for power spectral density estimation is the so called Wiener-Kinchin

formula (Koch and Segev, 1999):

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 87

where :
rp

Xo{f) = [x0(t)e2nftidt, x0(t) = x (t) - r (4.21)
J o

which states that the power spectrum can be obtained directly as the modulus of the

Fourier-transformed series X 0 (/).

The action potential events are of the form x = {xi, ...,x n }, where Xi = x(t{), t{ =

i.At(i = l,...,iV) and T = N A t is the recording time. The value of Xi is either 0 (if

no action potential occurred in the interval U ± (1/2)A t) or 1 /A t (if an action potential

occurred in the interval t i± (1/2) At) which is the discrete approximation of the continuous

6—function. The continuous Fourier transform is approximated by the discrete Fourier

transform:

Xo(fj) = AtXoj, (4.22)

where

Xoj = E xme2' if^ , (4.23)
m= 1

where f j = Uj/2tt takes values at the discrete frequencies f j = j / N A t , j = —N /2 , ..., N/2

(for N even).

An estimator for power spectral density is given by the periodogram:

s (/ i) = ^ W . i = (4-24)

Without any form of averaging, this estimate will be very unreliable. A computationally

convenient averaging procedure is to subdivide the observation series into k contiguous

segments I = 1, compute the periodogram Si(fj) separately over each segment, and

then average :

s(fj) = \'bsiUi)- (4 -2 5)
K 1=1

The estimate of the power spectrum is further improved by multiplying each segment of

data with the Bartlett window function prior to Fourier-transforming (Priestley, 1982).

This minimises the boundary effects due to the finite size of the samples.

In this section we reviewed some of the techniques that are used to sample spike trains.

We noted the main problem in trying to sample spikes is their short duration relative to

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 88

their frequency of occurrence. In order for one to do spectral analysis on spike trains one

needs to form a continuous signal from the spike trains which one can then sample. We

also noted that forming this continuous signal from spike trains presents problems.

Having come up with a way of calculating the power spectrum of a spike train, in the

next section we use the calculated power spectra to compute the signal-to-noise ratio which

provides the most objective measure of stochastic resonance.

4.6 Signal-to-noise ratio

This measure has been designated as the measure for stochastic resonance (Barbi et al.,

2000). SNR is a good performance measure of stimulus encoding as a function of frequency

and it is also a measure of signal quality. If we assume a periodic signal s(t) with power

spectrum S (f) and Gaussian white noise £(t) with a power spectrum N(f) then the input

signal-to-noise ratio (SNR) is defined as:

SNR=iim < 4 - 2 6)

This definition works quite well when one is looking at the input SNR (where input SNR is

the SNR of the subthreshold periodic signal and the noise feeding into a neuron) in which

the signal and noise can clearly be distinguished. It is not so clear when we look at a

spike train because the spike train encodes both the noise and the signal. In this work, we

propose three ways of calculating SNR from the power spectrum of a spike train and we

report on the results from all three methods. The three methods assume that the power

spectrum has been computed using the method just described in the previous section. For

the rest of the thesis stochastic resonance results will be based on one of these methods

after evaluating their performance. For lack of better names these methods are just going

to be called method 1, method 2 and method 3.

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 89

4.6.1 M eth od 1

Method 1 is described as follows - given the power spectrum of the spike train S(f) , we

partition it into two parts (see figure 4.3). The first part is the signal band here called

(5 + iV), centred at signal frequency / , and the noise band N , centred at some frequency

n away from the signal frequency. These two bands have equal width 2r + 1 where r is an

integer representing the offset on either side of the frequency of interest. The signal band

is chosen in such a way that the band is centred on the frequency of the input signal. The

noise band is situated in a region which is far removed from the signal band. The rationale

for this is that we expect the signal energy to be concentrated within a region around

the signal frequency and due to leakage problems we have to consider a neighbourhood of

length r on either side of the signal frequency. As for the noise band, we put it away from

the signal frequency because we feel that the influence of the signal away from the signal

frequency is very minimal which means that most of the energy in this band will be mostly

due to noise. This method relies on the noise power being the same in both bands which

is a reasonable assumption given that we are using Gaussian white noise. Having defined

signal and noise power spectra, the SNR of a spike train can be computed as follows:

S N R , (I ± ^ J 1 (4.2,)

where : f+r
S T N = S (x) (4-28)

x=(f-r)

and:
n + r

N = £ S(x) (4.29)
x=n—r

4.6.2 M eth od 2

Method 2 defines the signal region in the same way as method 1. The difference is in the

definition of noise (figure 4.4). In this case, noise is defined as everything outside the signal

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 90

3500

3000

signal band
2500

j | 2000

1500

noise band

1000

500

00 10 20 30 40 50 60
Frequency in Hz

70 80 10090

Figure 4.3: Power spectrum of spike train: Method 1, the signal and noise bands have

equal lengths but they are widely separated from each other.

region. In this case we sum all the components within the signal band and divide by the

length of the band. We do the same for the noise, we sum all the components and divide

by the size of the noise band as shown in the equation below:

S N R 2 r + l / c - 2 r + l __________

E,Lo g(»)-E;r,-g(*)
/ e ~ 2 r + l

(4.30)

where f c is the cut off frequency. This method assumes that noise power is distributed

similarly over the whole spectrum. This assumption is not a good one if the spectrum

has some significant harmonics, in that case we cannot treat everything away from the

frequency of interest as noise.

4.6.3 M eth od 3

The third method is illustrated in figure 4.5. Here we consider the energy at the signal

frequency and ignore the issue of leakage and divide that by the average energy surrounding

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 91

signal band

noise band

Frequency in Hz

Figure 4.4: Power spectrum of spike train, Method 2: the signal and noise bands have

different lengths.

the signal frequency (but excluding the power spectrum at the signal frequency) as follows:

S(f)S N R =
Y l j = f - r S(»HEUh

2 r

' f + r (4.31)

The assumption in this method is that noise in the immediate area around the signal

frequency is the same. This is a much more reasonable assumption because we only make

assumptions about the distribution of noise near the frequency of interest.

4.6 .4 C om parison o f the m ethods

Looking at figure 4.6, we can see that method 3 gives higher values than both method

1 and method 2 because the graph for method 3 is consistently above that of method 1

and method 2. Methods 1 and 2 are almost indistinguishable. This may be due to the

fact that the signal component is similar and the noise averages out to the same in both

cases because we are using Gaussian white noise. Methods 1 and 2 are good in situations

where we are dealing with an input signal where there is one dominant frequency like a

pure tone and the noise has a flat spectrum. In this case we expect most of the signal

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 92

3500

signal band3000

2500

2000

1500

noise band

500

Frequency in Hz

Figure 4.5: Power spectrum of spike train, Method 3: the signal is just the power spectrum

at the signal frequency while the noise is just the background energy around the signal

frequency.

energy to be concentrated around the signal frequency. On the other hand method 3 is

better in situations where we are dealing with a broadband signal or a signal with several

harmonics. In this case we cannot afford to treat all the energy away from the signal

fundamental frequency as due to noise. For the rest of this thesis, SNR results will be

based on method 3 not only because it gives the highest SNR values, but mainly because

the power spectra of the spike trains have been seen to have a significant first harmonic

for some noise values (see figure 3.3) which is definitely not due to noise. We also choose

method 3 because we are stimulating the LIF neurons with single frequency signals as input.

The other reason for choosing method 3 is that it makes a more reasonable assumption

about the noise levels in the signal as compared to the other two methods. Specifically,

the assumption is that the noise level near the frequency of interest is the one we are

computing the SNR with. The other methods need to make assumptions about the noise

level far from the frequency of interest. The effect of the value of r in the computing of

the SNR for the three methods is shown in figure 4.7. Methods 1 and 3 seem to be less

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 93

Comparison of the 3 SNR methods

. input SNR
v method 1 SNR
* method 2 SNR
o method 3 SNR

o 30

7 zo

w 15

0 105 15
Noise amplitude

zo Z5 30

Figure 4.6: The result of using three different ways of computing SNR from spectral

estimates of spike trains for a model LIF neuron receiving subthreshold 20 Hz sinusoidal

signal plus Gaussian white noise.

sensitive to the value of r as compared to method 2. Method 2 is sensitive to the changes

in r. As r increases the SNR value for method 2 drops because the signal is being diluted

by the noise which is being averaged as part of the signal. This provides another reason

for not choosing method 2.

4.7 D iscussion

We have described the various neural codes and came to the conclusion that they are

distinguished by the averaging technique used (time averaging, trial averaging and popu­

lation averaging). Unfortunately these averages are not mutually exclusive. For example

we can repeatedly count the number of spikes in a given time window after presenting a

stimulus (time and trial averaging). Or we can count the number of spikes produced by

a population of neurons in a given time window (tune and population). We also noted

that the distinction between time and trial averaging is not clear. It seems from literature

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 94

x method 1
o method 2
v method 3

Z 25

r

Figure 4.7: The effect of the size of r in the computation of SNR using methods 1, 2 and

3. These values were computed at a noise amplitude of 10 relative to figure 4.6

that if we measure spikes with millisecond precision, the code could count as temporal.

On the other hand, if we use a window of length of tens of milliseconds, the code would

count as a rate (Sterratt, 2002). The problem with this is that the dividing line between

the two is not clear. For the purposes of quantifying stochastic resonance, we need a code

that responds to stimulus changes. A mere spike counting code with a long time window

is unable to do that but most of the other codes can.

Concerning the power spectrum, we noted that even though spectral analysis provides

a powerful technique for describing the lower order moments of a stochastic process, spike

trains present a major problem in the application of spectral analysis to them. The prob­

lem is that there is no easy way to obtain equi-spaced samples of spike trains which will

give unbiased and alias-free spectral estimates. The main problem is their short duration

relative to their frequency of occurrence. We discussed various techniques of sampling

spikes. For continuous signals, we can sample them to produce a regularly spaced series of

amplitudes, spikes at irregular times of occurrence, cannot be sampled in a similar manner.

We also discussed and evaluated three different methods of computing the SNR of

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 95

a spike train given its power spectra. The general formula (see equation 4.26) that we

used for computing SNR for each of the three methods was inspired by that used by

Chapeau-Blondeau et al. (1996). The main difference between our method and that of

Chapeau-Blondeau et al. is that their neuronal models received noisy spike trains denoted

by rj(t) and periodic spike trains denoted by s(t) as input to the neuron. The output

spike train was denoted by y(t). When it came to the calculation of the SNR they divided

the output spike train power at the signal frequency Syy(l /T s) by the input noise power

N (l / T s) at signal frequency. The weakness of this method is that it relies on one knowing

the input noise power. Unfortunately we can never be sure of the exact input that a

neuron is receiving during recording which means we can only observe the output without

really knowing what the input looks like. This calls for a method of computing SNR which

does not assume anything about the input noise. The method should just be based on

the output spike train. The three methods that we discussed in this chapter meet this

requirement.

The main differences between the three methods that we used is that they make different

assumptions about the distribution of the noise power and the definition of the signal power.

We preferred method 3 to the other two for the rest of the thesis because it compares the

signal power at the frequency of interest with the surrounding noise power. The other two

methods need to make assumptions about noise levels far from the frequency of interest.

4.8 Sum m ary

In this chapter we have described some of the measures which can be derived from a

spike train. We started with rates that are generally described as either temporal average,

average from several repetitions or population-based average depending on the averaging

technique used. We also described some statistics from the interspike intervals and the

distribution of the intervals. Using the interspike intervals we described statistics which

are due to static parts of the stimulus and those which are due to time-varying aspects of

the stimulus. We also described the autocorrelation function and how the power spectrum

CHAPTER 4. MEASUREMENTS FROM SPIKE TRAINS 96

can be derived from it. Using the power spectrum we described three different methods of

calculating the signal-to-noise ratio of a spike train.

Chapter 5

Simulation models

This chapter discusses the modelling work that was done. We start by introducing and

justifying the network model that we used to investigate stochastic resonance. In section

5.2 we describe the floating point model for implementing the network model described in

section 5.1. The derivation of the integer model from the floating point model is described

in section 5.3. We also introduce a model that is between floating point and integer

representation to narrow the gap between these two models in section 5.2. This new model

is a discretised floating point model. Because we are interested in investigating the effect on

stochastic resonance of precision limitation, we will also discuss implementation of both the

integer and floating point models of this network model in sections 5.4 and 5.5 respectively.

The FPGA hardware will be discussed as well. This chapter concludes with a comparison

(section 5.6) and discussion (section 5.7) of the models that we used to investigate the

effect of limited precision on stochastic resonance.

5.1 N etw ork m odel

In this section we discuss the general network model that we used to study stochastic

resonance in a network setup. We start by describing and justifying the network model

followed by a description of how our work relates to work by other researchers.

97

CHAPTER 5. SIMULATION MODELS 98

5.1.1 N etw ork architecture

To investigate stochastic resonance in a network environment the network structure in

figure 5.1 was adopted. All the neurons are identical except for the difference in input type

between the input neurons and the output neuron. The input neurons receive a common

sinusoidal subthreshold signal plus independent uncorrelated bandlimited Gaussian white

noise. The output neuron receives spike trains from the input neurons via synapses which

generate current from the spikes using an a synapse which is described further on in this

section. This network structure (figure 5.1) was inspired by the layout of multipolar stellate

N1

Spikes
N2

H \Subthrehold
periodic signal

Nm

Figure 5.1: Network of Leaky integrate-and-fire model neurons: the input neurons receive

a common subthreshold periodic sinusoidal signal and independent Gaussian white noise

streams Nm (Nm are the independent noise streams and m is the neuron number).

cells in the cochlear nucleus (Frisina et al., 1994). Each of these cells receives input from

several auditory nerve fibres that are tuned to a certain frequency (Pickles, 1988). These

neurons are said to amplify the amplitude modulation in the auditory nerve fibres (Rhode

and Greenberg, 1994).

The input layer neurons receive continuous inputs which are composed of a subthreshold

sinusoid signal and bandlimited Gaussian white noise. The input neurons are like sensory

neurons which receive transduced sensation (e.g. odour, light, sound, etc). For the input

neurons we can control the strength of the input noise and we know what is noise and what

CHAPTER 5. SIMULATION MODELS 99

is signal. By using continuous input we can easily control the frequency and amplitude of

the input signal. The input for the output neuron consists of spike trains from the input

layer. By just looking at the spikes which constitute the input for the output neuron we are

not able to tell which is signal and which is noise because the spikes encode both the noise

and the signal. Because we can control the input (noise amplitude, and signal frequency

and amplitude) for the input neurons, we can make sure that the signal is subthreshold in

the absence of noise, ensuring that the input neurons only spike with the aid of noise. This

means we can talk about stochastic resonance in the conventional sense as far as input

neurons are concerned. As for the output neuron, things are a bit different because we

cannot precisely tell how much signal or noise there is in the incoming spike trains which

means we can not make the signal component subthreshold for the output neurons. This

means the spike trains of the output neuron portray some kind of stochastic resonance plus

other things, one of which is coincidence detection.

5.1.2 M odel in detail

In the analysis presented in this thesis we consider an output neuron that receives spike-

based input from a set of N independent input neurons each of which is stimulated by I(t)

(see equation 5.1). Table 5.1 lists the symbols used in this chapter.

This model is an extension of that by Burkitt and Clark (1999) and Burkitt and Clark

(2000) and is similar to that of Shimokawa et al. (1999), Collins et al. (1995b), and Zalanyi

et al. (2001).

The model by Burkitt and Clark analyses the timing information contained in the re­

sponse of a neuron to noisy periodic synaptic input for the leaky integrate-and-fire neural

model. They address the question of the relationship between the timing of the synaptic

inputs and the output spikes. This requires an analysis of the interspike interval distribu­

tion of the output spikes, which is obtained in the Gaussian approximation. They found

that the synchronisation of the output spikes increases sharply as the inputs become syn­

chronised. This enhancement of synchronisation is most pronounced for large numbers

CHAPTER 5. SIMULATION MODELS 100

symbol meaning

uj angular frequency in radians

a noise amplitude

£ Gaussian white noise

Ofc synaptic strength for synapse k

tki spike time for the ith from neuron k

synaptic response function

Ts synaptic time constant

A ask axonal delay for fibre k

A t simulation time step

8t time step for piecewise continuity

Vfp floating point model membrane potential

Vfpd discretised floating point model membrane potential

Pint integer model membrane potential

7 discretisation step

r discretised floating point activation
r i +

nearest highest integer

Table 5.1: Table shows the list of the symbols used in this chapter.

of inputs and lower frequencies of modulation. This is significant because it is in these

lower frequencies that stochastic resonance has been established. A large number of input

neurons is also consistent with a weak coupling between input neurons and the output

neuron.

Shimokawa et al. analysed the transmission of sine-like periodic signals by an ensemble

of leaky integrate-and-fire model neurons in the presence of additive noise. They observed

that when the number of units in the ensemble is large enough, the process formed by

pooling the spike trains of all units is an inhomogeneous Poisson process. They showed that

CHAPTER 5. SIMULATION MODELS 101

firing precision in response to subthreshold stimulation is maximised at some intermediate

noise value, and argued that in this regime the ensemble can reliably transmit fast periodic

signals below the resolution of the individual units.

The model by Collins et al. considered a summing network of identical excitable units,

which were taken to be FitzHugh-Nagumo (FHN) model neurons. Each unit was subjected

to a common input signal and independent noise. They assumed that information was

transmitted by each unit via temporal changes in its firing rate. This assumption is valid

for many sensory neurons (Shepherd, 1988). The network was operated by summing the

mean firing rate signal from each unit to obtain a resultant mean firing rate signal for

the entire system. The measure for stochastic resonance in this work was the so called

normalised power norm which is a normalised cross-correlation between the input signal and

the output mean firing rate. The power norm measures the coherence between the input

signal and the network response. The results for a single-unit showed the characteristic

signature of SR-type behaviour: a rapid rise to a clear peak and then a slow decrease for

higher noise values. As the number of units was increased, the peak for the power norm

value increased. Thus, the stimulus-response coherence was enhanced. As the size of the

network was increased, the power norm asymptotically approached a plateau for a range

of noise amplitudes larger than the optimal noise value for a single unit. This plateau

indicates that for a large network, maximum fidelity is attained for a wide range of noise

amplitudes.

In their paper, Zalanyi et al. examined in an integrate-and-fire neuron network the

interaction between stochasticity and synaptic depression. They discovered that this kind

of synaptic plasticity mechanism increased the SNR in some parameter regimes. The

behaviour of the network without synaptic modification was characterised as an enhanced

performance, when compared to a single neuron model. Increasing the noise with weaker

synaptic coupling produced higher SNR on the output layer compared to the stronger

synaptic coupling case. They showed that synaptic depression has a beneficial role in

amplifying noisy signals, although the parameter regime they found was small.

The difference between our model and that of Burkitt and Clark is that in the case of

CHAPTER 5. SIMULATION MODELS 102

Burkitt and Clark, the input neurons’ spike trains are represented by simulated Poisson

processes with time-dependent rates whereas in our case each input neuron is actually an

LIF neuron model stimulated by continuous input. The model of Shimokawa et al. differs

from the one described here in that they did not use synapses onto the output neuron,

they pooled the spike trains of all the input neurons. The difference between our model

and that of Collins et al. is that we used an LIF neuron model with periodic input instead

of the FHN model with an aperiodic input. The other difference is that like Shimokawa

et al. (1999), Collins et al. (1995b) sum the output of the input neurons whereas we use a

synapse. They also use the power norm to measure stochastic resonance instead of SNR.

The similarities are in the architecture of the network and the fact that each input neuron

receives the same input signal and independent noise. The model of Zalanyi et al. is

the closest to our model except that they used a depressing synapse instead of a fixed

conductance o-function synapse used here.

Each of the input neurons in our model is similar to that described by Plesser and Geisel

(1999) and Barbi et al. (2000). The output of each of these neurons can be described as

a Poisson process with a time-dependent rate Ak{t) (Hohn, 2000; Shimokawa et al., 1999).

Each input neuron k represents an afferent fibre. The membrane potential for each neuron

model is reset to its initial value at time t = 0, V (0) = V0 after a spike has been generated.

A spike is produced only when the membrane voltage equals or exceeds the threshold, Vth,

which has a potential difference with the reset potential of 9 = Vth — Vo-

The potential at each of the neurons at any time t is given by the LIF model equation

from chapter 2, which we restate here:

£ - «■> - v- fat r

where for the input neurons I(t) = /o(l + bcos(cut)) + cr£(t) and £(t) is a Gaussian white

noise as given by Barbi et al. (2000) from independent and uncorrelated sources and a is

the noise amplitude. Iq and 6 are constants. At the output neuron

I{t) = Y , a kIk(t) (5.2)
fc=i

CHAPTER 5. SIMULATION MODELS 103

where
n

h{t) = '£lak(t - t k,) (5.3)
i = 1

where the index k = l,...,iV denotes the input neurons and the index i denotes the ith

input from a particular input neuron k, whose time of arrival is ^ .(0 < t kl < t k2 < ... < tkn)

and n is the number of active spikes from input neuron k. The amplitude of the inputs

from fibre k is ak, which is positive for excitatory postsynaptic potentials (EPSPs) and

negative for inhibitory postsynaptic potentials (IPSPs), and the time course of an input

at the site of spike generation is described by the synaptic response function ak(t) for the

leaky integrate-and-fire model.

The results presented here are for a network structure with a uniform synaptic response

function which is given by (5.4):

1 t ~ A as

&k{t) = ~ e Ts f°r t > 0, and 0 for t < 0. (5.4)
ts

where rs is the synaptic time constant for synapse k in the millisecond range and A ax is the

axonal transmission delay for synapse k. Since A ax is the same for all the neurons we can

ignore it because it will just shift the output signal back in time by the same amount for all

the neurons. The membrane potential rises upon the arrival of an EPSP and then decays

exponentially between inputs. The decay of the EPSP across the membrane means that

the contributions from EPSPs that arrive earlier have partially decayed by the time that

later EPSPs arrive. Synaptic response functions with an arbitrary time course may also

be analysed, which may allow a more accurate model of the time course of the incoming

EPSP. The above synaptic response function is the same for all inputs, but the model

allows response functions with different time courses for different input fibres by adding

the index k to the synaptic time constant rsk and the synaptic delay A kas. This enables,

for example, the effect of propagation of the PSPs along the dendritic tree to be modelled

for inputs with synapses at different distances from the site at which the neuron generates

an action potential (typically the axon hillock).

However, for simplicity we consider here the situation where the postsynaptic potentials

from the inputs are all excitatory and equal in amplitude, i.e. ak = a > 0, and time course,

CHAPTER 5. SIMULATION MODELS 104

o>k(t) is the same for all the input neurons. The amplitudes or synaptic weights a were

determined by looking at synaptic weights which maximise SNR. Consequently we drop

the index k on the amplitude ak and the synaptic response function ak(t) in the rest of

the discussion, since all input fibre characteristics are identical. The simplified equations

for the synaptic current I(t) for the output neuron are as follows:

N m
I(t) = a /*(£), Ik{t) = Y , a (t ~ tki) (5.5)

fc=i *=i

The synaptic weight a was determined as follows. The network was run with one neuron

and the maximum SNR value, SNRmax was determined from the SNR versus noise plot.

The noise strength amax which resulted in SNRmax was also noted. The network was

then run with one input and one output neuron keeping the noise value at amax ̂ the value

that gave us the maximum SNR value for the single neuron case. The synaptic weight

was changed until the SNR value for the output neuron equalled the maximum value for

the single neuron case. The resulting synaptic weight W (which equalises the SNR at the

output with SNRmax) was then divided by the number of coincident spikes needed to make

the output neuron fire a single spike with a weight of 1. That is, the synaptic weight a

for all the synapses is given by: a = The rationale behind this synaptic weight was to

ensure that the coupling between the input neurons and the output neuron is weak, that

is, a single spike from an input neuron in a multiple neuron network does not cause a spike

on the output neuron. Coupling is said to be strong if each spike from the input neurons

causes a spike on the output neuron. According to the results reported by Zalanyi et al.

(2001) stochastic resonance was stronger for weaker coupling between input neurons and

the output neuron than for stronger coupling.

The network model depicted in figure 5.1 can be used to investigate stochastic resonance

at the input neurons and at the output neurons. One of the amis is to see how many input

layer neurons are needed before we see an improvement of the SNR at the output neuron

over the input neurons. This means we can use this network to investigate both stochastic

resonance in a single neuron and in a network. Networks of a similar nature have been

investigated by other researchers for a variety of reasons which include synchronisation,

CHAPTER 5. SIMULATION MODELS 105

coincidence detection and stochastic resonance. We discuss here some of that work.

5.1.3 R elated work

Burkitt and Clark (2000) analysed an integrate-and-fire model with periodic input, using

a deterministic differential equation without any noise. They found that there were three

regions in parameter space (frequency of synaptic inputs, average rate of inputs, synchro­

nisation of inputs, and the time constant of the membrane decay) with distinctly different

behaviours: a phase locking region, a region with an apparently non-periodic behaviour,

and a region where firing eventually dies out. Work on the effect of a periodically varying

rate of input to noisy integrate-and-fire neurons has focused largely upon stochastic coun­

terparts to this approach, using numerical solutions, such as in the study of the temporal

acuity and localisation in the Barn owl auditory system (Gerstner et al., 1997) and (Maass

and Bishop, 1999).

Much of the recent work on the response of neural systems to noisy periodic synaptic

inputs has been motivated by an interest in the applicability of stochastic resonance to

these systems.

A further impetus to the study of periodic synaptic input has been the observation

of synchronised periodical activity of neurons in various brain areas, such as oscillations

observed in the visual cortex (Gray and Singer, 1989). This has led to the hypothesis

that synchronised activity of neurons may play a role in brain functioning, such as pattern

segmentation and feature binding (von der Malsburg and Schneider, 1986). It has also

been proposed that the information contained in a spike sequence could be coded using

the relationship between spike times and the oscillation of the periodic background signal.

Synchronised or coherent oscillatory activity of a population of neurons is thought to be a

vital feature of temporal coding in the brain (Gerstner and Kistler, 2002).

In a recent paper by Kempter et al. (1998), the response of an integrate-and-fire neuron

to noisy periodic spike trains is studied and a thorough analysis of the relationship between

the input and output rates is carried out. Their results show how the output rates increase

CHAPTER 5. SIMULATION MODELS 106

with both the input rate and synchrony, and how it depends upon the neural parameters,

such as threshold, the number of synapses and the time course of the postsynaptic response

to the inputs. They are also able to identify the conditions under which a neuron can act

as a coincidence detector and thus convert a temporal code into a rate code. They identify

two parameters, namely the coherence gain (which provides a measure of the mean output

firing rate for synchronised versus random input) and the quality factor for coincidence

detection (which provides a measure of the difference in the neural response to random

and synchronised inputs), which largely characterise the performance of the coincidence

detector, and they plot these qualities for representative values of the neural parameters

over the range of input vector strengths. However, since their analysis concerns only the

output rate, they are not able to predict quantities that depend upon the details of the

timing of individual output spikes.

Kempter et al. (1998) also noted that another prominent example where coherent or

phased-locked activity of neurons is known to be important is the early auditory processing

in mammals, reptiles and birds. Spikes are found to be phase-locked to external acoustic

stimuli with frequencies up to 8 kHz in the Barn owl. In the Barn owl and various other

animals, the relative timing of spikes is used to transmit information about the azimuthal

position of sound source. In doing this task, the degree of synchrony of two groups of

neurons is read out and transformed into a firing rate pattern, which can then be used for

further processes and to control motor actions. The essential step of translating a temporal

code into a rate code is performed by neurons that work as coincidence detectors.

In the same paper Kempter et al. (1998), focus on the question of whether the task

of transforming a spike code into a rate code can be done by a single neuron. The issue

of how neurons read out a temporal structure of the input and how they transform this

structure into a firing rate pattern has been addressed by several authors and is attracting

an increasing amount of interest. Konig et al. (1996) have argued that the main prerequisite

for coincidence detection is that the mean ISI is long compared with the integration time

that neurons need to sum synaptic potentials effectively. The importance of the effective

membrane time constant of neurons has also been emphasised by Softky (1994).

CHAPTER 5. SIMULATION MODELS 107

5.1.4 C om parison of our m odel w ith previous work

Our interest in this network model is slightly different from the focus of previous work.

In general we are interested in investigating stochastic resonance in a network of parallel

identical LIF model neurons synapsing onto an identical LIF neuron model. This network

architecture is general enough to apply to many areas of the brain. The homogeneity is a

simplification for modelling purposes and we in no way suppose that it has any correlates

in real brain cells. The network architecture allows one to look at stochastic resonance

based on both spike-based stimulation (representing stochastic resonance in neurons in the

higher areas of the brain) and continuous stimulation (representing stochastic resonance

in sensory neurons). We are also able to look at how stochastic resonance at the output

neuron is affected by the number of input neurons. All these aspects are investigated on

two platforms: integer (digital) and floating point and the results of these two platforms

are compared. The issue of synchronisation is investigated by looking at the changes in

the height of the leading peaks of ISIHs as the noise amplitude is changed. To investigate

all these issues we set up the network model in figure 5.1 in Java (floating point) and

Handel-C (integer). As for Java we do computations at two resolutions: 32 bits (float type

in Java) and 64 bits (double type in Java). On the integer platform we do computations

from resolutions of 32 bits downwards. We will discuss each of the models in turn in the

next section.

In this section we introduced the network model that is at the core of this thesis. We

noted that a network of a similar structure has been looked at by a number of researchers

previously, with a variety of interests which includes the degree of synchrony in the synaptic

input to a neuron, coincidence detection and stochastic resonance. In the next sections

we are going to discuss how this network model was implemented using floating point

representation. We will also introduce an integer model which will be implemented on an

FPGA. The floating point model would take up too much chip area if implemented on

FPGA and would not result in real-time performance either. The integer model will allow

us to build larger networks with possibilities of real-time performance on the FPGA. FPGA

CHAPTER 5. SIMULATION MODELS 108

chips are used because they are cheaply available off-the-shelf compared with ASICs.

5.2 F loating point m odel

To simulate a network of LIF neurons directly, differential equations coupled by current

pulses must be integrated numerically. Important things to consider when integrating dif­

ferential equations numerically are which numerical method to use and how large the time

step can be before the accuracy of the integration becomes unacceptable. In this section

we start by discussing the floating point model in general followed by a sub-model that

is derived to narrow the gap between floating point representation and integer representa­

tion. The section concludes by discussing the implementation of the floating point model

in Java.

The floating point model implements an Euler approximation of the LIF neural model

given by the following equation 5.1 repeated here:

? = m - £ (5 .6)
Cvt T

where the parameters are as defined before. The Euler approximation of the equation is

given by:

V(t + At) = V (t) (l - ^ -) + A t x I (t) (5.7)

The simple Euler method was used because it results in a simple model which does not take

up too much chip area when implemented on the FPGA. Remembering that I(t) is a sum

of a stochastic component £(t) and a sinusoidal component Iq(1 m cos(ujt)) , for the input

neuron we need to check if an Euler approximation was the right choice of approximation

method. Given that £(t) N(0,1) he. Gaussian white noise ordinarily we would not be

able to numerically solve equation 5.6 using an Euler approximation.

We are justified in using an Euler approximation because f(t) is bandlimited. This

means that £(t) reduces to a step function, i.e. the random function

Uep(t) = m for f e M + i) (i e W) (5.8)

CHAPTER 5. SIMULATION MODELS 109

is piecewise continuous if U+i — ti = St > 0 . Thus as long as the numerical integration

step-size At > St, numerical integration will work.

The noise is bandlimited because we are only interested in noise frequencies which are

not more than the signal frequencies we are interested in. The highest frequency that we

deal with is limited by the value of the absolute refractory period t ref because the neurons

cannot fire faster than the reciprocal of t ref. For non-bandpassed noise one will have

to use computationally intensive techniques for numerically solving stochastic differential

equations like the one described by Mannela and Palleschi (1989).

Next we introduce a discretised version of the floating point model that we have just

described.

5.2.1 D iscretised floating point m odel

The distance between a floating point model and an integer model is too big for the results

to be compared directly. In order to narrow the gap between the two models and also

to facilitate our own understanding of what the integer model was doing we decided on

a model which is somewhere between floating point and integer models. We decided that

the most important part of an LIF model’s subthreshold dynamics is the evolution of the

membrane potential, rather than the reset. We decided to discretise the evolution of the

membrane potential of the floating point model by forcing it to evolve in discrete steps.

If we define Vfp to be the membrane potential for the floating point model and Vfpd to

be the membrane potential for the discretised floating point model and Vint to be membrane

potential value for the integer model, then

Vfpe[V0,Vth} (5.9)

and:
VM ([0,2N - l } (5.10)

where Vo is the reset voltage, Vth Is the threshold voltage and N is the resolution of the

integer model We then define 'y to be the discretisation step of the membrane potential

CHAPTER 5. SIMULATION MODELS 110

for the floating point model Vfp can take scaled by the number of discrete points 2N.

_ Vth - V0
'y 2n (5-ii)

where 7 is the discretisation step.

Let r be the value by which the discretised membrane potential changes, then the

activation is discretised as follows:
+

(5.12)r = '■leak + h
7

Then the discretised membrane potential VfPd takes the following values:

k/pde[Vo, Vq + I 7 , Vo + 2 7 , Vo + 3 7 ,..., Vo + 2 ^ 7] (5.13)

+
denotes the nearest highest integer. The evolution equation for the membrane po-

ential then becomes

Vt+i = Vt + r j (5.14)

where r7 < f (h eak + hn) < {r + 1)7 -

In this section, we introduced the floating point model which will be implemented to

realise the network given in figure 5.1. We also justified why we decided to use an Euler

approximation for numerically solving the noisy LIF neuron model equation. The section

concludes with the description of a discretised model version of the floating point model

which is intended to narrow the gap between the full floating point model and the integer

model. In the next section we introduce the integer model which will be implemented on

a digital hardware platform.

5.3 Integer m odel

In this section we introduce the integer model which is a transformation of the Euler

approximation of the floating point model. This was necessary because we want to use

FPGAs, and with floating point representation and computation, the circuitry would be

much too large when implemented on the FPGA.

CHAPTER 5. SIMULATION MODELS 111

5.3.1 M odel transform ation

The integer model is derived from the Euler approximation of the floating point model.

The floating point model is made suitable for implementation in Handel-C on the FPGA

by transforming it into an integer model as follows: (i) making all values integers and

(ii) converting floating point operations like division and multiplication into division and

multiplication by powers of 2 using bit-shifting. ^ is expressed as 2l (we call Z, an integer,

the leakage factor of the FPGA implementation) and A t (in the last term A t x I (t) of

equation 5.7) is expressed as 2*, where i is an integer as well. This is because integers

take less space to represent and full integer division is expensive to implement (both in

number of gates and speed) whereas bit-shifting is quite fast. In this work a full integer

division resulted in the LIF neuron requiring 87,236 gates compared to 10,718 gates when

bit shifting is implemented. For a neuron with membrane time constant r = 10-ns and

time step A t = 10_fcs we have the following linear approximation:

V(t + At) = V(i)(l - —) + At X I(t)
T

i v 1 f) ~ k
= V"(t)(l - ;— rz—) + 1 x 10-fe x I(t)v A 1 x 1 0 - n ' v '

” ^)(1- 1 (l x 2 - ?) + 1X2~3tXj(t)
. . . 1 . I(t)

= vm - r ^ s ^ y) + -U
(5.15)

In integer form the above equation becomes becomes:

V(t + 1) « V{t) - (V(t) » (3(k - n))) + (I(t) » (3k)) (5.16)

where > > denotes bit-shifting to the right which is division in powers of 2. Equation 5.16

is the integer model which was implemented on the FPGA using the language Handel-C.

In this section we have described some of the models which were used in investigating

stochastic resonance on an integer platform. We showed how the integer model was derived

from the floating point model which would later on allow us to compare the results from

both models. In the next sections we will describe how these models were implemented.

CHAPTER 5. SIMULATION MODELS 112

5.4 Im plem entation of the floating point m odel

In this section we discuss how the floating point model was implemented. We begin by

describing the implementation of the floating point model in Java. The floating point

model is implemented in two forms: a 32 bit implementation using the float type in Java

and a 64 bit implementation using the 64 bit double type in Java. This was done so as to

have a balanced comparison between the 32 bit floating point implementation and 32 bit

integer implementation.

5.4.1 F loating point im plem entation: Java classes

The network model depicted in figure 5.1 was set up in Java using three classes which are

shown in figure 5.2 in UML-like format. Each neuron is an object and each synapse is an

object. The network itself is an object which consists of many neuron objects connected by

synapse objects. There are two types of neuron objects which are an input neuron object,

and an output neuron object. These two objects are similar and they are distinguished

by the type of input that they receive. As we saw earlier in the chapter, input neurons

receive continuous stimulation while the output neuron is stimulated by spike trains from

the input neurons. We used Java because we needed a network of homogeneous neurons

and synapses. It was much easier to use Java classes and then put the network together

as a composite object. The use of Java also ensured that the network size can be changed

easily by adding or deleting objects as it becomes appropriate. This allows us to investigate

the network dynamics as the number of input neurons is changed. Next we give a brief

description of each class and its functions.

N etw ork class

There is only one object of type network. Its job is to set up the network once it is

given the number of neurons that make up the network. The network object is the one

that creates the neuron and synapse objects. It receives the number of neurons and the

initial randomisation seed as parameters and it assigns one neuron object as the output

CHAPTER 5. SIMULATION MODELS 113

0 ..*

Neuron

Network

Synapse

Temp

JavaClasses

Synapse

Neuron

+Network

+Temp

Figure 5.2: Class diagram

object and the rest as input neuron objects and assigns each one of them a randomisation

seed and also links each neuron object to a synapse object which is in turn linked to the

output neuron object. It then sets up the network and generates the sinusoidal signal. The

network object collects results from all the objects and writes them into appropriate files

for further processing in Matlab.

N euron class

The neuron class is the one which implements the LIF neuron model given by equation

5.7. There are two types of neuron objects: an input neuron and an output neuron. The

two neuron objects are instances of the same Neuron class, they are differentiated by a

flag. Each input neuron object computes its own noise from the seed that it gets from

the network object. The noise and the sinusoidal current from the network object serve

as the input to each input neuron object. The output spikes of each input neuron object

pass through a synapse which converts them to a current which is then integrated by the

CHAPTER 5. SIMULATION MODELS 114

output neuron object.

Synapse class

Each input neuron object is linked to the output neuron object via an a synapse object

which converts the output spikes of the input neuron object that it is connected to into a

current which is the input to the output object. The synapse object turns these spikes into

a current using an a function. Each synapse object keeps a vector of active spikes which

contribute current according to the a function. Each spike has a life span of 1 0 0 ms in an

active spike vector after which it is removed from the vector of active spikes.

Tem p class

The class Temp is just an auxiliary class for implementing static variables during the

generation of the noise. Each neuron object is linked to a Temp object.

5.4.2 F loating-poin t num ber representation in Java

Real numbers in Java are represented with float and double data types. Float is 32-bit,

single precision floating point value, and double is a 64-bit, double precision floating point

value (Flanagan, 2002). Both types adhere to the IEEE 754-1985 standard, which specifies

both the format of the numbers and the behaviour of arithmetic for the numbers. The

default floating point type in Java is double. To include a float value literally in a program,

one has to follow the number by the character f or F:

double d = 9.07E12;
float f = 9.07E12f;

Most real numbers, by their very nature, cannot be represented exactly in any finite number

of bits. Thus, it is important to stress that float and double values are only approximations

of the numbers they are meant to represent. A float is a 32-bit approximation, which results

in at least 6 significant decimal digits, and a double is a 64-bit approximation, which results

CHAPTER 5. SIMULATION MODELS 115

in at least 15 significant digits. In practice, these data types are suitable for most real-

number computations and we assume that our neural modelling work is no exception.

5.4.3 F loating point Java m odels

We implemented two floating point Java models, one with float and one with double. The

double data type is the default type so we first implemented the network using the double

type which means the resolution was 64 bits. We then converted this network to a 32 bit

float type by type casting. The 32-bit floating point Java model is just a conversion of

the 64-bit floating point Java implementation by making sure that all values are cast to

float values because without casting the values would revert to being double. The 32-bit

floating type network is the best candidate to compare with 32-bit integer resolution on

the hardware platform.

The Java implementation of the floating point model was discussed in this section.

Because of there being two main floating point type in Java with different resolutions we

implemented two floating point models one for the double data type and the other for the

float data type. In the next section we discuss the implementation of the integer model.

5.5 Integer m odel im plem entation

In this section we discuss the implementation of the integer model. The hardware on which

the integer model was implemented will also be described including the implementation

itself. The integer model was implemented in Handel-C which runs on an FPGA that

sits on an RC1000-PP board. In this section we will discuss the board layout, the FPGA

used and the implementation of the network model in the Handel-C language. Handel-C

allows us to define integers of different lengths which allowed us to do computations at

different resolutions. An FPGA was chosen because it is a good prototyping platform

for ASIC designs because of its reprogrammability and reconfigurability. An FPGA also

offers shorter system development time, and also design flexibility and it is a standard

CHAPTER 5. SIMULATION MODELS 116

off-the-shelf product nowadays.

5.5.1 R C 1000-P P board

This board provides very high performance real-time integer processing capability and is

designed to be fully supported by the Handel-C language tools. These tools enable a soft­

ware engineer to directly target the FPGA in a similar fashion to classical microprocessor

cross-compiler development tools, without recourse to a Hardware Description Language

(HDL). This allows the software or hardware engineer to realise simply the raw processing

capability of the FPGA. The board has the following main features:

• PCI bus to host for the embedded system;

• Advanced high-capability FPGA;

• 8 Mbytes of SRAM for dynamic data storage accessible to host and FPGA; and

• 2 x P MC daughter-board sites and a 50 pin unassigned header for I/O.

Secondary

Host

P rim ary PCI

Clocks &
Control

PMC#2

PLX PC I9080
PCI Bridge

PMC#1

FPGA

Xillnx
BG560
Virtex V1000

Isolation Isolation

SRAM BANK
512K x 32

SRAM BANK
512K x 32

SRAM BANK
512K x 32

SRAM BANK
512K x 32

Figure 5.3: The RC1000-PP board layout

CHAPTER 5. SIMULATION MODELS 117

D escription o f th e board

The RC1000-PP hardware platform is a standard PCI bus card equipped with a Xilinx

Virtex FPGA XCV1000 BG650 part with up to 1,000,000 system gates (see figure 5.3).

It has 8 Mbytes of SRAM directly connected to the FPGA in four 32 bit wide memory

banks. The memory is visible to the host CPU across the PCI bus as if it were normal

memory. Each of the 4 banks may be granted to either the host CPU or the FPGA at any

one time. Data can therefore be shared between the host CPU and the FPGA by placing

it in SRAM on the board. It is then accessible to the FPGA directly and to the host CPU

either by DMA transfers across the PCI bus or simply as a virtual address.

The board is equipped with two industry standard PMC connectors for directly connect­

ing other processors and I/O devices to the FPGA. A PCI-PCI bridge chip also connects

these interfaces to the host PCI bus, thereby protecting the available bandwidth from the

PMC to the FPGA from host PCI bus traffic. A 50 pin unassigned header is provided

for either inter-board communication, allowing multiple RClOOO-PPs to be connected in

parallel or for connecting custom interfaces.

The software support provides Linux (Intel), Windows98 and NT4.0+ drivers for the

board, together with application examples written in Handel-C, or the board may be

programmed using Xilinx Alliance Series and Foundation Series software tools and the

EDA tool.

The RC1000-PP board comes with software to support communication between the host

(host support software) and the FPGA (Handel-C support software). The host support

software enables one to identify the card, configure the FPGA, communicate with the

FPGA, initialise the hardware and software, set the clock, do data transfer and clean

up the board. The Handel-C support software enables one to write FPGA programs in

Handel-C and communicate with the host. Next we discuss some of these processes and

how they are realised.

CHAPTER 5. SIMULATION MODELS 118

Identify ing an R C 1000-PP card

Each RC1000-PP card has two means of identification. Firstly, the serial number which

is factory programmed into the card and is guaranteed to be unique across all the cards

produced. Secondly, a card ID is programmed into the card. This card ID can be set by

the user with the setid utility and is the preferred means of identifying a card. The host

support software uses the card ID to identify a card when creating a handle for it. It also

provides a function for querying which cards are in the system.

In itia lising th e hardware and software

The first step for any program is to initialise the RC1000-PP hardware and support soft­

ware. This is done by calling the PP10000penCard() function specifying the the card’s ID.

This function will return a handle which must be used to identify the RC1000-PP board

in future calls to the support software.

Settin g th e program m able clock

The RC1000-PP has two programmable clocks as two of the clock sources for the FPGA

(the others being a fixed bus clock and a clock input connector). The RC1000-PP support

software provides a function to set the programmable clock period for the FPGA designs

that use the clock. This rate must be set before configuring the FPGA to ensure that the

design is not over-clocked when it first starts.

Configuring th e FPG A

The host support software provides a set of functions to configure the FPGA on an RC1000-

PP board. There are three ways of configuring from FPGA image files:

• Configuring directly from a file

— This method requires only a single function call but must re-load the configura­

tion file from disk each time the FPGA is configured. Configuring directly from

CHAPTER 5. SIMULATION MODELS 119

a file is done using the PPlOOOConfigureFromFileQ function.

• Loading an FPGA image file into memory ready for configuring later

— This method allows the configuration file to be loaded once and used many times.

PPlOOOLoadFileQ is the function for loading the image file into memory and

PPlOOOConfigureFPGAQ is the function for actually doing the configuration

later.

• Including a static array containing configuration information in the host code ready

for configuration later

— This method removes the need for separate configuration files and allows the

configuration to be linked in with the host executable. The image file can be

registered with support software using the PP1000RegisterImage() function and

the P P 1 0 0 0 ConfigureFPGA() function can be used to do the actual configura­

tion whenever it needs to be done.

The first option is the simplest, but requires re-reading the configuration file every time

the FPGA is configured which can be a significant overhead when frequently re-configuring

the FPGA. The second option overcomes this limitation while the third option allows fast

configuration without the need for multiple files. The third option means that a single

executable can be used which contains the host program and the FPGA configuration

information. The RC1 0 0 0 -PP support software package contains a utility called gencfg to

generate static arrays from FPGA configuration files to help with the third option above.

C om m unicating w ith the FPG A

There are three methods of communicating with the FPGA.

• Single bit signalling using 2 pins on the FPGA

— This method can be used to signal a state to the FPGA or to the host.

CHAPTER 5. SIMULATION MODELS 120

• Single byte data transfer using control/status ports on the RC1000-PP board.

— This method can be used to send short control messages to the FPGA or short

status messages from the FPGA. The RC1000-PP has a single byte wide port

in either direction between the host and the FPGA. This port can be used to

send short messages as control messages or status bytes between the two parties

• Bulk data transfer using the DMA controller and the banks of SRAM

— This is the recommended method for large data transfer. The RC1000-PP has

up to 4 banks of SRAM fitted. Each bank can be granted to either the host or

the FPGA (but not to both) at any one time. When a memory bank is granted

to the host, the DMA controller can transfer data between host memory and

the SRAM memory bank. When a memory bank is granted to the FPGA, it

can access the data in memory to read source data from the host or fill in return

data to the host. One of the two methods of communication discussed above

can be used to synchronise the swapping of the ownership of a memory bank.

The transfer can be either a contiguous block of memory (ID transfer) or a

series of short transfers with gaps in between (2D transfer). The 2D transfer is

intended for transferring image data.

5.5.2 F P G A m im icked in Java

Despite the availability of a simulation tool in the DK1 development environment we still

went ahead and simulated part of the FPGA model in Java as a way of testing the FPGA

code. The simulator was found to be in adequate because it does not allow one to read-in

external values. This means that signals had to be generated on the FPGA which we

could do for the sinusoid but could not be easily done for the noise. Noise would require a

separate generator and the noise would have to be read-in from outside which the Handel-

C simulator cannot do. The mimicked model is just an implementation of the integer

model in Java. Instead of bit-shifting we used integer division by powers of 2 in Java.

CHAPTER 5. SIMULATION MODELS 121

This implementation was done to make sure we understood and knew what the FPGA was

doing. We could not simulate the whole model including different integer lengths. We just

implemented the 16 bit integer type (one of the basic data types in Java) and compared

the results with 16 bit integer resolution on the FPGA. The result of the comparison is

discussed in the model comparison section, section 5 .6 .

5.5.3 H andel-C im plem entation

The integer model was first simulated in Java as described above so as to have something

to compare the FPGA results with. The model was then implemented in Handel-C. The

Handel-C design flow can be illustrated as in figure 5.4. In the design flow, the compiler

is involved in the simulate and synthesis steps. Place and route is done by the FPGA

manufacturer’s tools, in our case Xilinx’s Foundation Series 3.2i. The code was thoroughly

tested until it produced the desired results. The compiled code was then passed through

the synthesis tools to produce a netlist file. The netlist file (defined in section 2 .6) was then

passed through the Xilinx Foundation Series 3.2i Place and Route tool to produce a bitmap

file which is then used to configure the FPGA. Because the whole aim of this thesis was to

No

Ok? Place and route

Netlist Bitstream

Figure 5.4: Handel-C design flow

compare':the' results' between an integer platform and a floating point platform, the integer

implementation1 Had̂ fo’meet two constraints. Firstly it had to be as close as possible to the

ffoatin'g:poirit' implementation so as to have reasonable grounds for comparison. Secondly,

CHAPTER 5. SIMULATION MODELS 122

this proximity had to be met using a language which is quite far from Java. These two

requirements were met by deriving the integer model from the floating point model using

the approximation described in section 5 .3 .

The integer model was implemented in Handel-C running under Celoxica Ltd’s DK1

design suite. DK1 is a development environment which comes with a Handel-C version 3 .0

compiler, synthesiser, debugger and a hardware simulator.

Each neuron was implemented as a structure and each synapse was also implemented

as a structure. Just like in the Java model all the neurons are identical apart from the

type of input they receive. The network is also set up by specifying the number of neurons

in the network and then one of them is designated as the output neuron while the rest are

made input neurons. Each input neuron is connected to the output neuron via a synapse

which implements an a function using a lookup table. The values for the lookup table are

taken from the Java model and they are quantised and stored in the lookup table.

The program is parameterised and the parameters are passed via SRAM. The input

neurons read the input signals from SRAM where they are put by the host program which

loads the FPGA image file. The subthreshold sinusoidal signal and the Gaussian white

noise are generated and quantised in Java and stored in files.

The initial idea was to implement the neurons in parallel. However we had to abandon

parallel implementation of the synapse model due to technical problems with the FPGA

synthesis software. The problem was that the synthesiser in the DK1 development envi­

ronment allocated a huge number of gates initially and then spent a lot of time trying to

optimise that. The huge number of gates just used up all available virtual memory, causing

the system to thrash, thereby taking more than 72 hours to compile a network of 7 neurons.

This problem severely limited the size of the network that we could implement. As far as

we know there is no other synthesis tool for Handel-C apart from the one which Celoxica

provides as part of their DK1 development environment. Because we could not implement

parallelism we had to abandon the issues to do with timing and real-time processing for

the network.
A CH—b program is used to load the input signals (noise and subthreshold sinusoidal)

CHAPTER 5. SIMULATION MODELS 123

into SRAM using the DMA facility. The data transfer is done using DMA between the

host PC and the SRAM on the RC1000-PP board. The same C ++ program configures the

FPGA and loads parameters like network size and and membrane time constant. The same

C ++ program reads results from SRAM into files for further processing. The sequence of

events for configuring the FPGA using the C++ are as follows:

1 . Read the noise and signal into host machine RAM.

2 . Load look-up table into host machine RAM

3. Load network parameters into host RAM

4. Install error handler

5. Open the card in the system

6 . Request the memory banks

7. Set up DMA channel

8 . Do DMA to card

9. Free the DMA channel

1 0 . Configure FPGA from a file

1 1 . Do computation

1 2 . Signal host that FPGA is done

13. Set up read from card

14. Do DMA from card

15. Free the DMA channel

16. Write results into files

This process was repeated for different noise streams and the results stored in files were

retrieved and processed in Matlab to get ISIs, power spectra and SNR values.

CHAPTER 5. SIMULATION MODELS 124

Signal and threshold quantisation

The floating point model can take inputs directly in floating point. However the integer

model requires integer inputs which means the signals for the floating point model had to

be quantised. The floating point subthreshold sinusoidal signal and the Gaussian white

Floating point signal Q uan tised signal
400

350

300

250Q.
I 200

150
0.5

1000 20 40 60
Time In sec o n d s

60 100 40 60
Tim e In sec o n d s

80 100

10000

ts 6000a) 0,08

5 0.06 8 4000

O- 0.04

10 20 30 40
Frequency In Hz

10 20 30 40
Frequency In Hz

Figure 5.5: 20 Hz input subthreshold signal and power spectra plots. Top row left to right:

Floating point input signal and integer input signal. Bottom row: Power spectra of floating

point signal (left) and integer signal (right). The quantised signal preserves the frequency

spectrum of the signal.

noise used in the Java model are quantised by multiplying them by 2 n (where n is the

resolution or the length of the integer). The same is done to the threshold. Quantisation is

a non-linear process which means we cannot be sure that we are giving equivalent signals

to both models. Since we are investigating stochastic resonance, the most important thing

to check is that the frequency spectrum of the signal is preserved to a satisfactory degree.

To check that the floating point signal and the quantised integer model signal still compare

we go into the frequency domain by way of a Fourier Transform. Both the integer and the

CHAPTER 5. SIMULATION MODELS 125

floating point signals are Fourier transformed. Figure 5 .5 shows that the integer model

preserves the frequency spectrum of the floating point signal.

The implementation of the integer model in Java and on the FPGA was discussed. It

was mentioned that the Java implementation of the integer model was just a testing tool

for the hardware model due to lack of verification tools in the development environment

used. The limited precision aspect of the hardware model was made possible because

in Handel-C we can declare integer variables of different widths. In the next section we

compare the floating point and integer models.

5.6 Com parison of the models

In this section we will compare all the models that we used. We will start by comparing

the two floating point models, i.e. the 32-bit floating point and the 64-bit floating point.

The floating point model is compared with the discretised floating point model. The

performance of the Euler approximation is compared with the analytical decay to test the

suitability of the Euler method. We will also compare the simulated integer model in Java

and the one implemented in Handel-C for the same resolution. Lastly we will compare

floating point models versus the integer model. To compare the models we looked at the

leakage. The membrane potential for the models being compared are initialised to high

start values which are close to the threshold values and are allowed to decay without any

input. We then plot the decaying potentials for both models and compare them. The time

step for the Euler approximation is 0.001s and the membrane time is 0.02s.

5.6.1 32-bit floating point versus 64-bit floating point

Using the following code we generated table 5.2 which illustrates the differences in the

degree of accuracy between the float and the double data types in Java.

float eps = l.Of;
double epsl = 1.0;

CHAPTER 5. SIMULATION MODELS 126

while ((float) 1.0 + eps/(float)2.0 > (float)1.0){
eps /= (float)2.0;
epsl /=2.0;
System.out.printIn("eps = "+ eps+" epsl = "+epsl);

}

eps is the smallest number that, when added to 1 , yields something larger than 1 . The type

cast to float was used everywhere to make sure no conversions to double happen. Table

5.2 shows that up to about 7 significant figures there is no difference between float and

double data types. Most of the values that we will be dealing with in our simulations will

not be affected because they are within this degree of accuracy. This result is confirmed

by figure 5.6 which shows no difference in membrane potential values for float and double

data types in Java when they are both allowed to decay from high start values without

input. When these models are plotted on the same axis they match point for point. As a

result, in Chapter 6 we will only consider the 32-bit floating point model for comparison

with the integer model.

0.02

32-bit floating point model0.015

0.01
to
o>

0.005
E
c

100(S

c
0)

Q.
0) 0.02
croJa
Eai
S

64-bit floating point model0.015

0.01

0.005

Time in ms

Figure 5.6: Comparison of 32-bit and 64-bit floating point models

CHAPTER 5. SIMULATION MODELS 127

5.6.2 F loating point versus discretised floating point

Figure 5.7 shows that the effect of discretising the evolution of the membrane potential

is to slow down the rate at which the membrane leaks. The membrane potential for the

discretised floating point model leaks to a value which is above that of the floating point

model. Initially we thought this might be because we always take the upper bound of

[V — V ̂ jr}. However, the results of taking the lower bound of [V — V^r\ are similar to

those of taking the upper bound. This may be due to the fact that we are using high

resolution values (32 bits) for the discretised floating point model.

Figure 5.7: Comparison of 32-bit floating model and discretised 32-bit floating point model

5.6.3 S im ulated decay versus analytical decay

Allowing the membrane potential to decay without input means that we set l i t) = 0 in

the LIF equation which means we are left with the following equation.

o 32-bit floating point model
* 32-bit discretecised floating point model

oo 10 20 30 40 50 60 70 80 90 100
Time in m s

dV_ = _Y_
d t t

CHAPTER 5. SIMULATION MODELS 128

which has the following analytical solution:

V(t) = Ce~r (5.18)

Given that V(0) — 0.02 because we start the membrane from a high start value and let it

decay, we have C = 0.02 and equation 5.18 becomes:

Figure 5.8 compares the decay curves for the analytical solution with the Euler approxi­

mated full floating point model. Figure 5.8 shows that there is a difference in the decay

Figure 5.8: Comparison of the numerical decay with the analytical solution decay.

between the analytical model decay and the Euler approximated model decay. The Euler

approximated model decays faster than the analytical model. The decay of the discretised

model is close to that of the Euler approximated model which means both approximated

models decay faster than the analytical model. The difference between the analytical and

the numerical decays is not very big and the shape of the decay curves is similar. This

means an Euler approximation is a good choice given that it results in a smaller design

o analytical decay
* numerical decay

oo 10 20 30 40 50 60 70 B0 90 100
Time in m s

CHAPTER 5. SIMULATION MODELS 129

on the FPGA. More accurate numerical methods like Runge-Kutta (Nagle and Saff, 1986)

could have been used but they were avoided because they would result in larger hardware

designs which would result in a smaller network on the FPGA.

5.6.4 Integer m odel vs floating point m odel

The integer Java model was developed to test the FPGA model. The results in figure 5 .9

show that the FPGA model for one neuron is identical to that of the Java simulation of

the FPGA model for a single neuron. This means that our implementation of the integer

model on the FPGA was a success.

80

70

60

50

10080 9040 60 7010 30 50200

a
0)
c
CO.fi
E
I

Time In ms

Figure 5.9: Comparison of the integer model (1 2 bits) in Handel-C (top) with the integer

model simulated in Java (bottom)

Next we compare the FPGA implemented integer model with the floating point model.

Due to the differences in scale between floating point values and integer values, the decaying

potentials for these two models are normalised so that we can plot them on the same axis.

As can be seen from figure 5 .1 0 the membrane potential for the floating point model decays

to almost zero in the absence of input but that of the integer model decays to a constant

CHAPTER 5. SIMULATION MODELS 130

value. This shows that the integer modelled LIF neuron does not completely discharge.

This reduces the charging time for the integer model. The effects of this will be discussed

in the next section.

0.9

-i- integer model
o Floating point model

0.6

5 0.7

® 0.1

E 0.5

(D 0.4

E 0.3

0 .2

100 20 30 40 50
Time In ms

60 70 80 10090

Figure 5.10: Normalised membrane potential decay (from high start values) for the integer

(1 2 bits resolution) and floating point models in the absence of any input.

5.7 D iscussion

In this section we will discuss issues to do with numerical accuracy. We will look at

the following: (i) the effects of using an Euler approximation; (ii) the likely effect of

discretisation on the leakage rate; and (iii) the effects of quantisation on the evolution of

the membrane potential.

5.7.1 T he tim e step and the accuracy of the Euler m ethod

To simulate networks of LIF neurons directly, differential equations coupled by different

current pulses must be integrated numerically. Two important questions when integrating

CHAPTER 5. SIMULATION MODELS 131

differential equations are what numerical method to use and how large the time step can

be before the integration becomes unacceptable.

Hansel et al. (1998) investigated the question of how the size of the time step in a

network of IF neurons affects accuracy. They found out that the network’s synchronisation

properties were particularly sensitive to the time step. Hansel et al. found out that with

both simple Euler and Runge-Kutta integration methods, a small time step (0.0005s to

0 .0 0 1 s) was required to reproduce the synchronisation properties discovered using the exact

method. This was because the discrete simulation time steps meant that the firing times

were also discrete which lead to considerable reduction in the accuracy. The accuracy

for a given time step could be improved by linearly interpolating the membrane potential

between time steps to find the firing time. In our case here we see that the graphs for

the analytical decay and both the simulated decays (Euler and discrete) are not too far

apart which means that our choice of time step for the simple Euler method was good. A

big time step can result in instability for the simple Euler method but this will not be an

issue here because we require the time step At to be very small compared to the sampling

period T so that the neuron can sample the signal adequately.

The leakage rate is coupled to the time step At. The relationship between the two

is such that the larger the time step, the larger the leakage will be. In our simulations

these two values are kept constant. The likely effect of discretisation on the leakage rate

is inaccuracies in the precise value of the leakage at each time step which introduces

inaccuracies in the evolution of the membrane potential.

5.7.2 Effect o f quantisation on activation

To investigate the effect of quantisation on the activation we look at membrane potential

leakage. The membrane potentials for both the integer and floating point models are

initialised to high start values which are close to the threshold values and are allowed to

decay without any input.
We then plot the decaying membrane potentials for both floating point model and

CHAPTER 5. SIMULATION MODELS 132

£ 0.015

■ 80

S 70

12 30

E 20CB& 10

Time in ms

Figure 5.11: Decay of the membrane potential initialised from a high start value with no

input for both the floating point model (Top) and the integer model using 1 2 bits resolution

(Bottom).

integer model with limited resolution, see figure 5.11. We also normalise the decaying

membrane potentials for the two models and plot them on the same axis (see figure 5.10).

As can be seen from figures 5.10 and 5.11, the membrane potential for the floating point

model decays to almost zero in the absence of input but that of the integer model decays

to 2fc — 1 where k is the leakage factor defined in equation 5.16. This means if the leakage

factor is 3 the integer neuron will not leak below 2 3 - 1 = 7 in the absence of input, if the

leakage factor is 4 it will not leak below 2 4 - 1 = 15. The leakage factor is coupled to the

membrane time constant r and the size of the time step At. We are therefore limited to

resolutions which result in threshold values which are above 2 fc — 1 when quantised. As a

result only resolutions which start from 1 0 bits were considered for the chosen values of the

membrane time constant r = 0.02s and At = 0.001s. The effect of activation quantisation

is that the changes in V(t) over the time step At implemented by equation 5.7 are forced

into integer values and that this integer value ceases to decrease when the following holds.

((V(t) » 3(Jfe - n)) + (I{t) » 3k)) < 1 (5.20)

CHAPTER 5. SIMULATION MODELS 133

(see equation 5.16). This explains why the membrane potential for the integer does not

leak to zero in the absence of any input. This leakage problem in the integer model is

also coupled to the size of the time step At. Decreasing the time step makes the problem

worse as —̂ , the decrement is proportional to At. Yet increasing A t is not normally

an option, as we need At <C T , where T is the period of the input signal. We can get round

this problem by introducing some logic to force the membrane potential to decay if there

is a prolonged net input of zero. The only problem is that such a mechanism will cost us

in terms of logic and yet we do not know what it will buy us in terms of improvement in

the results. Signals in real neurons are usually very small so that representing them with

anything less than 1 0 bits would not be a reasonable thing to do.

5.8 Sum m ary

In this chapter we have described the neural network topology at the core of this thesis and

all the models that we developed based on it. The models were also compared and it has

been noted that for the range of values that we are dealing with the float and the double

data types do not show any difference in the way the membrane potential evolves. We

also noted that discretising the floating point model as an immediate step before moving

to the integer model was important because it showed that as we make the leakage step

of the membrane potential coarser, it has the effect of slowing down the decay and also

the membrane potential decays to a value which is higher than that of a full floating point

model. On comparing floating point and integer models we realised that integer model

decays to a constant value depending on the resolution used.

In the next chapter we will present and discuss the results which were realised from

running the simulation models that we just discussed in this chapter.

CHAPTER 5. SIMULATION MODELS 134

float (eps) double (epsl)

0.5 0.5

0.25 0.25

0.125 0.125

0.0625 0.0625

0.03125 0.03125

0.015625 0.015625

0.0078125 0.0078125

0.00390625 0.00390625

0.001953125 0.001953125

9.765625E-4 9.765625E-4

4.8828125E-4 4.8828125E-4

2.4414062E-4 2.44140625E-4

1.2207031E-4 1.220703125E-4

6.1035156E-5 6.103515625E-5

3.0517578E-5 3.0517578125E-5

1.5258789E-5 1.52587890625E-5

7.6293945E-6 7.62939453125E-6

3.8146973E-6 3.814697265625E-6

1.9073486E-6 1.9073486328125E-6

9.536743E-7 9.5367431640625E-7

4.7683716E-7 4.76837158203125E-7

2.3841858E-7 2.384185791015625E-7

1.1920929E-7 1.1920928955078125E-7

Table 5 .2 : Table shows the difference in accuracy between the float and double types m

Java.

Chapter 6

Stochastic resonance in simulated

system s

In this chapter we present and discuss the results of the simulations of the models we

discussed in Chapter 5. The task we set ourselves at the beginning of this thesis was to

investigate whether stochastic resonance relies on the continuous nature of the underlying

system or whether a linearly discretised system is able to display stochastic resonance. We

also went on to ask if stochastic resonance is realisable in a discrete system, what would

be the effect of varying the lengths of the numbers within the simulations on stochastic

resonance? In this chapter we will show that we succeeded in realising stochastic resonance

in a linearly discretised system using an integer-based model of an LIF neuron on digital

hardware for both single neurons and the small network topology given in figure 5.1. The

integer model was implemented on an FPGA (using Handel-C) which was described in

chapter 5. The floating point model was implemented in Java. Results for stochastic

resonance in an input neuron and the output neuron for both integer model (hardware)

and the floating point model (software) will be presented and compared. By input neuron

we mean any one of the neurons in the input layer of the network topology of figure 5.1 and

by output neuron we mean the neuron in the output layer of the same network topology.

A statistical technique for carrying out multiple comparisons called repeated measures

135

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 136

analysis of variance described in Winer et al. (1991) and Joiner (1994) will be used to see

if the observed differences (on graphs) in stochastic resonance between the integer model

and the floating point model and within the different integer lengths for the integer model

are statistically significant. The results for a single input neuron will be presented first

and the variation at single neuron level between software and hardware will be discussed as

well. Secondly, the output neuron results will be presented and discussed and the difference

between the hardware and software implementation at network level will be discussed. The

input neuron and the output neuron results will also be compared across the two platforms

of implementation. The results presented in this chapter can be found in summary form in

Mtetwa et al. (2002a) and Mtetwa et al. (2002b). The results show that there is stochastic

resonance in the spike trains of both input neurons and output neuron for both the integer

and floating point models.

6.1 M ethodology

The floating point model was implemented in Java to numerically solve the equation 5.6

(described in Chapter 5) for each neuron. The integer model was implemented by Handel-C

code to implement equation 5.16 (also described in Chapter 5).

The Gaussian white noise which formed part of the input was generated using sub­

routine rani in Press et al. (1995) to generate independent uniform variates, whence the

Box-Muller transformation provides the white noise sequence. The stochastic equation 5.6

is then integrated by an Euler approximation with a fixed step of A t = 1 x 10 3s, for a

duration of 4,096s. This is obviously a small sample but due to memory constraints on

the FPGA that is all that was possible. In order to overcome the problems which may be

caused by the small sample size, we repeated each run 12 times with a different noise seed

each time assuming ergodicity (see Koch and Segev (1999)).

On the FPGA we could not achieve a network of more than 7 neurons. This limit was

caused by the inefficiencies of the DK1 synthesis tools. The problem was that in trying to

generate a netlist file, DK1 initially throws up a large number of gates which take up ah

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 137

the resources of the host machine. For instance, for a network of 7 neurons, DK1 initially

allocates about 3 million gates and then spends approximately 72 hours optimising it down

to about 147,000 gates. Unfortunately the host machine (Pentium 500 MHz speed, 785,832

Kbytes RAM) could not cope with this initial large number of gates for networks with more

than 7 neurons. The relationship between the number of neurons in the network and the

number of gates used on the FPGA is nearly linear as shown in figure 6.1. The bit of

the graph which is not linear is due to the fact that the gate count includes the synapse

module which is shared by all the input neurons. Since the relationship between network

size and number of gates is nearly linear we can use simple proportion to estimate the size

of network that we could have been able to fit on the FPGA. For our FPGA with 1 million

gates we could have been able to fit a network of about 40 neurons given that placing and

routing is never 100 percent of all the gates on the chip (Bostock, 1996).

1.4

eft0>
aa>
o
fcn
E3
Z

Number of neurons in network

Figure 6.1: This graph shows how the number of gates increases with network size. These

results also include the gate count for the synapse module.

This network was run several times with different noise intensity values and different

signal frequencies. The spike trains of the input neuron and those of the output neuron are

collected and used to calculate the power spectrum and SNR at both the input and output

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 138

neurons. The power spectra and SNR are calculated on the resulting spike train of both

input and output neurons using the methods discussed in Chapter 4. SNR is calculated

using method 3 described in section 4.6.

As mentioned in Chapter 3, there are several measures which are widely used in the

literature to quantify stochastic resonance. In this chapter we report results based on

just two measures, namely power spectrum and SNR for different noise amplitudes. The

interspike interval histograms (ISIHs) have been left out because they cannot be used for

quantitative analysis of stochastic resonance. These measures were computed from the

spike trains using Matlab.

6.1.1 N etw ork param eters

The results presented here were obtained from simulations of the network in figure 5.1 with

the following network parameters. The choice of parameters was motivated by the appli­

cability of the network topology to auditory signal processing and the frequency regimes

in which stochastic resonance has been well studied according to literature. Stochastic

resonance is well established in the low frequency regime according to Gammaitoni et al.

(1998) and Wiesenfeld and Jaramillo (1998). Hence the choice of the 20-30 Hz frequency

range. LIF neurons model real neurons which operate on continuous time-varying signals

and the choice of time constants must match those of the signals. The membrane time

constant t was motivated by the choice of frequency and also its possible role for sound

segregation in auditory scene analysis (Glover et al., 1999). The absolute refractory period

tref was chosen based on values reported in the literature on neuronal modelling (Dayan

and Abbott, 2001). tref sets the limit for the firing frequency of the neuron, the neuron

can not fire beyond jT. Hz.

• membrane time constant t = R x C = 20 ms

• threshold 6 — 20 mV

absolute refractory period tref — 10 ms

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 139

• synaptic time constant ts = 10 ms

• Gaussian white noise f (t) jV(0,1)

The figures given in this chapter show how the power spectrum and SNR of the spike

train changes with an increase in noise intensity.

In this section we described how the simulations were run and how the parameters of

the simulations were chosen. In the following sections we will present the results.

6.2 Stochastic resonance in the input neurons

In this section we will present results supporting the existence of stochastic resonance in

a single input neuron for both the floating point and integer models. Having discussed

the effect of quantisation on the evolution of the membrane potential or activation in the

previous chapter, we will now look at power spectra and SNR results of spike trains for

both the floating point and the integer model. The results presented in this section are for

an input neuron in the network topology of figure 5.1.

6.2.1 S tochastic resonance in an input neuron using the floating

point m odel

Floating point simulation of stochastic resonance in a single LIF neuron with continuous

subthreshold sinusoidal stimulation is well established, (see Plesser and Tanaka (1997) and

Plesser and Geisel (1999) and Stemmier (1996) for details). We will characterise stochastic

resonance in a single neuron using power spectra and SNR plots. Figures 6.2 and 6.3

summarise the results for stochastic resonance in a floating point based input neuron.

Figure 6.2 shows that the main peak of the power spectrum (at signal frequency in this

case of 20 Hz) of the spike train of a floating point based input neuron goes through a

maximum as the amount of noise is increased, a phenomenon characteristic of stochastic

resonance. The same phenomenon is emphasised by the SNR plot in figure 6.3 which shows

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 140

low noise

Frequency in Hz

optimal noise high noise6000

5000

100
Frequency in Hz Frequency in Hz

Figure 6.2: Stochastic resonance in the spike train power spectrum for a floating point

input neuron stimulated by a 20 Hz subthreshold sinusoidal stimulus plus Gaussian white

noise.

the SNR going through a maximum as the noise strength is increased. This shape of the

SNR curve has been designated as the signature for stochastic resonance by Barbi et al.

(2000). These results confirm what is already well established in the literature.

6.2.2 S toch astic resonance in an input neuron in the integer

m odel

As far as we can determine, neuronal stochastic resonance has not been studied or simulated

in limited precision discrete systems. Here we present results of the realisation of stochastic

resonance in an integer based input neuron model implemented on an FPGA. We also

present results which show the effect on stochastic resonance of varying the length of the

integers used in the simulations of stochastic resonance in discrete systems. Figures 6.4

and 6.5 have the same shapes as corresponding figures in the previous subsection. The

power spectrum plots (figure 6.4) show the familiar effect whereby the height of the main

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 141

Input neuron floating point SR

- Input
* output

cc
z
<0

Noise amplitude

Figure 6.3: Spike train SNR for the floating point input neuron stimulated by a 20 Hz

subthreshold sinusoid plus Gaussian white noise.

peak of the power spectrum goes through a maximum as noise strength is increased. This

same effect is depicted in the SNR plot in figure 6.5 in which the SNR maximises as noise

amplitude is increased. These two figures (6.4 and 6.5) show that stochastic resonance is

realisable in a discrete system for a reasonable integer length here 12 bits. As we pointed

out in Chapter 2, the issue of limited precision on hardware implemented artificial neural

networks is of general interest. In back-propagation type of networks, it is of interest

especially during the training phase because the level of precision determines whether the

training will converge to a global minimum or not. Higher resolutions would be good for

training but they result in smaller networks because chip area is inversely proportional

to the resolution. For back-propagation type of networks 12 bits is a good achievement

especially during the training phase as reported by the work of Hohfeld and Fahlman

(1992).

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEM S 142

optimal noiselow noise high noise

B 2500

Frequency in Hz Frequency in Hz Frequency in Hz

Figure 6.4: Demonstration of stochastic resonance in the power spectrum for an integer-

based (12 bits) single input neuron stimulated by a 20 Hz subthreshold sinusoid plus

Gaussian white noise.

6.2 .3 Effect o f lim ited precision on d iscrete based sto ch a stic res­

onance for an input neuron

The effect of limited precision on stochastic resonance is shown in figure 6.7. All the integer

lengths considered exhibit the stochastic resonance phenomenon. As explained in Chapter

5, we were only able to realise results starting from 10 bits using the integer model. We

observed that stochastic resonance is poor below 10 bits and saturates at 12 bits such

that any further increase in integer length does not yield any improvement in stochastic

resonance as shown by figure 6.6 (Mtetwa et al., 2002b). The SNR graph for 32 bits is

not significantly different from that of 12 bits. The effect of resolution is quite strong at

low noise values but diminishes at high noise values and this is due to the quantisation of

small numbers. This means that the effect of quantisation noise is stronger at low input

noise values. At the high noise end, the effect of quantisation is overridden by the strong

input noise. A multiple comparison t-test of the SNR values for the resolutions shows

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 143

Input neuron Integer model SR

a
zm

Noise amplitude

Figure 6.5: Stochastic resonance in the spike train for an integer-based (12 bits resolution)

input neuron stimulated by a 20 Hz subthreshold sinusoid plus Gaussian white noise.

that some of the differences in stochastic resonance notable in figure 6.7 are statistically

significant at 5% level as shown in table 6.1. The same analysis showed that the floating

point model results are statistically significantly different from all the integer resolutions

considered. Table 6.1 shows the results of a statistical multiple comparison t-test of the

different resolutions’ SNR values. For signal processing purposes, we can tolerate noise

which is within the low and optimal range up to about noise amplitude 20 because the

signal is still clearly detectable in the SNR. It turns out that this is also the range within

which the effect of resolution on stochastic resonance in the discrete system is evident.

This means that the benefit of increasing the lengths of the integers in the simulations is

seen at low and optimal noise levels for the input neurons.

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 144

. input
* java
4-10 bits
o 11 bits
x 12 bits
- 32 bits

(C
zcn

Noise amplitude

Figure 6.6: 20 Hz subthreshold signal SNR plots for both Java (Floating point) and FPGA

(different integer resolutions: 10, 11, 12 and 32 bits as shown on graph) compared with a

common input SNR.

6.2 .4 C om parison betw een in teger-based and floating poin t based

stoch astic resonance for th e input neuron

We will now compare the stochastic resonance for the integer model with that for the

floating point model for the input neuron. Figures 6.8 and 6.9 show that we have stochas­

tic resonance in both the floating and the integer models though stochastic resonance is

stronger in the floating point model than in the integer model for most of the noise values

considered. The bottom row of figure 6.8 shows that the peaks in the power spectra for

the integer model are always smaller than the corresponding peaks for the floating point

model (top row). Comparing the SNR peaks for the integer (see figure 6.5) and floating

point (see figure 6.3) models it can be observed that the peak for the floating point model

is sharp whereas that of the integer model is broad.

The SNR graphs for the floating point and integer model merge at high noise values as

shown in figure 6.9. This shows that at this stage it is noise that is dominating, not the

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 145

Effect of limited precision on SR for an input neuron

o 10 bits
. 11 bits
x 12 bits
v 16 bits

Noise amplitude

Figure 6.7: Stochastic resonance in the spike train for an integer-based input neuron at

different resolutions, stimulated by a 20 Hz subthreshold sinusoid plus Gaussian white

noise.

limited precision effect. The fact that both integer model and floating point model SNR

values are affected means that the merging of graphs at the high noise end is not due to

quantisation either. In comparing these two models, two things must be put in perspective.

Firstly, the integer model is an approximation of the floating point model. The second

thing is that the integer model has an extra source of noise due to the quantisation process

which introduces quantisation noise. Given these two handicaps and also considering the

difference in resolution between the two models, it is only fair to say that the integer

model is quite comparable to the floating point in exhibiting the stochastic resonance

phenomenon.

In this section we have shown that stochastic resonance exists in discrete systems and

that it is sensitive to the resolution of the values within the simulations especially at

low noise values. It has also been shown that stochastic resonance is stronger in floating­

point simulations than in integer based simulations. The results presented in this section

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 146

resolution in bits 10 11 12 16

10 X significant significant significant

11 significant X significant significant

12 significant significant X not significant

16 significant significant not significant X

Table 6.1: Table showing which resolutions are significant or not. X represents meaningless

comparisons. Significant means that the two resolutions being compared were found to

be significantly different at 5% level, not significant means that the two resolutions were

found to be not statistical significant when compared at 5% level.

also show that using resolutions as small as 10 bits we can realise stochastic resonance in

discrete systems simulated on digital hardware. This could be good news for electronic

systems because it means we can build stochastic resonance based systems with real-time

performance, something not easily or cheaply achievable with floating point models.

In the next section we will look at stochastic resonance at the output neuron in both

the floating point and integer models.

6.3 Stochastic resonance in th e output neuron

In the previous section we discussed stochastic resonance in a single input neuron concen­

trating on the input neurons of the network topology introduced in Chapter 5. In this

section we will look at the output neuron of the same topology. As we pointed out in

Chapter 5, the difference between these two types of neurons is that the input neurons

receive noisy continuous stimulation while the output neuron receives noisy spike-based

input from the input neurons. We will first consider the results from the floating point

model followed by the integer model. Because the input to the output neuron is spike-

based, hence outside our direct control, we cannot ensure that the signal which it receives

is subthreshold. This means that the stochastic resonance that we observe at the output

neuron does not conform with the requirement that the sinusoidal component of the input

CHAPTER 6. STOCEASTIW SL -CNANCE IN Sm VLATED SYSTEMS 14'

:600«-

_sooo
s±:-4000xj
^3000
15JĝOODX):a

TOGO

iov/ noise njgr, n o i s e

.0

■:booo-

'5000
:±:4000jj.<u-̂ 3000
<û:2oao
:oXL tooo

£000
:SCDD

biwo
5000

4QQ0 4000
2QD0 3000
-2000 •2000 1

A , - - L
tooo JL. miD

n

6000
5000

6QQD
5000

4000 4000
3000 3003
2000 .2000 |

y
tOOD

0 .. 1.
tooo

. . .

:rreauencv in Hz Frequency in Hz Frequency in Hz

Tigure 6.8: Stochastic resonance in the power spectrum. Top: shows typical resonance

•effect for the .-floating point model as we move from low noise to high noise values. Bottom:

.resonance -effect in the integer model (12 bits resolution) for the same noise values .as in the

■floating point model. The neuron was stimulated by a 20 Hz subthreshold sinusoid plus

Gaussian white noise.

should be sub thresh old. Having said this, it is worth noting that if stochastic resonance

occurs at all in higher brain areas, as evidenced by the works of Hennig et al. (2001) and

Anderson -et al. (2000), then it is most likely to be similar to what we get at the output

neuron.

-6.3ol S toch astic resonance in the ou tp u t neuron in th e floating

point m odel

■Figure 6.10 shows that there is stochastic resonance a t the output neuron for the floating

point model. The results .are for a 5-neuron network. The peak in the SNR here is

much broader .and less distinct compared to the peak for the input neuron using the same

floating point model, see figure 6.3. This could be due to the fact that the output neuron

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEM S 148

Floating point versus different integer resolutions

+ 32 bits floating point
o 10 bits
. 11 bits
x 12 bits
v 16 bits

crz(0

Noise amplitude

Figure 6.9: Stochastic resonance in the spike train for a floating point and an integer-based

input neuron stimulated by a 20 Hz subthreshold sinusoid plus Gaussian white noise.

is averaging the contributions of a small number of input neurons which feed into it.

Stochastic resonance at the output neuron increases as we increase the number of input

neurons as we will see later on in this chapter.

6.3.2 S toch astic resonance in th e ou tp u t LIF neuron in th e in ­

teger m odel

Figure 6.11 shows that there is stochastic resonance at the output neuron of the integer-

based (12 bits) neuron just like we observed stochastic resonance at the output neuron for

the floating point model. The peak is also broader compared with that of the integer-based

input neuron SNR peak.

The effect of limited precision on stochastic resonance is the same at the output neuron

as it is at the input neuron. Stochastic resonance increases between 10 bits and 12 bits

and ceases to improve after 12 bits as shown in figure 6.12 for a 5-neuron network. The

SNR peaks for the resolutions considered are broader and shifted to the right compared to

CHAPTER 6. STOCHASTIC RESONANCE m SIMULATED SYSTEMS 149

Floating point model output neuron SR

CEZin

30

Noise amplitude

Figure 6.10: Stochastic resonance in the spike train for a floating point output neuron of

a 5-neuron network stimulated by the spike trains from the input neurons.

those for the input neuron for the same integer resolutions.

6.3 .3 C om parison b etw een in teger-based and floating p o in t based

stoch astic resonance for th e o u tp u t neuron

The floating point model has stronger stochastic resonance than any of the integer model

resolutions, this is more distinct at low noise values than at high noise values as shown

in figure 6.14. For most of the noise values considered, 12 bits and 16 bits resolutions are

marginally better than the floating point model. Looking at figures 6.9 and 6.14 closely, we

realise that the difference between the integer and floating point models is more distinct

at the input neuron than at the output neuron. The curve for the floating point model

SNR in figure 6.9 is well above those of the integer model at low noise values at the input

neuron where as the same curve is not so separated from the integer model curves at the

output neuron as shown in figure 6.14. Figure 6.13 which shows the plot of [SNR(FP)-

SNR(resolution-12)] shows that the difference between floatingpoint and integer (resolution

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 150

Integer model output neuron SNR

ce

Noise amplitude

Figure 6.11: Stochastic resonance in the output spike train of a 5-neuron network for an

integer-based (12 bits resolution) output neuron stimulated by the spike trains of the input

neurons.

12) is greatest for noise values between 5 and 15. The difference is positive within this

noise range which confirms the fact that the floating point model is better than the integer

model. However, for higher noise values (> 15), the difference is negative which means the

integer model is now doing better than the floating point model.

In fact the graphs for 12 and 16 bits integer models have almost the same peak values

as that of the floating point model even though these two (12 bits and 16 bits integer)

peak at higher noise values than the floating point model. This suggests that there is

an interaction between resolution and the number of input neurons at the output neuron

because this effect is not observed at the input neuron (Mtetwa et al., 2002a). This result

was entirely unexpected and at this point we have no real explanation as to why there

seems to be an interaction between the output neuron and the resolution. We suspect that

this maybe due to a reduction in quantisation effects because of an increase in resolution

and averaging effect of increasing the number of input neurons.

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 151

Effect of resolution on SB at the output neuron

o 10 bits
. 11 bits
x 12 bits
v 16 bits

25

DC
Z(0

30

Noise amplitude

Figure 6.12: Effect of different resolutions on the spike train for an integer-based output

neuron (5-neuron network) stimulated by spike trains from the input neurons.

The results presented in this section have shown that there is stochastic resonance at

the output neuron in both the floating point and the integer models. The quality of the

floating point stochastic resonance is still better than that for the integer model for the

noise ranges considered. In the next section we will draw a comparison between the input

and output neuron stochastic resonance.

6.4 Com parison betw een input and ou tp u t neurons

In this section we will look at the results from a network point of view by comparing

the stochastic resonance at the input neurons with that at the output neuron across both

platforms. We start by considering the floating point network model stochastic resonance

followed by the integer model network stochastic resonance results. We will also consider

the effect of varying the frequency of the input subthreshold sinusoidal signal and the

subsequent bandpass behaviour of the network on both platforms.

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 152

x input difference
o output difference

s
£
■acs

-4

25
Noise amplitude

Figure 6.13: A plot of the differences between floating point SNR(FP) and resolution 12

integer SNR(Resolution-12) for both input and output neurons.

6.4 .1 F loatin g poin t m odel

Figure 6.15 shows that as the network size increases, the output neuron stochastic resonance

gets better than the input neuron stochastic resonance, as shown by the huge difference

between the output neuron SNR curves for the 5- and 7-neuron networks. The output

neuron SNR curve for the 7-neuron network is well above that for the 5-neuron network

for most of the noise values considered. This means that the quality of the signal at the

output is better than that at the input neuron for most of the noise values considered as the

number of input neurons is increased. Collins et al. (1995b) considered a similar network

model to the one looked at here and they reached the same conclusion using a floating

point based rate model. Zalanyi et al. (2001) also considered a similar floating point based

network with depressing synapses and they also concluded that the SNR at the output

neuron increases with an increase in the number of the input neurons. We have shown

that the same result can be realised with a much reduced resolution on a platform with

real-time capabilities. The other thing to note is that the peak of the SNR curve moves to

lower noise values as the number of input neurons is increased as shown by the peaks for

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 153

Floating point versus integer resolution on output neuron

+ 32 bits floating point
o 10 bits
. 11 bits
x 12 bits
v 16 bits

B
Z(0

Noise amplitude

Figure 6.14: Stochastic resonance in the spike train for an integer-based and floating point

based output neuron stimulated by the spike trains from the input neurons.

the curves for the 10-neuron and 15-neuron networks in 6.15. Actually, for the parameters

used here the peak for a 20-neuron network (not shown in figure) is even further to the left

and is sharper than for smaller sized networks. The observation that SNR peaks for higher

numbers of input neurons move to lower noise values is probably due to the fact that the

weights are fixed which means as the number of input neurons is increased we need less

noise to excite the output neuron. The sharpness of the peak for large numbers of input

neurons could be addressed by normalising the weights by the number of input neurons.

From a network design point of view it is better to have broad peaks because this makes

the network tolerant to a broad range of noise amplitude.

6.4 .2 In teger m odel

The same phenomenon observed for the floating point model that stochastic resonance

improves as the number of input neurons increases is also observed in the integer model.

All the graphs in figure 6.16 show that the output neuron SNR for a 5-neuron network is

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 154

150

+ input neuron
* output neuron 5-neuron network
o output neuron 7-neuron network
v output neuron 10-neuron network
x output neuron 15-neuron network

100

DCz(0

50

Noise amplitude

Figure 6.15: Comparison of input neuron stochastic resonance vs output neuron stochastic

resonance for different network sizes.

less than that of the input for most of the noise values considered where as that of the

7-neuron network is always above that of both the input neuron and the 5-neuron network

output neuron SNR. The effect of resolution is also evident in that the output neuron SNR

for the 7-neuron network is much bigger for higher resolutions than for smaller resolutions.

6 .4 .3 Integer versus floating point m odel

Looking at figures 6.15 and 6.16 we see that improvement in stochastic resonance between

input and output is generally better in the floating point model than the integer model.

The output neuron SNR peak for the 5-neuron network is broad compared to that of the

7-neuron network output neuron. The situation at the output neuron for the 7-neuron

network is quite interesting. Firstly, the graphs in figure 6.17 are much more separated

even at the high noise end than in any of the situations before (at both the input neuron

and the 5-neuron network output neuron). This means that the more input neurons we

have, the less effect noise has on the signal propagation.

The other thing to note is that even though the graph for the floating point is higher

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 155

Integer model: 10 bits
80

+ Input neuron
* S neurons net output
o 7 neurons net output

60

Z 40

20

Integer model: 11 bits

Integer model: 12 bits
80

60

Z 40

20

Noise amplitude

40

Integer model: 16 bits

40

Noise amplitude

Figure 6.16: Stochastic resonance in the output spike train for an integer-based input and

output neurons

than all the different resolutions for the integer model, at high noise values the graphs for

12 and 16 bits overtake it. It is also the case that at the high noise end, 16 bits resolution is

better than 12 bits resolution. This is interesting because at the input level, 16 bits is not

significantly different from 12 bits resolution (see table 6.1). This reinforces the assertion

that there is an interaction between resolution and the number of input neurons at the

output neuron. This interaction was entirely unexpected. This means that the effect of

resolution on stochastic resonance at the input neuron is different from that at the output

neuron. Figure 6.17 suggests that there is an advantage after all in using higher resolutions

in the simulation of stochastic resonance in discrete systems and this advantage is better

realised at the output neuron of our network topology. This graph also shows that the

effect of resolution is better observed at the output neuron when the number of input

neurons is increased.

The results presented in this section have shown that there is stochastic resonance in

both the input neuron and the output neuron implemented on both platforms. It was

shown that the stochastic resonance at the output neuron increases with the number of

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 156

Floating point versus integer resolutions on output neuron
80

+ 32 bits floating point
o 10 bits
.11 bits

x 12 bits
v 16 bits

Z 40

20

3020
Noise amplitude

Figure 6.17: Comparison of floating point and integer models at the output neuron of a 7

neurons network.

input layer neurons for both models. However, it was noted that higher resolutions in the

integer model outperformed the floating point model at higher noise values. In the next

section we will present some results which show the bandpass properties of an LIF neuron

with stochastic resonance.

6.5 Bandpass properties o f stochastic resonance

As pointed out by Plesser (1998b), an LIF neuron exhibiting the stochastic resonance

phenomenon displays bandpass properties in that the quality of stochastic resonance di­

minishes as the frequency of the subthreshold periodic input is increased while the other

parameters are kept constant. This is observed in both the input and output neurons, and

in both the floating point model and the integer model. Figure 6.18 shows a decrease in the

peaks of the SNR plots (at both the input and the output neurons) for the floating point

model as the frequency of the input signal is increased while other network parameters are

kept constant. This result reaffirms Plesser’s claim in Plesser (1998a) that noise turns an

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 157

LIF into a bandpass filter. We have been able to extend this result by showing that this

property also holds at network level and that it can be realised in a discrete LIF neuron

model. Figure 6.19 shows the same pattern of a decrease in stochastic resonance as the

a . Input pnnrnn_________ (__
* 5 neuron network output
o 7 neuron network output

20 Hz

EC
Z 40
(0 (

301----1------
25 Hz

T

e
z0)

15.— i--------

30 Hz

oez(0

Noise amplitude

Figure 6.18: Stochastic resonance in the output spike train for an integer-based input and

output neurons

frequency of the input signal is increased for the integer model.

It is worth noting that these bandpass properties also depend on the choice of pa­

rameters like the membrane time constant r , and synaptic time constant t s and synaptic

weights. The value of r sets a limit to the frequencies of the signals that LIF neuron can

follow. The dependence of the power spectrum (which is one of the measures of stochastic

resonance) on these parameters is investigated in the next section.

6.6 Effect o f network param eters

This section is an attempt to put the results presented in this thesis into a theoretic

framework. There are a number of parameters at play in the models and it is useful

to examine how they all affect stochastic resonance. The effect of these parameters on

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 158

t— 4-lnput nsuron----------------
* 5 neuron network output
o 7 neuron network output

25 Hz
0E
Z0)

10
30 Hz

EC
Z0)

30

Noise amplitude

Figure 6.19: Stochastic resonance in the output spike train for an integer-based (12 bits

resolution) input and output neurons. Note that the graphs have different scales.

stochastic resonance will be investigated by looking at how the power spectrum of the

output neuron spike trains depends on these parameters. This enables one to simulate

equations of the power spectrum to narrow the search for optimal parameters to use in the

models.

In order to glean information on the relationship between the time constants and the

power spectrum of the spike train we will focus our attention on the output neuron. The

membrane potential equation for the output neuron is quite accessible because the input to

it is not direct noise as it is the case in the input neuron. This means we can numerically

solve for V(t) from the LIF equation given in equation 5.1. The solution for V(t) in this

case only applies between spikes because of the resetting of V(t) after every spike. We have

to resort to looking at the membrane potential because by just looking at a spike train it

is difficult to see how its power spectrum is influenced by the change in membrane time

constant or synaptic time constant, and synaptic weights. It is our belief that by looking

at the power spectrum of V"(t) in between spikes, we axe able to glean information on the

effect of the membrane time constant r, the synaptic time constant ra and synaptic weights

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 159

on the power spectrum of the spike train of the output neuron.

We will start with the single neuron situation, i.e. an output neuron receiving spike-

based input from one input neuron. The current generated from the spikes is given by:

I(t) = a ^ 2 o i (t - t i)
i = l

where n is the number of spikes contributing to the current and:

a(t) = — e r-
r3

This means the LIF equation becomes:

dV V ” . .
= ---------- 1- a ^ 2 a (t - U)

T t=idt

This results in the following equation:

dV V a A
 1------= — > e T*

T Ts h {

which has the following solution:

t/Y jA a e rv (t) = — — n r £ e T*

The Fourier transform G(u) of V(t) then becomes:

G(a/) =
a

e
27TTs(y ~ ^) t i

After splitting the complex part into the real and the imaginary part we get:

■ 1 i e
~ 2 r a T a

t - (i . ___*('T r 3 J u2eti(r t3 ^

(A + w2) (j s + a;2)

j & + ^)y

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)
(^ + w2) (^ + w 2)

If we concentrate on the complex term in the big square brackets, the power spectrum

is given by the following: If we let e* = then an approximation of thie power

spectrum is given by the following:

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 160

a
4 ^ (11 _ X\2 E e

/ t=l

r 1 , L32 ej
T * T S 2 T 2 T3 2 Ta Tj3

Ts
(^ + w 2)2(4 + w2)2

I+ IT! oj2ej
TTa3 TT»

3«r-37"Tj
£

TTa'
a re; . e t-2 I a>2e ; 2

.3 •” -j-2^4 ”T" t 2 t . 2T*T3 4 T*TB
q;4et- i a>2e ; 2
T T a T 2 Ts ‘ + 4 - .2oret-

>T»
,3 ,.,2SC 4- K1 — ̂e»: _ u 1 ^ 4 . /,,4 _ u~ej _ 4-75- + ^ ^ o ;e t

o?2et- o?3et- . o>2e1-2 ^ s r - ^ + -^4- o>3et-2 o;3et- ^ 4ei + + w 4ei2
(6.8)

(^ + ^ 2)2(^ + o ; 2)2

A complete derivation of equation 6.5 and its Fourier transform 6.6 can be found in ap­

pendix A. Equation 6.8 can be simplified as follows:

W l 2 =
a

47r2(i - i) 2(4 + a/2)2(4; + u/2)2
n 2 i-

t=l
w4(ei2 - 2e* + 1) -

2o;4e* 2o;4e*
rsr rsr

uj / o v o;3 ,
H— ^ (^ et ~ 2ej + 2) -| - { uj — 2et)

Ts
OT

ro2r 2
(e*2 — e* -f- 2) —

2a;2 e;
t , t °

2a;2 e*
T c 3 T

+
a;

eT
rs3r3

2e

+ a;2e.-

4-t-2To T r»3r 3
+

Ts2T4
(6.9)

It is clear that the power spectrum of the membrane potential in between spikes depends

on the two time constants (r and rs), the synaptic weight a and the frequency. If we just

concentrate on the frequency we see that as the frequency increases, the power spectrum

will decrease assuming the time constants are kept constant. This can be seen by inspection

from the power spectrum equation because we have a higher power of a; in the denominator

than the numerator. This explains the bandpass property of the LIF neuron which we

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 161

reported in the previous section. The relationship between the power spectrum and the

frequency is of the form 1(2 (0;) |2 = O (^) .

As we increase the weight a, the output power will increase if we keep the other pa­

rameters constant. This partly explains the increase in stochastic resonance at the output

neuron as we increase the number of neurons because the total weight increases as the

number of input neurons increases.

Turning our attention to the time constants, we see that changing the time constants

has an effect on the output power. Prom equation 6.9 both r and rs influence G(u) but

their influence is complex as both r and r s are in both the numerator and the denominator.

Further, equation 6.9 is not valid if r = rs although in simulations this can be taken care

receives input from N input neurons. The membrane potential will be given by equation

6.10 below:

of.

The above results can be extended to take care of a situation where the output neuron

‘A t tJ k=li=l
The Fourier transform is given by:

(6 .10)

(6 .11)

Let eft* = e tki^ ^ and after separating the complex part into real and imaginary parts

the Fourier transform is given by the following:

The power spectrum is then given by:

(" 2 + ^) 2(£ + u;2)2

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 162

Ta * T
^ I “Peki I g>4 I W*eki
2 t 2 * T T a ̂ *r_ 2 L

A
TTa

(w2 + £) 2(£ + w 2)2
“’fei _l_ “ieH 4 .

TaT3 ^ Ta T2 ^ TaT ' T2

(w2 + £) 2(£+<*>2)2
g;2 w2ekj . g;4 g>4e

. r 4_______ T2 Ta2 T2________T

(w2 + £) 2(£ + “>2)2
w2eki , (jj2eki2 oj4eki ,

r . 4 “ T a 2 + Ts2

(a-2 + ^) 2(4r + w 2)2

£ - ^ + “ 6 - «"«* - = > + ^ - ^ 6efci + w*ew
(“'2 + ^) 2(£ + “'2)2

(6.13)

A complete derivation of the membrane potential equation 6.10 and its power spectrum

6.14 for the multiple input neurons case is in appendix B. Equation 6.14 can be simplified

as follows:

|G (c)|2 =
a"

4ir2(A - i) 2(£ + u,2)2(£ + * 2)2

2*JktN n

E £ e -
k=1 *=1

1 eki u
2 /t- 4T, t + ^ + 7 b (“ + ^ - ^ 2 + l)7-,2T2

, 2a;2efci , efc
n o r

r.-r 7*s2r 3 Ta*T

Ts3T
.4

+ - ^ +

H— ^(efci2 — 2e*;t + 1) H — H— - (2 — e*.*2)
2 u Aeki

V 2

(cj + 1)

a;
r .r

, ,2 , ,2 - , 2
. ^ & Chi

/t-4 _ 4

+ ^ 6(efci2 — 2efcj + 1) (6.14)

Again we can see that the effect of the parameters r, rs and the synaptic weight a is the

same as observed for the single neuron case. The effect of increasing the number of input

neurons while keeping the weights constant is that the power increases.

In this section we attempted to investigate the effect of the time constants, frequency

and synaptic weights on stochastic resonance. The equations derived in this section do

not give the full picture because of the resetting of the membrane potential after every

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 163

spike. These equations serve as an initial attempt in trying to understand the effect of

network parameters on stochastic resonance. The equations for the power spectrum of the

membrane potential derived in this section show that the Fourier components depend on

the time constants, the frequency of the input signal and the synaptic weights.

6.7 D iscussion

The stochastic resonance effect occurs because noise introduces a degree of independence

between the information carried by individual neurons. Although, in the absence of noise,

the timing of the spikes is at its most precise (Stocks and Mannella (2001)), thus max­

imising information transmitted by individual neurons, similar neurons produce identical

spike trains. Consequently, no additional information is gained by making simultaneous

measurements of similar neurons. In fact, the global information is simply equal to that

carried by a single neuron. However, the introduction of neuronal noise randomises the

times at which each neuron “samples” the signal and, although this lowers the amount of

information carried by individual elements, there is a net gain in information transmitted.

This explains why the SNR at the output neuron overtakes that at the input neuron.

These results show that in a population of neurons noise can have a significantly great

optimising influence of generic benefit to neuronal signal encoding. Given that perception

is based on accumulated information obtained from many nerve fibres, these results sug­

gest that the high levels of noise observed in biological sensory systems may have evolved

and are an essential component of an optimal coding strategy. Finally we note that these

results have implications on the design of coding strategies for use in implantable cochlear

and visual prostheses (Stocks and Mannella, 2001). Such prostheses work by the artifi­

cial electrical stimulation of populations of nerve fibres - similar to the model considered

here. The results presented here suggest that a combination of noise and subthreshold

stimuli could lead to improved information transmission. This strategy is in-keeping with

recent results ((Morse and Evans, 1996)) which demonstrate that the coding of formant

information in cochlear implants can be improved by the use of stimuli corrupted by noise.

CHAPTER 6. STOCHASTIC RESONANCE IN SIMULATED SYSTEMS 164

6.8 Sum m ary

The results presented in this chapter show that stochastic resonance is realisable in discrete

systems as shown by stochastic resonance in the integer model for the network topology in

figure 5.1. The quality of floating point stochastic resonance is always better than that of

the integer model for the noise ranges that are considered useful. Stochastic resonance in

the integer model has the same properties as that for the floating point model. A multiple

comparison t-test of the stochastic resonance between the two models revealed that the

difference between the floating point model stochastic resonance and that of the best

integer model stochastic resonance (12 and 16 bits resolutions) is statistically significant.

The same statistical analysis revealed that SNR values for 12 and 16 bits resolutions are

not statistically different from each other for input neurons but they are both significantly

different from the other two resolutions (10 and 11 bits). It should be noted that these

results just give us numbers. W hat these results do not tell us is whether the differences

between the floating point model and the integer model and the differences between the

various integer resolutions have any perceptual implications. The results do not tell us

whether for instance, sound processed on the floating point platform would be perceived

differently from that processed on the integer platform. These questions can only be

answered by clinical trials. Unfortunately this thesis does not go that far but it is not

difficult to see that this would be one of the many ways of furthering this research as we

will point out in section 7.3 for further work in the next chapter.

, . > : 1 ! t i i ; . : u \ i s'*v ' u " -

~ , v ‘ -■ ' e: r c M > n 3 4 iO ? ■ T h i s & b e w S fc h i i t SSv'-T

: !.-liv-us

■ • wi-/ ••• > • ^ *:■ z% r •

. * •: * J ' ■ * " v-

• v • • ' - ' / -

Chapter 7 2

Conclusion

To conclude this thesis, we will summarise the main results and then give some ideas for

further work. In the introduction, two main themes were developed. The aim was to

investigate whether stochastic resonance in a small network of LIF neurons relies on the

continuous nature of the underlying system or whether a linearly discretised system is

able to display stochastic resonance. It was also of interest to investigate how discrete-

based stochastic resonance is affected by changes in the precision of the values in the

simulations. In order to investigate these two aims, two LIF models were developed: a

floating point and an integer model. The floating point model is based on existing models

and the integer model was derived from the floating point one by way of an approximation.

Besides the models, we needed good quantitative measures of stochastic resonance to base

our comparison on. We settled for the power spectrum and the signal-to-noise ratio.

7.1 Sum m ary o f results

The main conclusion of this thesis is that stochastic resonance can be implemented in

digital hardware of the FPGA type using an integer-based model, thus permitting cheap

real-time systems which rely on stochastic resonance. This shows that stochastic resonance

does not rely on the continuous nature of the underlying system. The stochastic resonance

165

CHAPTER 7. CONCLUSION 166

which has been observed for the discrete system is in many ways similar to that of the

continuous based system. This is useful because such systems can be used as front-ends for

auditory implants like cochlear implants which operate in real-time. In order to arrive at

this result we had to come up with relevant models which we implemented in Java on a PC

and in Handel-C on FPGA. This modelling work and the analysis of the results resulted

in some interesting observations which we outline below.

7.1 .1 Pow er sp ectru m o f spike trains

Our contribution to the computation of the power spectrum of spike trains was a review

of the various ways of sampling action potentials. We noted that the main difficulty in

sampling action potentials lies in the way they are represented. Because of the short

duration of action potentials relative to their frequency of occurrence in many situations,

it has become commonplace to treat them as “events” in time and assume that the only

parameters of importance in neural coding depend in some way on the occurrence time

of the action potential. This representation presents problems to the implementation of

spectral analysis for neuronal spike trains. On the one hand a continuous signal is desirable

for implementation of the FFT algorithm by regular sampling, on the other hand treatment

as a point process is more acceptable and conventional but poses computational problems.

We settled for a method in which the spike train (vector of zeros and ones) is multiplied

by a constant and the FFT algorithm is applied to the result.

7.1 .2 S ignal-to-noise ratio

Our contribution to the computation of the SNR of a spike train given its power spectral

density was in the analysis of the effects of making different assumptions about the dis­

tribution of the noise power relative to the frequencies of interest in the power spectral

density. It is not clear in the literature how the SNR of a spike train should be computed.

The problem lies in separating noise power from the power at the frequency of interest

given that some of the signal power leaks into neighbouring frequencies and that the spike

CHAPTER 7. CONCLUSION 167

train encodes both the noise and the signal. In this thesis we evaluated three different

ways of computing the SNR of a spike train from its power spectral density. The three

methods differ in the assumptions they make about the distribution of noise power relative

to the signal of interest. Our conclusion here is that it is better to use a method which

makes uniformity assumptions about the distribution of noise power in the vicinity of the

frequency of interest. It is this noise power near the frequency of interest that should be

used in computing the SNR.

7.1 .3 M odelling resu lts

In the neural modelling work, we have shown that using a simple numerical method like

Euler, we were able to obtain neuronal stochastic resonance (continuous and discrete based)

which compares with that which has been reported in the literature. The main emphasis

of the modelling work was suitability for hardware implementation. A comparison of the

analytical model decay and the Euler model decay showed that for the time step that we

chose, an Euler approximation is adequate to show stochastic resonance in a network of

LIF neurons.

We derived an integer model of an LIF neuron which is suitable for hardware imple­

mentation from a floating point based model. This is significant because it means we can

build large networks of such neurons and simulate neuronal dynamics with stochastic res­

onance on digital hardware in real time. The main difference between the integer model

and the floating point model is in the evolution of the membrane potential. The integer

model focused on the suitability for reduced resolution digital hardware implementation

on FPGA and precision control. Given the distance between the two models, we decided

to narrow the gap by developing a model which is between floating point and integer by

forcing the floating point model to evolve in discrete steps.

We successfully implemented the integer model and realised stochastic resonance, which

until now has always been associated with floating point based models. The simplification

was a result of the realisation that an LIF neuron with Gaussian white noise can be

CHAPTER 7. CONCLUSION 168

solved using an Euler approximation provided the noise is bandlimited and the time step

is small enough to ensure stability. This means instead of the usual diffusion approximation

approach for solving a stochastic LIF neuron model differential equation, which would take

up a lot of chip area because of it being floating point in nature, we have a much reduced

model which still displays stochastic resonance. The integer based stochastic resonance is

less than that realised from the floating point model but only for the low noise values at

which stochastic resonance is strongest.

7.1 .4 R ed uced reso lu tion stoch astic resonance

The integer model that we developed also allowed us to study the effect of changing the

precision of the values in the simulations on stochastic resonance. Our results show that

discrete based stochastic resonance improves with an increase in the resolution of the values

in the simulation. Specifically we have shown that in a single neuron, stochastic resonance

is poor below 10 bits and saturates at about 12 bits. Any further increase in integer length

does not yield an improvement in stochastic resonance for the input neurons. The effect

of resolution is quite strong at low noise values but diminishes at high noise values. The

effect of quantisation was more manifest at low noise values due to the quantisation of

small numbers. This may explain why the maximum SNR is obtained at higher resolution

(16 bits) in network models as peak SNR occurs at lower noise levels (see below).

7.1 .5 Im provem ent in stoch astic resonance

From a network point of view, we have shown that stochastic resonance improves at the

output neuron as the number of input neurons increased. This improvement in stochastic

resonance at the output neuron when parallel neurons converge on one neuron justifies

the existence of such networks in the central nervous system confirming the findings of

Collins et al. (1995a) realised using a floating point based rate model. We have shown that

this result also holds for integer-based stochastic resonance. In chapter 6 we presented

results (figure 6.15) showing that as the number of input neurons is increased the peak

CHAPTER 7. CONCLUSION 169

for the SNR curve for the output neuron increases, becomes narrower and moves to lower

noise amplitudes. The observation that the SNR peaks move to lower noise amplitudes

is probably due to the fact that the weights are fixed which means as the number of

input neurons is increased we need less noise to excite the output neuron. The sharpness

and narrowness of the peak for large numbers of input neurons could be addressed by

normalising the weights by the number of input neurons. Prom a network design point of

view it is better to have broad peaks because this makes the network tolerant to a broader

range of noise amplitude. However, this is at the expense of the maximum SNR that can

be achieved. We also observed that for a given noise amplitude increasing the size of the

network does not necessarily lead to higher SNR values, though larger networks will have

higher SNR if the noise is chosen optimally.

Our results also revealed an unexpected interaction between the resolution and the

number of input neurons. For higher resolutions like 16 bits, the integer model output

neuron outperformed the floating point-based neuron for high noise values for a network

with 7 neurons. This means the integer model is more robust to noise at higher resolutions

compared to the floating point model. This shows that there is something to gain after

all from using higher resolutions in the integer model. At this point we do not have an

explanation for this interaction. However, we know that increasing the resolution reduces

quantisation effects and increasing the number of input neurons reduces the effect of noise

because we are summing the output of many units. We suspect that a combination of these

two factors may be used to explain the interaction between network size and resolution at

the output neuron.

7.1 .6 S ignificance o f th e netw ork to p o lo g y

The convergence of many LIF neurons onto one neuron (as signified by our network topol­

ogy) or a few neurons has some neurophysiological correlates in wetware. For instance, in

the early visual system there is a lot of convergence from receptors onto the retinal ganglion

cells (Sjostrand et al., 1999). There are more sensors than there are retinal ganglion cells.

CHAPTER 7. CONCLUSION 170

This may be for the purposes of increasing sensitivity in sensory processing. Our results

show that one way of explaining this convergence is for increased sensitivity in sensory

systems. If we turn our attention to the early auditory system we see that there are more

auditory nerve fibres than there are hair cells which implies a divergence (Pickles, 1988).

However, there is a lot of convergence of many auditory nerve fibres onto onset cells in the

cochlear nucleus (Romand and Avan, 1997). It is said in the literature that the amplitude

modulated signals being carried by the auditory nerve fibres are amplified in the cochlear

nucleus through this convergence (Palmer and Winter, 1992,1993). Our conclusion is that

this convergence may be for the purposes of increased sensitivity in the CNS.

7.2 Conclusion

The results summarised above have shown that stochastic resonance is possible in a discrete

system and for the small LIF network considered stochastic resonance is very poor below 10

bits but saturates at 12 bits for the input neurons and at higher resolutions for the output

neuron. Since resolution is inversely proportional to chip area, a resolution of 12 bits will

result in a much smaller hardware design compared to what would be realised using 32 bits

floating point representation and computation. Therefore a noisy LIF network of neurons

can be implemented on digital hardware at 12 bits resolution and be tested for applications

like sound localisation. What is particularly interesting about these results is that they

have been achieved using a simple neuronal model and a simple integration technique which

all amounts to a minimal use of resources. Despite the simplicity of the model used, the

results obtained compare favourably with those obtained using more realistic models like

the Hodgkin-Huxley model (Stemmier, 1996). Results from the work of Stemmier show

that more realistic models of spiking neurons like the Hodgkin-Huxley model also exhibit

the stochastic resonance phenomenon which means this effect is by no means peculiar to

the leaky integrate-and-fire model. The result for the original Hodgkin-Huxley model of the

squid giant axon shows the familiar stochastic resonance shape using the Fisher information

(Cover and Thomas, 1991) metric. Numerous differences exist between the LIF model and

CHAPTER 7. CONCLUSION 171

the Hodgkin-Huxley model, from the differences in the firing rate as a function of the input

current to the fact that the Hodgkin-Huxley model does not have a fixed voltage threshold

for spiking. Nonetheless, both models display this form of stochastic resonance. This

means that we are justified in using an LIF neuron model to study stochastic resonance.

The use of SNR as a performance metric does not compromise the results because as

pointed in the work of Stemmier (1996), in the limit of low firing rates SNR and entropy

based results for an LIF neuron result in similar mathematical expressions. It must be

pointed out though that entropy-based measures provide a more fundamental metric and

a general definition of stochastic resonance in neuronal models is in terms of the Fisher

information. SNR is more suitable for periodic stochastic resonance because for periodic

input we are mainly interested in the output power at the signal frequency.

We also pointed out that the use of a periodic input signal does not compromise the

results because the relevant information measures for quantifying stochastic resonance have

the same asymptotic scaling properties as a function of the noise amplitude irregardless

of the nature of the input signal (Stemmier, 1996). This means that results reported here

could be extended to aperiodic stochastic resonance.

As we pointed out in the previous chapter, we were unable to have a network with

more than 7 neurons on the FPGA due to problems with the synthesis tool. A plot of the

network size versus number of gates showed that the number of gates scales linearly with

network size. Using linear interpolation it worked out that using our model, an FPGA with

1 million gates would result in a network of about 40 neurons allowing for the fact that

placing and routing is never 100 percent of the FPGA size. A network of this size could

be used to simulate small groups of neurons especially in insects where small numbers of

similar neurons can be identified (see the work of Chapman (2001) on modelling the escape

response of crickets).

In terms of application, the results reported here are best used for prototyping systems

which could later be implemented on ASIC hardware. This is mainly due to the limitations

of the FPGA technology. The limitations are mainly in terms of little on-chip memory

which means most of the memory is off-chip which results in an increase of the volume of

CHAPTER 7. CONCLUSION 172

I/O traffic. The more I/O traffic we have, the higher the power consumption and for this

reason FPGAs have remained outside the ever growing market of hand held devices.

7.3 Further work

One of the ways of extending this work would be to use a standard hardware description

language like VHDL to program the FPGA so as to realise bigger networks. VHDL is the

current standard and as such there are many synthesis tools which means one can easily

avoid the situation we found ourselves in when we realised that the only synthesis tool for

Handel-C is not good enough for the network sizes that we initially aimed for. This will

allow the simulation of more complex networks.

The next suggestion for further work follows on from the previous one. Once one is

able to build a bigger network one should go on to test the networks with realistic signals

in real time.

In terms of application, this work could be used in front-end systems for implantable

visual and cochlear prostheses or for detecting regularities in noisy inputs in highly sensitive

input devices.

The results that we presented in this thesis were based on synthetic signals. Another

way of advancing this work is to process realistic signals, such as speech, on this FPGA

platform and then do some trials on human subjects to see if the differences in represen­

tation and resolution that we observed have any perceptual significance.

Bibliography

Abbott, L. (1991). Firing-rate models for neural populations. In Benhar, O., Bosio, C.,

Giudice, P. D., and Tabet, E., editors, N eural ne tw orks , From biology to high-energy

physics, pages 179-196.

Abbott, L. and Kepler, T. (1990). M odel neurons: fro m H odgkin-H uxley to Hopfield.

Statistical mechanics of neural networks. Springer, Berlin.

Abbott, L., Varela, J., Sen, K., and Nelson, S. (1997). Synaptic depression and cortical

gain control. Science , 275:220-223.

Amit, D. (1989). M odelling brain fu n c tio n s — The world o f a ttractor netw orks. Cambridge

University Press.

Anderson, J., Lampl, I., Gillespie, D., and Ferster, D. (2000). The contribution of noise to

contrast invariance of orientation tuning in cat visual cortex. Science , 290:1968-1972.

Aubury, M., Page, I., Randall, G., Saul, J., and Watts, R. (1996). H andel-C language

reference guide. Oxford University, Oxford University computing laboratory.

Bade, S. and Hutchings, B. (1994). FPGA-based stochastic neural networks - implemen­

tation. In IE E E workshop on F P G A s fo r com puting m achines w orkshop , pages 189-198,

Napa, CA.

Barbi, M., Chillemi, S., and Garbo, A. (2000). The leaky integrate-and-fire neuron: a

useful tool to investigate SR. Chaos, solutions and frac ta ls , pages 1273-1275.

173

BIBLIOGRAPHY 174

Benzi, R., Parisi, G., Sutera, A., and Vulpiani, A. (1982). Stochastic resonance in climatic

changes. Tellus, 34:10-16.

Benzi, R., Sutera, A., and Vulpiiani, A. (1981). The mechanism of stochastic resonance.

J. Phys. A, 14:L453-L457.

Bezrukov, S. and Vodyanoy, I. (1997a). Signal transduction across the alamethicin channels

in the presence of noise. B iophys. J., 73:L453-L457.

Bezrukov, S. and Vodyanoy, I. (1997b). Stochastic resonance in non-dynamical systems

without response threshold. N ature , 385:319-321.

Bostock, G. (1996). F P G A s and Programm able L SI. Butterworth Heinemann.

Breslin, C. and Smith, L. (1999). Silicon cellular morphology. In tern . Journa l o f N eural

S y s te m s , 9 (5):491-495.

Brown, D., Feng, J., and Feerick, S. (1999). Variability of firing of Hodgkin-Huxley

and FitzHugh-Nagumo neurons with stochastic synaptic input. P hys. Rev. L e tt.,

82(23) :4731-4734.

Brown, S. and Rose, J. (1996). FPGA and CPLD architectures - A tutorial. IE E E design

and tes t o f com puters, 13(3):42-57.

Bryant, H. and Segundo, J. (1976). Spike initiation by transmembrane current: a white

noise analysis. The Journal o f Physiology, 260(2):279-314.

Bugmann, G. (1991). Summation and multiplication: two distinct operation domains of

leaky integrate-and-fire neurons. Netw ork, 2:489-509.

Bugmann, G., Christodoulou, C., and Taylor, J. (1997). Role of temporal integration and

fluctuation detection in the highly irregular firing of a leaky integrator neuron model

with partial reset. N eural C om putation, 9:985-1000.

BIBLIOGRAPHY 175

Bulsara, A., Elston, T., Doering, C., Lowen, S., and Lindenberg, K. (1996). Cooperative

behaviour in periodically driven noisy integrate-and-fire models of neuronal dynamics.

Phys. Rev. E , 53:3958-3969.

~ - Burkitt, A. and Clark, G. (1999). Analysis of integrate-and-fire neurons: synchronisation

of synaptic input and spike output. Neural Computation, 11(4):871-901.

- Burkitt, A. and Clark, G. (2000). Analysis of synchronisation of the neural response to

noisy'periodic synaptic input. Neurocomputing, 32-33:67-75.

- Capurro, A., Pakdaman, K., Nomura, T., and Sato, S. (1998). Aperiodic stochastic reso-

~ nance with correlated noise. Phys. Rev. E, 58:4820-4827.

Celoxica (2000). Handel-C v2.1 Product information sheet. Embedded solutions Ltd.,

http : / / www.embeddedsol.com/tech — in fo — 2.him.

Xhapeau-Blondeau, F., Godivier, X., and Chambet, N. (1996). Stochastic resonance in a

neuronal model that transmits spike trains. Physical Review E , 53:1273-1275.

^Chapman, T. (2001). Morphological and neural modelling of the Orthopteran escape re­

sponse. PhD thesis, University of Stirling.

- Chialvo, D., Longtin, A., and Muller-Gerking, J. (1997). Stochastic resonance in models

of neuronal ensembles. Phys. Rev. E} 55:1798-1808.

Christodoulou, C. and Bugmann, G. (2001). Coefficient of variation (CV) vs mean in­

terspike interval (ISI) curves: what do they tell us about the brain? Neurocomputing,

_ 38-40:1141-1149.

Cohen, B. (1999). VHDL coding styles and methodologies. Kluwer Academic Publishers.

Collins, J., Chow, C., Capela, A., and Imhoff, T. T..(1.996a). Aperiodic stochastic reso­

nance. Phys. Rev. E, 54:5575-5584.

http://www.embeddedsol.com/tech

BIBLIOGRAPHY 176

Collins, J., Chow, C., and Imhoff, T. (1995a). Aperiodic stochastic resonance in excitable

systems. Phys. Rev. E, 52:3321-3324.

Collins, J., Chow, C., and Imhoff, T. (1995b). Stochastic resonance without tuning. N ature ,

376:236-237.

Collins, J., Imhoff, T., and Grigg, P. (1996b). Noise-enhanced information transmission

in Rat SAl cutaneous mechanoreceptors via aperiodic stochastic resonance. Journa l o f

N europhysiology , 76(l):642-645.

Cover, T. and Thomas, J. (1991). E lem en ts o f in fo rm a tio n theory. New York: Wiley-

Interscience.

Cox, D. and Lewis, P. (1966). The sta tistica l analysis o f series o f events. Metheun and

Company, London.

Cox, D. and Miller, H. (1965). The theory o f stochastic processes. Methuen and Company,

London.

David, R. (1989). The VH D L handbook. Kluwer Academic Publishers.

Dayan, P. and Abbott, L. (2001). Theoretical neuroscience: com puta tiona l and m a th em a t­

ical m odeling o f neural system s. The MIT Press.

Douglas, J., Wilkens, L., Pantazelou, E., and Moss, F. (1993). Noise enhancement of infor­

mation transfer in crayfish mechanoreceptor by stochastic resonance. N ature , 365:337-

340.

Dykman, M., Manella, R., McClintock, P., and Stocks, N. (1990a). Stochastic resonance

in bistable systems—comment. Phys. Rev. Lett., 65(20):2606.

Dykman, M., Manella, R., McClintock, P., and Stocks, N. (1990b). Stochastic resonance

in the linear and nonlinear response of a bistable system to a periodic field. J E T P Lett.,

52(3):141-144.

BIBLIOGRAPHY 177

Fauve, S. and Heslot, F. (1983). Stochastic resonance in a bistable system. P hys. L ett.,

97A:5-7.

Feller, W. (1971). A n in troduction to probability theory and its applications, volume 2.

Wiley, second edition.

Feng, J. (1997). Behaviours of spike output jitter in the integrate-and-fire model. Phys.

Rev. L ett., 79:4505-4508.

Flanagan, D. (2002). Java in a nutshell: a desktop quick reference. O’Reilly, 4th edition.

Forrester, M. (1993). The precision required fo r digital neural hardware. PhD thesis,

University of Wales, Aberystwyth, Department of Computer Science.

French, A. and Holden, A. (1971). Alias-free sampling of neuronal spike trains. K yb em etik ,

8:165-171.

French, A., Holden, A., and Stein, R. (1972). The estimation of the frequency response

function of a mechanoreceptor. K ybem etik , 11:15-23.

Frisina, R., Walton, J., and Karcich, K. (1994). Dorsal cochlear nucleus single neurons can

enhance processing capabilities in background noise. Exp. B ra in Res., 102:160-164.

Gammaitoni, L. (1995). Stochastic resonance and the dithering effect in threshold physical

systems. Physical Review E, 52(5):4691-4698.

Gammaitoni, L., Hanggi, P., Jung, P., and Marchesoni, P. (1998). Stochastic resonance.

Review M o d em Physics, 70:223-287.

Gerstner, W. (2000). Population dynamics of spiking neurons: Fast transients, asyn­

chronous states, and locking. N eural C om putation, 12:43-89.

Gerstner, W., Kempter, R., van Hemmen, J., and Wagner, H. (1996). A neuronal learning

rule for sub-millisecond temporal coding. Nature, 383:76-81.

BIBLIOGRAPHY 178

Gerstner, W., Kempter, R., van Hemmen, J., and Wagner, H. (1997). A developmental rule

for coincidence tuning in the barn owl auditory system. In C om puta tiona l Neuroscience:

Trends in research, pages 665-669. Plenum Press, New York.

Gerstner, W. and Kistler, W. (2002). Spiking neuron models. Cambridge University Press.

Gerstner, W. and van Hemmen, J. (1992). Associative memory in a network of ’spiking’

neurons. N etw ork , 13:139-164.

Gingl, Z., Kiss, L., and Moss, F. (1995a). Non-dynamical stochastic resonance: theory and

expriments with white noise and arbitrarily coloured noise. Europhys. L e tt., 29:191-196.

Gingl, Z., Kiss, L., and Moss, F. (1995b). Non-dynamical stochastic resonance: theory and

expriments with white and various coloured noises. N uovo C im ento D , 17:795-802.

Glover, M. (1999). A n Analogue V L S I Im p lem en ta tion o f an In tegrate-and-F ire N eural

N etw ork fo r R ea l-T im e A ud ito ry D ata Processing. PhD thesis, University of Ediburgh.

Glover, M., Hamilton, A., and Smith, L. (1999). Analogue VLSI leaky integrate-and-fire

neurons and their use in a sound analysis system. Analog Integrated Circuits and S igna l

Processing, Special Issue: M icroelectronics fo r B io-insp ired S ystem s (Selected Papers

fro m M icroN euro’99 Conference), 30(2):91-100.

Gluckman, B., Netoff, T., Neel, E., Spano, W. D., and SchifF, S. (1996). Stochastic

resonance in a neuronal network from a mammalian brain. Physical R eview Letters,

77(19) :4098-4101.

Godiver, X. and Chapeau-Blondeau, F. (1996). Noise-enhanced transmission of spike trains

in the neuron. Europhysics Letters, 35:473-477.

Godivier, X. and Chapeau-Blondeau, F. (1998). Stochastic resonance in the information

capacity of a nonlinear dynamic system. In ter. J. o f B ifu . and Chaos, 8:581-589.

Grassmann, C., Schoenauer, T., and Wolff, C. (2002). PCNN neurocomputers - Event

driven and parallel architectures. In E S A N N , pages 331-336, Bruges, Belgium.

BIBLIOGRAPHY 179

Gray, C. and Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation

columns of cat visual cortex. Proc. o f N atl. Acad. Scie. U SA , 86:1698-1702.

Hansel, D., Mato, G., Meunier, C., and Neltner, L. (1998). On numerical simulations of

integrate-and-fire neural networks. N eural C om puta tions , 10:467-483.

Hecht-Nielsen, R. (1989). Neurocom puting. Addison-Wesley Publishing Company.

Heneghan, C., Chow, C., Collins, J., Imhoff, T., Lowen, S.B., and Teich, M. (1996). Infor­

mation measure quantifying aperiodic stochastic resonance. Phys. Rev. E ., 54:R2228-

R2231.

Hennig, M., Kerscher, N., Funke, K., and Worgotter, F. (2001). Stochastic resonance in

visual cortical neurons: does the eye-tremor actually improve visual acuity? N eurocom ­

puting ', 44-46C:l 15-120.

Hertz, J., Krogh, A., and Palmer, R. (1991). In troduction to the theory o f neural com pu­

tation. Addison-Wesley.

Hess, S. and Albano, A. (1998). Minimum requirements for stochastic resonance in thresh­

old systems. In t. J. B ifurca tion and chaos, 8:395-400.

Hohfeld, M. and Fahlman, S. (1992). Probabilistic rounding in neural network learning

with limited precision. N eurocom puting , 4:291-299.

Hohn, N. (2000). Stochastic resonance in a neuron model with application to the auditory

pathway. Master’s thesis, University of Melbourne, Department of Otolaryngology.

Holmstrom, S. and Sere, K. (1998). Reconfigurable hardware - a case study in codesign.

Technical report 175, TUCS, Turku Centre for Computer Science, Finland.

Holmstrum, M. (2000). F P G A designs. PhD thesis, Turkus University.

Hutcheon, B., Miura, R., and Puil, E. (1996). Models of subthreshold membrane resonance

in neocortical neurons. J. N eur. P hys., 76:698-714.

BIBLIOGRAPHY 180

Ifeachor, E. and Jervis, B. (2002). D igital signal processing: A practical approach. Prentice

Hall, 2nd edition.

Jahnke, A., Dschonauer, T., Roth, U., Mohraz, K., and Klar, H. (1997). Simulation of

spiking neural networks on different hardware platforms. In Gerstner, W., Germond,

A., Hasler, M., and Nicoud, J., editors, A rtific ia l neural netw orks - IC A N N -97 , Lecture

notes in computer science series 1327, pages 1187-1192. Springer-Verlag.

Joiner, R. (1994). M initab Handbook. Duxbury Press.

Jung, P. (1994). Threshold devices: Fractal noise and neural talk. P hys R ev E, 50:2513-

2522.

Kanamaru, T., Horita, T., and Okabe, Y. (1999). Stochastic resonance for the superim­

posed periodic pulse train. Phys. Lett. A , 255:23-36.

Kandel, E., Schwartz, J., and Jessel, T. (2000). P rincip les o f neural science. McGraw-Hill,

fourth edition.

Kaufman, I., Luchinsky, D., McClintock, P., Soskin, S., and Stein, N. (1996). High-

frequency stochastic resonance in SQUID’s. Phys. Lett. A , 220:219-223.

Kempter, R., Gerstner, W., van Hemmen, J., and Wagner, H. (1998). Extracting oscilla­

tions: neuronal coincidence detection with noisy periodic spike input. N eural C om puta­

tion , 10:1987-2017.

Kistler, W., Gerstner, W., and van Hemmen, J. (1997). Reduction of the Hodgkin-Huxley

equations to a single variable threshold model. N eural C om puta tion , 9:1025-1045.

Koch, C. (1999). B iophysics o f C om putation. Oxford University Press, NY.

Koch, C. and Segev, I., editors (1999). M ethods in N eural m odeling: fro m ions to netw orks.

The MIT Press, second edition.

BIBLIOGRAPHY 181

Konig, P., Engel, A., and Singer, W. (1996). Integrator or coincidence detector? The role

of the cortical neuron revisited. Trends in N euroscience , pages 130-137.

Lansky, P. and Lanska, V. (1997). Noise in integrate-and-fire models of neuronal dynamics.

In Gerstner, W., Germond, A., Hasler, M., and Nicoud, J.-D., editors, Lecture N o tes in

C om puter Science , 1327, pages 49-54, Lausanne, Switzerland. Springer.

Lawrence, A. (1997). Macro support for Xilinx achitecture.

Lee, C., Rohrer, W., and Sparks, D. (1988). Population coding of saccadic eye movements

by neurons in the superior colliculus. N ature , 332:357-360.

Lee, S. and Kim, S. (1999). Parameter dependence of stochastic resonance in the stochastic

Hodgkin-Huxley neuron. Phys. Rev. E, 60:826-830.

Lee, S., Neiman, A., and Kim, S. (1998). Coherence resonance in a Hodgkin-Huxley neuron.

P hys. Rev. E , 57:3292-3297.

Levin, J. and Miller, J. (1996). Broadband neural encoding in the cricket cereal sensory

system enhanced by stochastic resonance. N ature, 380:165-168.

Longtin, A. (1993). Stochastic resonance in neuron models. J. S ta t. P hys., 70:309-327.

Longtin, A., Bulsara, A., and Moss, F. (1991). Time-interva! sequences in bistable systems

and noise-induced transmission of information by sensory neurons. Phys. R ev L ett.,

67:656-659.

Luchinsky, D., Mannella, R., McClintock, P. V. E., and Stocks, N. (1999a). Stochastic

resonance in electrical circuits I. conventional stochastic resonance. IE E E Trans, on

C ircuits and System s, 46:1205-1214.

Luchinsky, D., R. Mannella, P. M., and Stocks, N. (1999b). Stochastic resonance in electri­

cal circuits II. nonconventional stochastic resonance. IE E E Trans. C ircuits and System s,

46:1215-1224.

BIBLIOGRAPHY 182

Lynn, P. (1989). A n in troduction to the analysis and processing o f signals. Macmillan

Education, third edition.

Maass, W. (1996). Lower bounds for the computational power of spiking neurons. N eural

C om puta tion , 8 (l):l-40 .

Maass, W. (1997). Network of spiking neurons: the third generation of neural network

models. N eural netw orks , 10 (9): 1659-1671.

Maass, W. and Bishop, C. M., editors (1999). Pulsed neural netw orks. MIT.

Maass, W. and Natschlager, T. (1999). Fast analog computation in networks of spiking neu­

rons using unreliable synapses. In E S A N N 9 9 - Proceedings o f the European Sym posium

on A rtific ia l N eural N etw orks , pages 417-422.

Mahowald, M. and Douglas, R. (1991). A silicon neuron. N ature , 354:515-518.

Mainen, Z. and Sejnowski, T. (1995). Reliability of spike timing in neocortical neurons.

Science , 268:1503-1506.

Mannela, R. and Palleschi, V. (1989). Fast and precise algorithm for computer simulation

of stochastic differential equations. P hysical R eview A , 40:3381-3386.

Mar, D., Chow, C., Gerstner, W., Adams, R., and Collins, J. (1996). Noise-shaping in

a population of coupled model neurons. In Proceedings o f the N a tiona l A cadem y o f

Sciences , pages 10450-10455.

Marino, F., Guidic, M., Barland, S., and Balle, S. (2002). Stochastic resonance in an

excitable optical system. Phys. Rev. L ett., 88(4):040601-040604.

Marsalek, P., Koch, C., and Maunsell, J. (1997). On the relationship between synaptic

input and spike output jitter in individual neurons. Proceedings o f N a tiona l A cadem ic

Society, Neurobiology, 94:735-740.

BIBLIOGRAPHY 183

McNamara, B., Wiesenfeld, K., and Roy, R. (1988). Observation of stochastic resonance

in a ring laser. Phys. Rev. L ett., 60:2626-2629.

Moerland, P. and Fiesler, E. (1997). Neural network adaptations to hardware implemen­

tations. In Fiesler, E. and R.Beale, editors, H andbook o f neural com putation. Institute

of Physics Publishing and Oxford University Publishing, New York.

Mori, T. and Kai, S. (2002). Noise-induced entrainment and stochastic resonance in human

brain waves. Phys. Rev. L ett., 88(218101):l-4.

Morse, R. and Evans, E. (1996). Enhancement of vowel coding for cochlear implants by

addition of noise. N ature Med, 2:2626-2629.

Moss, F., Douglas, J., Wilkens, L., Pierson, D., and Pantozelou, E. (1993). Stochastic

resonance in an electrical Fitzhugh-Nagumo model. A n n . N .Y . Acad. S c i., 706:26-41.

Moss, F., Pierson, D., and Gorman, D. (1994). Stochastic resonance: a tutorial and update.

In t. J. B ifurca tion and chaos, 4:1383-1397.

Moss, F. and Wiesenfeld, K. (1995). The benefits of background noise. S c ien tific A m erican ,

273:50-54.

Mtetwa, N., Smith, L., and Hussain, A. (2002a). Stochastic resonance and finite resolution

in a network of leaky integrate-and-fire neurons. In A rtific ia l neural netw orks - IC A N N

2002, pages 117-122, Madrid, Spain. Springer.

Mtetwa, N., Smith, L., and Hussain, A. (2002b). Stochastic resonance and finite resolu­

tions in a leaky integrate-and-fire neuron. In E SA N N 2002: Proceedings o f the European

Sym posium on A rtific ia l N eural N etw orks, Bruges, Belgium , pages 343-348.

Murray, A. and Edwards, P. (1993). Synaptic weight noise during MLP training: Fault

tolerence and training improvements. IE E E Transactions on N eural N etw orks, 4(4):722-

725.

BIBLIOGRAPHY 184

Murray, A. and Edwards, P. (1994). Enhanced MLP performance and fault tolerence

resulting from synaptic weight noise during training. IE E E Transactions on N eural

N etw orks, 5:792-802.

Nagle, R. and Saff, E. (1986). Fundam entals o f d ifferentia l equations. Addison-Wesley.

Nicolis, C. and Nicolis, G. (1982). Stochastic aspects of climatic transitions — response to

periodic forcing. Tellus, 34:1-9.

Nozaki, D., Mar, D., Grigg, P., and Collins, J. (1999). Effects of colored noise on stochastic

resonance in sensory neurons. Phys. Rev. Lett., 82:2402-2405.

Ott, H. (1976). N oise reduction techniques in electronic system s. John Wiley and Sons.

Palmer, A. and Winter, I. (1992). Cochlear nerve and cochlear nucleus response to the

fundamental frequency of voiced speech sounds and harmonic complex tones. Advances

in the B iosciences, 83:231-239.

Palmer, A. and Winter, I. (1993). Coding of the fundamental frequency of voiced speech

sounds and harmonic complexes in the cochlear nerve and ventral cochlear nucleus. In

Merchan, M., editor, The m am m alian cochlear nuclei: O rganisation and fu n c tio n , pages

373-384. Plenum press, New York.

Pei, X., Bachmann, K., and Moss, F. (1995). The detection of threshold, noise and stochas­

tic resonance in the FitzHugh-Nagumo model. Phys. Rev. A , 206:61-65.

Perez-Uribe, A. and Sanchez, E. (1997). FPGA implementation of a network of neuron-like

adaptive elements. In Gerstner, W., Germond, A., Hasler, M., and Nicoud, J. D., editors,

Lecture N otes in C om puter Science, 1327, pages 1247-1252, Lausanne, Switzerland.

Springer.

Pickles, J. (1988). A n in troduction to the physiology o f hearing. Academic press, 2nd

edition.

BIBLIOGRAPHY 185

Plesser, H. (1998a). Noise turns integrate-and-fire neuron into bandpass filter. In Eisner,

N. and Wehner, R., editors, Proceedings o f the 26th G ottingeh Neurobiology Conference ,

volume II, page 760, Thieme,Stuttgart.

Plesser, H. (1998b). Noise turns integrate-fire neuron into bandpass filter. G ottingen

Neurobiology Report, 11:760.

Plesser, H. (1999). Aspects o f S ignal Processing in N o isy N eurons. PhD thesis, Georg-

August-Universitat, Gottingen.

Plesser, H. and Geisel, T. (1999). Markov analysis of stochastic resonance in a periodically

driven integrate-and-fire neuron. P hysical R eview E , 59(6):7008-7017.

Plesser, H. and Gerstner., W. (2000). Noise in integrate-and-fire neurons: from stochastic

input to escape rates. N eural C om puta tion , 12:367-384.

Plesser, H. and Tanaka, S. (1997). Stochastic resonance in a model neuron with reset.

P hysics L e tters A , 225:228-234.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1995). N um erica l Recipes in

C. Cambridge University Press, second edition.

Priestley, M. (1982). Spectral analysis o f tim e series. Oxford.

Raloff, J. (1996). Is noise a neural necessity? Science N ew s , 150:330-331.

Rhode, W. and Greenberg, S. (1994). Encoding of amplitude modulation in the cochlear

nucleus of the cat. J. Neurophysiology, 71:1797-1825.

Riani, M. and Simonotto, E. (1994). Stochastic resonance in the perceptual interpretation

of ambiguous figures: A neural network model. P hysics R eview L e tte rs , 72(19):3120-

3123.

Rieke, F., Warland, D., Steveninck, R., and Bialek, W. (1997). S P IK E S : Exploring the

neural code. MIT Press, first edition.

BIBLIOGRAPHY 186

Robinson, F. (1974). N oise and flu c tu a tio n s in electronic devices and circuits. Oxford

University Press.

Robinson, J., Asraf, D., Bulsara, A., and Inchiosa, M. (1998). Information-theoretic dis­

tance measures and the generalisation of stochastic resonance. Phys. Rev. L e tt., 81:2850-

2853.

Romand, R. and Avan, P. (1997). Anatomical and functional aspects of the cochlear

nucleus. In Ehret, G. and Romand, R., editors, The central auditory system , pages

97-191. Oxford University Press.

Sackinger, E. (1997). Measurement of finite precision effects in handwriting- and speech-

recognition algorithms. In Gerstner, W., Germond, A., Hasler, M., and Nicoud, J.-D.,

editors, A rtific ia l N eural N etw orks - I C A N N ’97, 7th In ten a tio n a l conference, volume

1327 of Lecture notes in C om puter Science, pages 1223-1228, Lausanne, Switzerland.

Springer.

Scharstein, H. (1979). Input-output relationship of the leaky-integrator neuron model. J.

M ath. Biology, 8:403-420.

Senn, W., Segev, I., and Tsodyks, M. (1998). Reading neural synchrony with depressing

synapses. N eural C om putation, 10(4):815-819.

Shalden, M. and Newsome, W. (1998). The variability of the discharge of cortical neurons

for connectivity, computation, and information coding. J. o f N euroscience, 18:3870-3896.

Shannon, C. (1948). A mathematical theory of computation. The B e ll S ys tem Technical

Journal, XXVII(3):379-423.

Shepherd, G. (1988). Neurobiology. Oxford University Press, 2nd edition.

Shepherd, G. (1990). The synaptic organisation o f the Brain . Oxford University Press,

third edition.

BIBLIOGRAPHY 187

Shimokawa, T., Rogel, A., Pakdaman, K., and Sato, S. (1999). Stochastic resonance and

spike timing in an ensemble of leaky integrate-and-fire neurons model. P hysical R eview

E, 59:3461-3470.

Sjostrand, J., Olsson, V., and Conradi, N. (1999). Quantitative estimations of fovea and

extra-foveal retinal circuitry in humans. V ision research, 39:2987-2998.

Smith, L. (1996). Onset-based sound segmentation. In Touretzky, D., Mozer, M., and

Hasselmo, M., editors, A dvances in N eural In fo rm a tio n Processing S y s te m s , volume 8,

pages 729-735. MIT Press.

Smith, L. (1998). Extracting features from the short-term structure of cochlear filtered

sound. In Bullinaria, J., Glasspool, D., and Houghton, H., editors, 4th N eural com puta­

tio n and Psychology W orkshop , pages 113-125. Springer Verlag.

Smith, L., Glover, M., and Hamilton, A. (1998). A comparison of a hardware and a

software integrate-and-fire neural network for clustering onsets in cochlear filtered sound.

In Constantinides, T., Kung, S., Niranjan, M., and Wilson, E., editors, N eural N etw orks

fo r S ignal Processing VIII: Proceedings o f the 1998 W orkshop , pages 516-523. IEEE

press.

Softky, W. (1994). Sub-millisecond coincidence detection in active dendritic trees. N euro­

science , 58:13-41.

Stemmier, M. (1996). A single spike suffices: the simplest form of stochastic resonance in

model neurons. N etw ork: C om puta tion in N eural S y s tem s , 7(4):687-716.

Stemmier, M., Usher, M., and Niebur, E. (1995). Lateral interactions in primary visual

cortex: A model bridging physiology and pyschophysics. Science, 269:1877-1880.

Sterratt, D. (2002). Spikes, synchrony, sequences and Schistocerca’s sense o f sm ell. PhD

thesis, University of Edinburgh.

BIBLIOGRAPHY 188

Stevens, C. and Zador, A. (1998). Novel integrate-and-fire-like model of repetitive firing

in cortical neurons. In Proceedings o f the 5th jo in t sym posium on neural com pu ta tion ,

Institute of neural computation USCD, La Jolla.

Stocks, N. and Mannella, R. (2001). Generic noise-enhanced coding in neural arrays. Phys.

Rev. E , 64:030902-1 - 030902-4.

Tal, D. and Schwartz, E. (1997). Computing with the leaky integrate-and-fire neuron:

Logarithmic computation and multiplication. Neural C om puta tion , 9:305-318.

Theunissen, F. and Miller, J. (1991). Representation of sensory information in the cricket

cereal sensory system. II: Information theoretic calculations of system accuracy and

optimal tuning curve widths of four primary interneurons. J. N europhysiol, 66:1690-

1703.

Traynelis, S. and Jaramillo, F. (1998). Getting the most out of noise in the central nervous

system. Trends in Neuro sciences, 21:137-145.

Troyer, T. and Miller, K. (1997). Physiological gain leads to high ISI variability in a simple

model cortical regular spiking cell. N eural C om puta tion , 9:971-983.

Tuckwell, H. (1988a). In troduction to theoretical neurobiology, volume I. Cambridge Uni­

versity Press.

Tuckwell, H. (1988b). In troduction to theoretical neurobiology, volume II. Cambridge

University Press.

Tuckwell, H. (1989). Stochastic processes in the neurosciences. SIAM, Philadelphia.

Usher, M. and Feingold, M. (2000). Stochastic resonance in the speed of memory retrieval.

Biological C ybernetics, 83:L11-L16.

van den Bout, D., Morris, J., Thoae, D., Labrozzi, S., Wingo, S., and Hallman, D, (1992).

Anyboard - An FFGA-based reconfigurable system. IE E E D esign and Test o f C om put­

ers, 13:21=30.

BIBLIOGRAPHY 189

Villasenor, J. and Mangione-Smith, W. (1997). Configurable com puting. Scientific Ameri­

can, h t tp : / / w w w .s c ia m .c o m /0 6 7 is su e /0 6 7 v illa se n o r .h tm .

Volgushev, M. and Eysel, U. (2000). Noise makes sense in neural computing. Science ,

290:1908-1909.

von der Malsburg, C. (1994). The correlation theory of brain function. In Domany, editor,

M odels o f neural netw orks II. Springer.

von der Malsburg, C. and Schneider, W. (1986). A neural cocktail-party processor. Biol.

Cybern ., 54:29-40.

Waldemark, J., Lindbald, T., Lindsey, C., Waldemark, K., Oberg, J., and Millberg, M.

(1998). Pulse coupled neural network implementation in FPGA. In Rogers, S., Fogel,

D., Bezdek, J., and Bosachi, B., editors, Proceedings o f S P IE - The In te rn a tio n a l Society

fo r Optical Engineering: A pplica tions and Science o f C om puta tiona l In te lligence , volume

3390, pages 392-401.

Weisenfeld, K. and Moss, F. (1995). Stochastic resonance and the benefits of noise: from

ice ages to the crayfish and squids. Nature, 373:33-36.

Wiesenfeld, K. and Jaramillo, F. (1998). Minireview of stochastic resonance. Chaos, 8:539-

548.

Wiesenfeld, K., Pierson, D., Pantazelou, E., Dames, C., and Moss, F. (1994). Stochastic

resonance on a circle. Phys. Rev. Lett., 72:2125-2129.

Winer, B., Brown, D., and Mchels, K. (1991). S ta tis tica l p rincip les in experim ental design.

McGraw-Hill, Inc.

Wolpert, S. and Micheli-Tzanakou, E. (1996). A neuromime in VSLI. IE E E Transactions

on N eural N etw orks , 7(2):300-306.

Xie, Y. and Jabri, M. (1992). Analysis of quantization in multi-layer neural networks using

statistical model.

http://www.sciam.com/067issue/067villasenor.htm

BIBLIOGRAPHY 190.

Zalanyi, L., Bazso, F., and Erdi, P. (2001). The effect of synaptic depression on stochastic

resonance. Neurocom puting , 38-40:459-465.

f e fivatioh o f ..:rovenf

: if I or. I ra a s fb r ft t f o r ' t f Mr.. si agio

reitwm c a s e r '.v .

A ppendix A

Derivation of membrane potential

Fourier transform for the single

neuron case

The LIF equation is given by:

where

dV
dt

/(t) = o 5 3 o (t - t«)

APPENDIX A. SINGLE NEURON POWER SPECTRA 192

V e
Jt1 *=1 's

eK r» T̂ du + (A.7)

V e* = — V'e ^ [e“̂ T du + c
t3 i= 1 Jti

Therefore V (t) is given by the following:

V (t) =
ae r “ _ t L

TT Z s e Tar (l
1 s \ t t J 1= 1

Fourier transform G (u) of V (t) is given by:

* ■ . (? - £) « L* y» J

r r e - ^ + ^ d t
Jo Jo

Ta

ae "tetc T r-^ _ ±1.
=8 ; v i ~ T) I . e r'

'A T r.) t= l

(A.8)

(A.9)

(A.10)

G(w) =
a

m E
2 jrr*(£ - k) te l . T + j u f + J W .

After separating the complex part into the real and imaginary we get:

„ n +
. O r - ^ ___ i.

G (") - S 5 F i) i S ' "

1 i ef*̂T <w2eti r̂ ~ r< ̂
r 2r» r* T T a 1 T_________

(A.11)

(A.12)

(A.13)

If we concentrate on the complex term in the big square brackets we can compute its

power spectrum as follows:

Let e* = e* ^ - ^ then an approximation of the power spectrum is given by the follow­

ing:

APPENDIX A. SINGLE NEURON POWER SPECTRA 193

a ■ 1 | a;2 _ et- __ upjg
T 2 T„ ' r T» T T * 2 T

2

+
^ + w 3 - ^ - a ; 3 e i

2 -

. (^ + w 2) (4 r + w 2) (^ + w 2) (4 r + u ; 2)

(A.14)
I

1 i up j g uPej i up I u>4 u P g u ^ g
r 4ra 2 r 2râ r 3ra 3 t 3 t* T2ra 2 tA TTp t t ,

/ (£ + ^ m + " 2) 2

2 e;2 o>2et a;4ej ■ o;2et2 tAê 2
__________2ra 2 T3Tj TTa r 2r»2 T2

(^ + ^) 2 (^ + ^) 2

it>2 I uPg uPg i uP i 4 o p g 4^4 + ^ 2 ~ ^ - ^ + 7 2 + ^ - ^ -
(^ + a ; 2)2(^ + a;2)2

* ^ 1 ^ + ^4 + + a ;4 2 |
 ------- (A. 15)(1 + a;2)2(J^ + (J 2)2

P¥: y-V-
■-■}.' ■ ~'r* •>■-•- - "v',T: r

■ v .

i r
d;

& a U - k ~ % ; > ■ : t . . /•

Bcdvi^p, ' hjr -V d;>ve;

A ppendix B

Derivation of membrane potential

Fourier transform for the many

neurons case

The LIF equation is given by:

where '

I(t) = - hi)
k i

and
. ' 1 L

a(t) = —e T-
Ts

dV V N "- j r = - - + a ' E ' E < x (t - t ki)
a i r fc=i*=i

dV V o i A -!=ia 1----- = — > > e r-
dt r r . h h

Solving for V we have:
_ (y e.) = - £ £ e er

T« fc=l t=l

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

194

APPENDIX B. MULTIPLE NEURONS POWER SPECTRA 195

V e r = — [a E E a(w “ i)e *
T3 J o fct l S

du

n N n r t
= - E E f o t (u - t ki)e~rdu

a i A= — > > I e t« e Tbu
T* fc=l t=l-

N n
Cl V—■v /* “ !L.j

= — z_ ^Z ^eT‘ / ere T‘ d>u
Ts k- 1 t=l ■'***

= [* tt* l -±)d U
TS k=1 i=l tk<

a ” "
= r E E er '

' « Jfe=l i = l

a i ^ !si
_ r (I _ E , 2E eT’

® ' T Ta ' f c = l 1 = 1

i _ x
L T Ta

u (—----—)' e r* ;
**.•

JV n

v W = e V f i j r i E E e^
s V t tb) k = l i = l

The Fourier transform G(cj) for V(t) is given by:

G(w) =
a N n

W f e r e

(B.7)

e*(7-£) - ***<(7 - 57) dt
25rr>(? - £) f e i s i -'0

 V T - T'- E £ « - * « [r e - i e - ^ d t
2 *ra(± - i) j f e £ | > * J

r / “ e - ^ + ^ d t
7o -/o

a A A ' - i t i
27r r (i _ m E 2 > r*
■a7rT>'.r Tj ' fc=l t=l

O _ ! i i

a n - f l - i V l Z E e "
Z7rT*\r Ta ' fc=l *=1

Therefore:

1
o° 1

r - t n (± - £) f 1 . c-tUu+h) 1
oo-

q0

13■o»
1__

1 „ I - j w + 1 J 0 .
TV n

U» r - ^ \ *.L

2 tt7- (T _ S X / e
Z 7 r 7 » \ T TS) k = l i = l

g t fe* (r r a) ’

J U - j U + ±

G(u) =
a N n tki

n E E * *27rra(i - i) ^ ^ j u _ i ̂+ I
(B.8)

APPENDIX B. MULTIPLE NEURONS POWER SPECTRA 196

After normalising the denominators we get:

a N n

n E E U2 + -T227rrs(i - i) ^ ltt t

Putting everything under the same denominator we get:

(B.9)

G(w) =
a iV n

nEE« - O'w + i) (£ + a)2) - e **i(* - ju>)(ta2 + 4 r)

K + ^ X j i + w2)
(B.l 0)

Let &ki = e **,4t T* ̂ and after separating the complex part into real and imaginary parts

the Fourier transform is given by the following:

<?(«) =
a N n tkj

e T-
— H— H” ~TgT4 TTa Tg T

u2eki 3 {̂ 2 — ^rr- + to3 — uj3eki)
(w2 + ^) (4 r + w2)

The power spectrum is calculated as follows:

|GV)|S
N n___________ 2 ft-

r s E E e - *
4?r2(T - i) f c i S (a-2 + A) (^ + w2)

+
/ w tL>efe; , 3 , , 3 - \(7 2 — r f + w — a; efcfj

(w2 + J j) (4 f + a)2)
(B.12)

a" N ” 2 ifci
E E ^

_ J _ _1_
T*2t4 '

_|_r3ra3 ‘ t 2t *2 +

«i _ g4-£fci _ l^ 6 _
r 2 Tjj2 -1“ ^

(w2 + £) 2 (£ + w 2)
_ + 2

w'eki
Ta T 3

_ 1_ I u e k i I
T i 3 T

efcjV2
t 2 t . 2t<i T Tj T T g a T 7

(w2 + .;J i)2(£ + w*)*
6iT

Tb 2 T 2

i wzefci , w4 , ai’ejti
+ ^ + ------

A
TT,

raT3

(^ + ^) 2(^ + ^ y
eki I w2efci , w4efci , u>4efci2

(a^ + ^ ^ . + u;2) 2

.2 ,.|2 « , . ,.,4 U4ekjUZ U &ki I _
■ T 4 T 2 T3 2 T 2__________

+ (w2 + ^) 2(£ + u 2) 2

<*>2eki i ^ 2efcf2 _ tJ4efcl- , u}4eki'
_ 2 _ 2 * _ 4 _ 2 I _ 2_ T T B ________ T j _______ Ta Ta

(w2 + ^ r) 2 (^ + w 2) 2

|6ejfej - ^ ^ - ^ e ki + ^ et,2~
(w2 + ^ j) 2 (^ + i a 2) 2

(B.13)

