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Abstract. Small-World networks are highly clusterized networks with
small distances between their nodes. There are some well known biolog-
ical networks that present this kind of connectivity. On the other hand,
the usual models of Small-World networks make use of undirected and
unweighted graphs in order to represent the connectivity between the
nodes of the network. These kind of graphs cannot model some essen-
tial characteristics of neural networks as, for example, the direction or
the weight of the synaptic connections. In this paper we analyze dif-
ferent kinds of directed graphs and show that they can also present a
Small-World topology when they are shifted from regular to random.
Also analytical expressions are given for the cluster coefficient and the
characteristic path of these graphs.

1 Introduction

Graph theory [1] provides the most adequate theoretical framework in order to
characterize the anatomical connectivity of a biological neural network. To rep-
resent neural networks as graphs allows a complete structural description of the
network and the comparison with different known connection patterns. The use
of graph theory for modeling of neural networks has been used in theoretical
neuroanatomy for the analysis of the functional connectivity in the cerebral cor-
tex. In [2] it is shown that the connection matrices based on neuroanatomical
data that describes the macaque visual cortex and the cat cortex, present struc-
tural characteristics that coincide best with graphs whose units are organized in
densely linked groups that were sparsely but reciprocally interconnected. These
kind of networks also provide the best support for the dynamics and high com-
plexity measures that characterize functional connectivity.

There are some well known biological neural networks [3,4] that present a
clear clustering in their neurons but have small distances between each pair of
neurons. These kind of highly clusterized, highly interconnected sparse networks
are known as Small-World (SW) networks. SW topologies appear in many real
life networks [6, 7], as a result of natural evolution [4] or a learning process [8]. In



[5] it is shown that on SW networks coherent oscillations and temporal coding
can coexist in synergy in a fast time scale on a set of coupled neurons.

In [9] a method to study the dynamic behavior of networks when the network
is shifted from a regular, ordered network to a random one is proposed. The
method is based on the random rewiring with a fixed probability p for every
edge in the graph. We obtain the original regular graph for p = 0, and a random
graph for p = 1. This method shows that the characteristic path length (the
average distance between nodes measured as the minimal path length between
them) decreases with the increasing value of p much more rapidly than the
clustering coefficient (that average number of neighbors of each node that are
neighbors between them) does. It was found that there is a range of values of p
where paths are short but the graph is highly clustered.

As initial substrate for the generation of SW, the use of undirected and un-
weighted ring-lattices or grids is usually proposed [9]. They are used because
these graphs are connected, present a good transition from regular to random,
there are not specific nodes on them and model a high number of real networks.
Biological or artificial neural networks are not accurately represented by these
models as neural networks present a clear directionality and a different coupling
in their connections. For these reasons is necessary to develop new models of
regular networks that take in account the direction and the weight of the neu-
ronal synapses and to explore if these models can also present a SW area when
they are shifted from regular to random.

2 Models of networks

In the existing literature about SW, only graphs that are connected, sparse,
simple, undirected and unweighted are considered. Even though the graphs that
conform the previous conditions can be accurate models for many networks,
there are many other networks where relations are often directed or can have a
value associated with the connection. In biological neural networks the informa-
tion flows mainly from the presynaptic neuron to the postsynaptic neuron and
the connections between different neurons have different coupling efficacies. As
pointed in [9] and [2] it is necessary to explore models of networks where the
undirected and unweighted conditions are relaxed. It is not clear, a priory, that
relaxing those two conditions, the resulting networks present a similar SW area
when they are shifted from regular to random.

As initial substrate we are going to consider directed rings-lattices and grids
both weighted and unweighted. These substrates are selected since they are
connected, regular and do not have special nodes. The directed unweighted ring-
lattices will be explored for two different distributions of the neighbors of each
node. The forward-backward distribution makes each node to connect to neigh-
bors that are both at its left and right sides. In the forward networks each node
only connects with nodes that are at the right side. Ring-lattices are depicted in
fig. 1.



Directed Forward-Backward ring-lattice

Fig. 1. Directed ring lattices

For grids we explore two different configurations. In the case of forward-
backward distribution, each node connects with neighbors that are in each of
the four possible directions in the grid. In the Forward networks each node only
connect with nodes that are at its right and top sides.

In the case of weighted graphs we are going to consider a forward connec-
tion pattern. In our model the weight of each connection will follow an uniform
random distribution w, with values 0 < w < 1. Models of weighted graphs are
depictured in fig. 2.

Fig. 2. Weighted graphs, left: Forward Ring lattice k = 4, right: Forward Grid k = 4

3 Length and Cluster scaling

In this section we give analytical expressions for both the cluster coefficient and
the characteristic path for the regular graphs presented in the previous section.

We denote by n as the number of nodes in the graph and &k as the number
of neighbors of each node. For a directed graph we say that node b is a neighbor
of node a if the edge (a,b) exists. Note that b neighbor of a does not imply a
neighbor of b. The neighborhood of a node is the set of nodes that a given node
is connected to.

Intuitively the cluster coefficient is the average number of neighbors of each
node that are neighbors between them. More precisely, for a vertex v let us define
I'(v) as the subgraph composed by the neighbors of v (not including v itself). Let



us define the cluster coefficient for a given node v as C,, = |E(I'(v))|/(ky(ky—1))
where |E(I'(v))| is the (weighted in the case of weighted graphs) number of
edges in the neighborhood of v, &, is the number of neighbors of v. The cluster
coefficient for a given graph G' can now be defined as

n

0= 2= (1)
n

The characteristic path length of a graph indicates how far the nodes are

among them. For a vertex v let us define its characteristic path length as L, =

Yo, d(v,i)/(n—1) where d(v, ) indicates the (weighted in the case of weighted

graphs) length of the shortest path connecting v and ¢. Using L, we define the
characteristic path length over a graph as

=Xzl
n
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Simple counting for each type of graph provides with the following expressions
for L and C:

— Unweighted Forward-Backward ring-lattices

n(n+k—2) 3(k—2)
k=1 ~0W C=55=y =00 3)
— Unweighted Forward ring-lattices
n(n+k—2) 1
L = Y — = = - = 1 . 4
S =0m) €=5=00) 4
— Unweighted Forward-Backward grids
_2yn+k—-4 1 _3(k-2)
L_T_O(n) 0_2(19—1)_0(1)' (5)
— Unweighted Forward grids
2 k—4 1
L:‘/EJFT:O(TLE) C=:=0(1) (6)
— Weighted Forward ring-lattices
L=0(n) C=0(1) (7)
— Weighted Forward grids
L=0({n?) C=0(1) (8)

The values of L for unweighted grids are obtained noting that d(v;;, vy 1) =
d(vij,vijr) + d(vijr, vy j) and using the results for unweighted ring-lattices. The
results for weighted graphs are due to the relation dd,, (u,v) < dy(u,v) < dy(u,v)
and 0 > 0 where d,, is the distance between two nodes in weighted graphs and



dy is the distance between two nodes in unweighted graphs. We also use the fact
that the weight for each connection has a value greater than 0.

In a random graph it can be shown that L scales as log(n) and C scales to 0
as n tends to infinity [10]. This means that our models have a different scaling
regime that the random graph model. This makes us expect that at some point,
when we shift from these regular models to a random graph, there must be a
phase change both in the value of L and C'. If this change of phase is produced
at different values of p for L and C' we can build SW graphs using this regular
substrates, and therefore, there exist SW graphs for these models.

4 Metrics behavior

In this section we explore the values of L and C' when the models described in
the previous sections are shifted from regular to random.

If we apply the procedure described in [11] to the models described in the
previous sections we can observe that all the unweighted models present a clear
SW area. For all of the unweighted models in consideration, there is a clear range
of values of p where L is low but C maintains high. In figure 3 the normalized
values of L and C are depictured for unweighted rings and grids.

In the case of weighted graphs, grids also present a clear SW area, but rings
present a significative smaller range of values where L is low but C is high. This
is due to the low number of edges rewired in the ring-lattice for low values of
p and to the fact that in the case of weighted graphs a rewired edge can make
paths longer. When a small amount of edges are rewired, path length keeps
almost constant, with a very small decrement. Rings with a higher number of
nodes produce a wider SW area. The normalized values of L and C' for weighted
directed ring-lattices and grids can be seen in fig. 3.

5 Conclusions

The previous results allow us to establish the following conclusions.

— There exist regular, directed and weighted substrates that present a similar
scaling behavior that undirected unweighted equivalent substrates.

— These new substrates have the directionality present in biological and arti-
ficial neural networks.

— The directed substrates present a clear SW area when they are shifted from
regular to random.

— Weighted substrates need a higher number of nodes in order to present a
clear SW area for rings.
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Fig. 3.
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Normalized values of L (squares) and C (triangles). Ring-lattice n = 1000,

k =10. Grids n = 250000, k£ = 12. Plots are the average of 100 experiments each
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