A Framework to Translate UML Class Generalization
into Java Code*

Pedro S nchez', Patricio Letelier?, Juan A. Pastor', and Juan A. Ortega3

'Universidad Polit cnica de Cartagena, Spain
{pedro.sanchez, juanangel .pastor}@upct.es
*Universidad Polit cnica de Valencia. Spain
letelier@dsic.upv.es
3Universidad de Sevilla. Spain
ortega@lsi.us.es

Abstract. The concept of generalization used during analysis when
building a class diagram has a close relationship with the notion of
inheritance included in object-oriented programming languages.
However, from the point of view of programming, inheritance is a
useful mechanism but not especially conceived to implement the
generalization specified in analysis. Thus, generalization should be
treated suitably in order to obtain sounded design and code from
analysis specifications. In addition, it is known that it does not exist
concensus about the interpretation and use of inheritance and each
programming language provides its particular vision. Hence, when
moving from analysis to design and/or implementation (and normally
without using a formal approach) the generalization relationships are
prone to misinterpretation. OASIS is a formal approach to specify
object-oriented conceptual models. In OASIS generalization is included
as a language construct that allows specifying generalization patterns
with precise semantic and sintaxis. Although OASIS is a textual formal
language, the main aspects of one OASIS specification can be mapped
and represented using the UML notation, in particular generalization
relationships among classes. In this paper we present OASIS
generalization patterns and we show how they can be implemented in
Java. We also propose other ways to carry out this implementation.

1 Introduction

Generalization is a specification mechanism that allows introducing taxonomic
information in the model of a system. Generalization improves the reusability and
extensibility of specifications. Class generalization establishes an ordering between
classes, parent classes and child classes. Child classes inherit structure and behavior

* This work has been supported by CICYT (Project DOLMEN-SIGLO) TIC2000-1673-C06-01.

Z. Bellahs ne, D. Patel, and C. Rolland (Eds.): OOIS 2002, LNCS 2425, pp. 173-185, 2002.

174 Pedro S nchez et al.

from parent classes. In UML! [1], as in other previous modeling notations, class
generalization? has been roughly defined, mainly because there is no wide consensus
about its interpretation and usage [2]. The inheritance mechanism behind the
generalization relationship has two points of view: it is a modelling tool and it is a
code reuse tool, these visions are usually at odds [3]. Due to the lack of precise
semantics for generalization at the conceptual level, usually when building analysis
models® it is implicitly assumed the interpretation of the target object-oriented
language which normally it is not the most suitable perspective. In these
circumstances the analyst can specify generalization relationships at implementation
level which is obviously a contradiction respect to the level of abstraction of analysis.
Usually, the solution is to leave generalization relationships loosely defined, which
has the risk of possible misinterpretation in design and implementation. In addition,
when using semi-formal methods and notations the transition from models to its
sounded implementations is even more difficult.

As far as generalization is concerned, UML establishes that the more specific
element is fully consistent with the more general element (it has all its properties,
members, and relationships) and may contain additional information . Wegner
proposed four levels of compatibility between the child class and the parent class, in a
descending order of compatibility they are [4]: behavior compatibility, signature
compatibility (the same signature for the same operations), name compatibility (the
same names for the same operations) and cancelation (some parent class operations
are not available in the child class). At the implementation stage, inheritance between
classes (the implementation of generalization) means adding, redefining or canceling
the inherited features and associations in the child class. This wide definition has
different interpretations in distinct programming languages. Thus, in general, it
depends on the programmer to maintain the correspondences between the
implementation of the child class and its corresponding parent class.

OASIS (Open and Active Specification of Information Systems) [5] is a formal
approach to conceptual modeling following the object-oriented paradigm.
Generalization in OASIS is included as a language constructor which allows
specifying the different aspects characterizing a generalization relationship between
classes. Thus several common patterns of generalization can be directly represented
with OASIS. Although OASIS is a textual language, most parts of a specification can
be represented using UML, in particular generalization relationships. The aim of this
paper is to show how to use the OASIS generalization as the intended semantic for
class generalization in UML models. Thus analysis specifications with generalization

!'In this work we have used the UML specification version 1.4.

2 Previously to UML this term was commonly referred as class specialization. Both
generalization and specialization are abstraction mechanism, used to establish inheritance
relationships between classes. The nuance between generalization and specialization is
whether, taking the parent classes we establish the child classes (specialization), or taking the
child classes we establish the parent class (generalization). But in the end, the result is the
same: there will exist inheritance from the parent class to the child class.

We have preferred using analysis to conceptual modeling (and analysis model to

conceptual model) to follow the UML terminology.

A Framework to Translate UML Class Generalization into Java Code 175

can have a seamless and sounded translation to design and implementation. To
illustrate the implementation aspects we will use Java.

The organization of this article is as follows. After this introduction section, we
briefly introduce the OASIS formal framework for generalization. Next, we give a
description of the equivalences between the UML generalization and the Java
programming language. Then, we comment some related works and finally, we
present the conclusions and future work.

2 Generalization in OASIS

Through generalization a new class specification can be partially defined establishing
a relationship with others already defined classes. The new class can summarize or
extend the previous classes. The generalization incorporated in OASIS is based on the
work by Wieringa et Al. [6]. In a generalization relationship one class play the role of
parent class and the others are child classes. A child class inherits the features defined
in the parent class. A child class can be at the same time parent class, and in this form,
a hierarchy of classes is created (it is a directed acyclic graph). The features that are
common to all child classes are specified in the parent class, and the specific child
class features are defined in the corresponding child classes. In OASIS we distinguish
three orthogonal kinds of generalizations: static classification, dynamic classification
and role group.

Each of these kinds of generalization with its associated characteristics represents a
different conceptual modeling pattern of generalization, offered directly as OASIS
constructs. With this expressiveness the modeling task can focus on specifying the
problem rather than on its solution in a specific programming language. At the same
time these patterns of generalization impose a disciplined usage of inheritance [7],
constraining its utilization only to specify relevant aspects at the level of analysis.

Although different aspects of OASIS are normally presented using several
convenient and more expressive formalisms, Dynamic Logic constitutes the basic and
uniform formal support. In this article we present the generalization in OASIS using
set theory and process algebra. However, we have established the corresponding
mappings to Dynamic Logic [8].

In this paper we will focus only on static and dynamic classifications due to the
fact that these are the only kinds of generalization defined in UML. Role groups are a
more specific kind of generalization useful when a inheritance relationship is
necessary but the object in the child class is a role of the object in the parent class (the
player), they are thus different objects. Though not so directly, role groups can be
modeled using association relationships.

2.1 Classification Hierarchies

A classification hierarchy establishes an inheritance relationship among one parent
class and child classes whose populations are subsets of the parent class instances. For
each class C, two aspects can be distinguish:

176 Pedro S nchez et al.

- The class intention, int(C), is the set formed by all the class features and
associations. It represents the class type.

- Given any instant t, the class extension (population), ext(C), is the set of
instances of the class in that instant.

Let C; and C, be two classes, if ext(C;) < ext(C,) Vt, then C, is child class of a
classification of C,. When this occurs, a inverse inclusion relationship between the
intensions of C; and C,, that is, int(C,) < int(C;).

A classification hierarchy divides* the population of the parent class in disjoint
subsets. That is, let C;, , C, be child classes of the parent class Cy. Then

ext(Co) = U ext(Cy) . "
ext(C;) M ext(C) =D, i#j#0.

Demanding that each classification hierarchy be complete and disjoint solves several
ambiguities and contradictions. Let us consider the example where the class student
is child class of person. A person object can be or not a student object in one instant
of its existence. The operation become student should occur in the life of a
person object and not in the life of a student object’, but class student inherits
this operation, thus this is contradictory. This problem is solved by having complete
classifications, for example in this case specifying the child class not student and
instead of putting the operation become_student in the class person, put it in the
class not student.

In a classification hierarchy each object is an instance of the parent class and at the
same time of one (and only one) of the child classes, that is, it is the same object (the
same Oid). This dictates the following semantic:

- There must exist behavior compatibility between the child class and the parent
class, that is, the Substitution Principle [9] must be accomplished. Thus, every
object instance of the child class could be used as an object instance in the
context of the parent class.

- When the object in the parent class is destroyed, this also means its destruction in
the child class, and vice versa too.

2.2 Static Classification

In a static classification the object instances of the child classes are associated to them
during their whole lives. That is, suppose t; and t, any two instants, C; and C; (i # j)
child classes of a static classification. Then:

extﬂ(Ci) M eXttz(Cj) =0. (2)

Fig. 1 shows two static classifications of the class vehicle. The discriminators by
fuel and by purpose allow us to distinguish two different hierarchies with the same
parent class.

4 Although this does not mean that in UML we are obliged to specify all the child classes. The
constraint incomplete can be attached to the classification hierarchy indicating that there is an
implicit child class others .

3 Except if we want to specify an OASIS role group hierarchy which does not exist in UML.

A Framework to Translate UML Class Generalization into Java Code 177

2.3 Dynamic Classification

In a dynamic classification hierarchy the instances of one child class can migrate to
another child class in the hierarchy. Thus the intersection presented in formula 2 can
be different from the empty set. There are at least two ways of specifying the
migratory process: on the one hand based on the occurrence of certain actions, on the
second hand based on the state of the object (the values of its attributes).

petrol diesel

{disjoint, incomplete}
by fuel

wvehicle

by purpose
v pue {disjoint, incomplete}

‘ car ‘ ‘ truck ‘

Fig. 1. Two static classifications of vehicle

An important difference between static classification and dynamic classification is
that in the later the extension of one of its child classes can change without changing
the extension of the parent class. It is not allowed specifying a static classification by
taking as a parent class a class that is child class in a dynamic classification. This
constraint eliminates unnecessary complexity in the model, without decreasing the
expressiveness of the language.

Dynamic Classification based on event occurrence. In this case the migratory
process is defined by means of a process specification®. The operations involved in
the process specification belong to the child class where the migration step takes
place. The agent constants (or states in a state diagram) are the names of the child
classes. By default, the starting state receive the name of the parent class and the new
event establishes the first transition to the suitable child class. A dynamic
classification of car determined according the occurrence of events new car,
be repaired and break down is shown in Fig. 2.

car performance broken_down = repair.working

car = new_car.working;
working = break_down.broken_down;

{disjoint, complete}

‘ working ‘ broken_down

Fig. 2. A dynamic classification of cax based on action occurrence

¢ In OASIS we use a simple process algebra. It would be a state diagram in UML.

178 Pedro S nchez et al.

The creation of one instance of car class implies that its life starts belonging to the
child class working. While it belongs to the class working it can be affected by
events of the parent class car or child class working, for example, the event
break down. If this event occurs, then the instance migrates from the child class
working to the child class broken down.

Dynamic Classification based on the state of the object. In this case the migratory
process is determined by the state of the object. Each time that the object reaches a
new state (a new set of values for its attributes) this can involve its migration from
one child class to another in the dynamic classification. A dynamic classification of
class account based on the values of the attribute balance is shown in Fig. 3. In
this example, the initial child class for a new account object will be established
according to the initial value of the attribute balance.

by balance

{disioint, complete}

balance < 10000 / balance > 1000000
- [

not_rentable

10000 <= balance <= 1000000 ﬁ

very_rentable

‘ medium_rentable

Fig. 3. A dynamic classification of account based on the state of the object

2.4 Species and Multiple Classification

A species is basically a class whose type is obtained combining the types of the child
classes in the lower levels of a hierarchy of classes, taking each child class from a
different classification. Each species involves the notion of multiple inheritance of the
features and associations belonging to each child class selected. Species cannot be
child class of any parent class what is normally allowed in UML and programming
languages. Thus, this concept of species involves a disciplined use of multiple
classification which has methodological advantages due to the fact that the model is
clearer and prevents mistakes [6]. In example, the class (species) truck*diesel can
have as an emergent property the attribute representing the date of the latest revision.
Thus we specify this class in the same way as a non-species class, defining the
emergent attribute.

An object instance of the species broken down*car*petrol is an instance of
each of the selected child classes. Thus, multiple classification is the situation when a
child class inherits features and associations from more than one parent class. In the
OASIS context a species is a child class participating in multiple classification. The
emergent features or associations that a species can have are specified in a usual class
specification. If there are not emergent features or associations it is not necessary to
explicitly specify the species class.

A Framework to Translate UML Class Generalization into Java Code 179

3 Java Implementation

Regarding the implementation in Java language, the class generalization framework
of OASIS demands four features that are not offered directly or imposed in Jav

1. There must be supported dynamic classification.

2. It might be more than one static or dynamic classifications (distinct classification

hierarchies) with the same parent class.

Every classification must have at least two child classes.

4. Method implementation in child classes must accomplish behavior compatibility
with the method implementation in the parent class.

w

Instead of giving a general implementation pattern we have developed
implementation solutions for representative situations and it should be easy to
extrapolate to other more specific cases. We will call simple the situation in which for
the same parent class exists only one classification (static or dynamic), otherwise we
will call it complex (where multiple inheritance by means of species).

3.1 Static Classification (Simple)
Let us consider the next dynamic classification where class C is the parent class’:

Cl, C2 static specialization of C;
Cll, Cl2 static specialization of C1;

In static classifications objects are created at the lowest class in the hierarchy (leaf
classes). In the example these classes are C11, C12 and C2. The Java implementation
would be:

public abstract class C {..}

public abstract class Cl extends C {..}
public class C2 extends C {..}

public class Cll extends C1 {..}

public class Cl2 extends C2 {..}

The classes C and C1 are labeled abstract. Thus, it is not possible to create objects
directly on them. The following object creations are allowed:

Cll objCll = new C11(..);
Cl2 objCl2 = new C12(..);
C2 objC2 = new C2(..);

3.2 Dynamic Classification (Simple)

Regarding dynamic classification, Barbara Liskov suggests in [9] a Java
implementation using the state pattern of Gamma et Al. This proposal separates the
type being implemented from the type used to implement it. Although this

7 In the next examples we will use OASIS syntax although, as it has been showed in previous
examples, there exist a direct correspondence with generalization in UML class diagrams.

180 Pedro S nchez et al.

implementation pattern provides a better modularity it only takes into account the
trivial situation: one dynamic classification partition but no other classifications of the
parent class at the same time. In this situation a more general solution is needed which
can be extended to allow implementing all cases. Let us consider the next dynamic
classification of the C class:

Cl where {atr < 10},
C2 where {atr >= 10} dynamic specialization of C;

For each child class belonging to the dynamic classification an inner class is
written:

public class C // Cl perspective
{int atr; public C.C1l asC1l()
// subclass instances {if (c1l!=null) return cil;
Cl cl; C2 c2; else throw new
Public C (int wv) NullPointerException() ;}
{setatr(v) ;} // C2 perspective
public void setAtr (int v) public C.C2 asC2()
{atr=v; setDyn();} {if (c2!=null) return c2;
// migration engine else throw new
private void setDyn() NullPointerException () ;}}
{if (atr<10) private class C1
{cl=new C1(..); c2= null; {.. //C1 is an inner class}
else {c2=new C2(..); private class C2
}cl:null;} {// c2 is an inner class}

The child classes c1 and c2 have full visibility of C features or associations. The
method setDyn () implements the corresponding child object creation. The methods
asC1() and asC2 () of c return the respective objects of the defined inner classes.
This is necessary when we need to refer to emergent features or associations of child
classes. An exception is triggered if the object does not belong to the child class and a
request is made for child class features or associations. This exception is a
NullPointerException what needs to be caught in the client object. The object
creation of C instances follows the usual Java syntaxis: ¢ myObj = new C(...). The
child classes features and associations of myObj object are available in
myObj.asC1l() and myObj.asC2(). Another implementation alternative is to
specify child classes out of the parent class, solving features and association visibility
by means of the delegation mechanism. The drawback in this case is the bidirectional
communication needed: (1) child classes need to see inherited features and
associations; and (2) the parent class needs to maintain references to the objects which
are in the child classes, and any feature or association demanded at the parent class
needs to be routed. We have chosen the inner class alternative because one way of
communication is easily solved.

3.3 Static Classification (Complex)

When there are more than one static classification from the same parent class the
situation is more complex because it is potentially possible to create an object in any
case given by the possible species. An important matter is to know which is the most

A Framework to Translate UML Class Generalization into Java Code 181

frequent child class in where the objects should be created. Because the event new
must be specified with concrete information (available at the lowest level) we have
discarded the object creation at the parent class. It is impossible to design a good
architecture which facilitates the object creation from any species. For this reason we
have decided to choose one classification and we will refer to it as the primary
classification. The idea is to implement an inheritance schema which involves the
primary classification and which makes use of the extends Java language mechanism.
For example, let us consider the following static classifications:

Bl, B2 static specialization of C;
Cl, C2 static specialization of C;

Where B1 and B2 are child classes of the primary classification. A first
approximation in Java language would be the next one:

public abstract class C {...}
public class Bl extends C (...
public class B2 extends C

Then, the creation of objects is made as before at the leaf classes:
Bl objBl = new Bl{..}; B2 objB2 = new B2{..}

The next step is to complete the description of the class C including those child
classes of non-primary classifications. The class ¢ implementation adds the rest of
child classes as inner classes:

public abstract class C
{public class C1 {..
public class C2 {..}.. }

The object creation begins as B1 objBl = new B1(..);. Once an object has
been created then we need to specialize it in each of the non-primary classifications.
In our example we would write C.c1 objB1xCl = objBl.new C1(..);. That is,
the object objB1xC1 represents the specialization perspective in that non-primary
classification and all the new or overwritten requested features or associations need to
be routed to it. The programmer has the responsibility of assuring the atomicity of
these two creations.

3.4 Dynamic Partitions (Complex)

Now let us see the situation in which there is more than one dynamic classification
from the same parent class. In the next example, we have two dynamic classifications
with the class C as parent class:

Cl where {atr<10},

C2 where {atr>=10} dynamic specialization of C;

D1,D2 dynamic specialization of C migration relation is
C = new().D1; D1 = m2().D2; D2 = m3().D1 + m4().D1();

In this example, when the object has just been created it begins as a D1 instance.
When m2 () occurs then the object migrates to the child class D2. Afterwards,
occurrences of m3 () or m4 () produce the migration to the child class D1. When using

182 Pedro S nchez et al.

UML a state chart diagram need to be used to represent the migration relatioship. The
simplified Java code for this case is:

public class C public void m4 ()
{ {dl=new D1 (..) ;d2=null;}
int atr; private void setDyn() {..}
Cl cl; C2 c2; public void setAtr(int v) {
D1 d1; D2 d2; private class €1 {..}
public C (int v) private class C2 }m}
{atr:v; setDyn () ; private class D1 ..
dl = new D1(..);} private class D2 {..}
public void m2 () public C.C1l asCl() {..
{d2 = new D2 (..); public €.C2 asC2() {..
dl = null;} public €.D1 asD1() {..}
public void m3 () public C€.D2 asD2() {..}

{di=new D1(..);d2=null;} }

The implementation is similar to the simple situation, that is, in the dynamic
classification child classes are implemented as inner classes of the parent class. The
parent class implements the migration process.

4 Other Implementations

In this section we describe two other possible implementations using interfaces and
design patterns. Choosing interfaces, in order to establish the semantics we could use
Java Modeling Language (JML). JML [10] is a behavioral interface specification
language that can be used to specify the behavior of Java modules. It combines the
approaches of Eiffel and Larch, with some elements of the refinement calculus. Eiffel
and Larch are well known, and the refinement calculus is a formalization of the
stepwise refinement method of program construction. The required behavior of the
program is specified as an abstract, possibly non-executable, program which is then
refined by a series of correctness-preserving transformations into an efficient,
executable program. JML allows including constraints when the interface is specified.
However, when a class implements such an interface its contract forces it only to
accomplish with the syntaxis, because the constraints imposed by JML are
exclusively syntaxis constraints. Another approach would be using the Role Object
[11] design pattern. This design pattern adapts an object to the different needs of the
clients through transparently attached role objects, each one representing a role that
the object has to play in that context of the client. The object manages its role set
dynamically. By representing roles as individual objects, different contexts are kept
separate and system configuration is simplified. Generalization from the point of view
of this design pattern is based on the fact that the definition of a class changes
according to the semantic demands on it. Therefore, this pattern is appropriated
because in the generalization it is necessary to handle the available roles dynamically,
thus they can be attached and removed on demand, that is, at run-time rather than
statically at design-time.

A Framework to Translate UML Class Generalization into Java Code 183

5 Related Work

Although generalization is a key concept in the object-oriented approach, the UML
specification only dedicates a few pages to its definition, leaving many aspects open
to interpretation. Few works has been reported in order to give a more precise
semantic for UML class generalization and we have not found references of works
translating UML class generalization of analysis models into implementation. Some
details are given in [12] and [13] about what a static and a dynamic classifications
should be. However, many books and CASE tools claim that they establish or include
code generation from UML models, and particularly considering class generalization.
Unfortunately, after having a look at what they offer we usually find out that they
consider only a simplified version of static classification, Furthermore, they do not
distinguish more than one classification having the same parent class. Maybe the
work by Gamma et Al. [14], and especially their state pattern is the more popular
approach when there is some concern about translating dynamic classification into
inheritance in a programming language. However, firstly, the state pattern is a design
pattern, that is, useful in the design level (when an abstraction of the implementation
must be established) and it is not comparable to the more abstract dynamic
classification patterns offered in OASIS (they are patterns at the analysis level).
Secondly, the state pattern does not establish the treatment of several orthogonal
classifications with the same parent class, or other considerations like migration by
means of events.

6 Conclusions

When considering only one static classification with the same parent class there
would be no problems in translating UML class generalization into an object oriented
programming code. However, classifications can also be dynamic and several
classifications can have the same parent class. In addition, the translation encloses a
number of considerations and decisions regarding the semantic associated to the
classifications. This semantic is left open enough in UML, what makes necessary to
take some more precise framework. In this work we have used OASIS generalization
as an intended semantic for UML class generalization. When inheritance is seen only
from an implementation perspective then those theoretical and conceptual features
(such as behavior compatibility) are ignored and others are more relevant, such as
reuse of coding, performance, etc. Most programmers see inheritance as a mechanism
of incremental modification which allows programs to be extended or refined without
changing the original code. The discussed implementation patterns in Java use inner
classes and the extend mechanism. Before choosing the pattern for static classification
we put the constructor method at the parent class level. Then we have looked for a
way in which any object could be created (from the parent perspective) but we have
not found an alternative solution due to the possible existence of several
classifications from the same parent class. When we offer dynamic classification we
increment the expressiveness although the structural clarity is reduced because it is
not easy (neither formal) to deduce child class properties from the parent class. The

184 Pedro S nchez et al.

class generalization cases analyzed in this paper are not all the possible situations.
Nevertheless, the solutions provided should be easy enough to extend to more specific
modeling scenarios. Although OASIS is a formal language used to specify analysis
models, from its origins there has been interest in using it as a support for industrial
environments for software development. Thus, around OASIS three aspects have
always been present : software development process, tool support, and automatic code
generation from models oriented to model validation or to obtain final code®.

References

1. Object Managment Group. OMG Unified Modeling Language Specification (v.
1.4),2001

2. Taivalsaari A. On the Notion of Inheritance. ACM Comp. Surv., Vol. 28(3)
(1996) 438-478

3. Al-Ahamad W. and Steegmans E. Integrating Extension and Specialization
Inheritance. Journal of Object-Oriented Programming, December (2001)

4. Wegner P. and Zdonik S. Inheritance as an Incremental Modification
Mechanism or What Like Is and Isn't Like. In Proc. of the 7th. European
Conference on Object Oriented Programming, LNCS 322, ECOOP'88 (1988) 55-
77

5. Letelier P., Ramos I., S nchez P. and Pastor O. OASIS 3.0: A Formal Approach
Jor the Object Oriented Conceptual Modeling. Technical University of Valencia,
ISBN 84-7721-663-0, Spain, http://www.dsic.upv.es/users/oom/books.html. (in
Spanish) (1998)

6. Wieringa R., Jonge W. and Spruit P. Using Dynamic Classes and Role Classes to
Model Object Migration. Theory and Practice of Object Systems, Vol. 1(1)
(1995) 61-83

7. Letelier P., S nchez P., Troyano J. and Crespo Y., Specialization in Conceptual
Modeling: A rigurous wuse of Inheritance. Actas del 3er Workshop
Iberoamericano de Ingenier a de Requisitos y Ambientes Software (IDEAS),
Canc n, M jico (in Spanish) (2000)

8. S nchez P., Letelier P. and Ramos 1. Animating Formal Specifications with
Inheritance in a DL-Framework. Requirements Eng. Journal, Vol.4, Springer-
Verlag (2000) 198-209

9. Liskov B., Guttag J. Program Development in Java: Abstraction, Specification
and Object-Oriented Design. Addison-Wesley (2001)

10. Leavens G., Rustan K., Leino M., Poll E., Ruby C. and Jacobs B. JML: notations
and tools supporting detailed design in Java. In OOPSLA '00 Companion,
Minneapolis, Minnesota, Copyright ACM (2000) 105-106

11. B umer D., Riehle D., Siberski W. and Wulf M. Role Object. In Pattern
Languages of Program Design 4. Edited by Neil Harrison, et Al. Addison-
Wesley, Chapter 2 (2000) 15-32

12. Martin J. and Odell J. Object-Oriented Methods: A Foundation. Prentice Hall
(1998)

8 Information about these lines of works at www.dsic.upv.es/users/oom.

13.

14.

A Framework to Translate UML Class Generalization into Java Code 185

Fowler M. and Kendall S. UML Destilled: Applying the Standard Object
Modeling Language. Addison-Wesley (1997)

Gamma E., Helm R., Johnson R. and Vlissides J. Design Patterns: Elements of
Reusable Object-Oriented Sofiware. Professional Computing Series. Addison-
Wesley, MA (1994)

