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Abstract. Today, complex information systems need a simple way for changing
the object behavior according with changes that occur in its running environ-
ment. We present a reflective architecture which provides the ability to change
object behavior at run-time by using design-time information. By integrating re-
flection with design patterns we get a flexible and easily adaptable architecture.
A reflective approach that describes object model, scenarios and statecharts helps
to dynamically adapt the software system to environmental changes. The object
model, system scenario and many other design information are reified by special
meta-objects, named evolutionary meta-objects. Evolutionary meta-objects deal
with two types of run-time evolution. Structural evolution is carried out by causal
connection between evolutionary meta-objects and its referents through changing
the structure of these referents by adding or removing objects or relations. Behav-
ioral evolution allows the system to dynamically adapt its behavior to environ-
ment changes by itself. Evolutionary meta-objects react to environment changes
for adapting the information they have reified and steering the system evolution.
They provide a natural liaison between design information and the system based
on such information. This paper describes how this liaison can be built and how
it can be used for adapting a running system to environment changes.

Keywords: Reflection, Meta-Objects, Design Pattern, UML, Software Evolution.

1 Introduction

Nowadays a topical issue in the software engineering research area consists of produc-
ing software systems able to adapt themselves to environment changes by adding new
and/or modifying existing functionalities. There are a number of mechanisms for ob-
taining adaptability. One of these mechanisms are the design patterns [2, 10]. Another
mechanism for obtaining adaptability is reflection [3,16]. A non-stopping software sys-
tem with long life span, has to be able to dynamically adapt itself to changes to its



environment. Two aspects control the evolution of a system of objects: behavior, and de-
pendencies. Both of them can be involved in system evolution to comply with changes
to system requirements.

We present a novel design approach that provides a system with the ability to change
object behavior at run-time. This approach integrates reflection and design patterns, by
reifying object model, scenario, and statechart of the system. This paper explores how
to design a dynamically self-adapting system extending the idea of shifting reflection
from linguistic to methodological, that has been presented by Cazzola et al. in [4].

Object oriented methodologies like Objectory [13], and UML [1] statically describe
the system’s behavior during the design phase: all functions in the system are captured
by a use-case model. The dynamic behavior of each use case is described by scenario,
and interaction diagrams. Models in the unified modeling language (UML) [1] are clas-
sified in structural (e.g., class diagram) and behavioral (sequence diagrams and state-
charts). Behavioral models deal with the representation of the behavior of the system.
Class diagrams show how the system is structured, i.e., the classes composing the sys-
tem and their relationship. Sequence diagrams and use cases describe the interactions
between objects, whereas statecharts [11, 12] describe, as a state machine, the behavior
of every object in the system. UML provides a special key, named stereotype, to deal
with concepts not well-defined or difficult to model by using only class diagrams. Caz-
zola et al. [4] adopt a special stereotype, named «causal-connection», to model with
class diagrams a reflective system. This one has been the basic approach to reflective
object-oriented analysis (ROOA).

All these methodologies provide a way to adapt software system to requirement
changes as long as the system is under design/development. By subsequent refinement
of a prototypal system up to reach its final version. These methodologies don’t foresee a
way to adapt the system when it is running without stopping it and modifying its design.
Hence they are not enough to model a non-stoppable and adaptable software system.

Our approach gets two types of dynamic evolution: structure, and behavior evo-
lution. To comply with this achievement the system is structured in two levels: base-
and meta-level. In the base-level we have the system we want to render self-adapting,
whereas in the meta-level there are some meta-objects, called evolutionary meta-objects,
reifying all the design information related to the base-level. Evolutionary meta-objects
deal with both structure and behavior evolution modifying these information. The causal
connection is the mechanism which really realizes the dynamic self-adaption reflecting
the changes performed by the evolutionary meta-objects in the base-level. The causal
connection is achieved by using the pattern adapter [10], which allows base-objects to
delegate the execution to their meta-objects, and by acting on inter- and intra-object
connections through changing systems sequence and collaboration diagrams and ap-
plying such a change by using the state design pattern [9, 10], which allows an object
to change its behavior when its internal state changes.

Saake et al. [17] have proposed a specification framework for modeling evolving
objects as basic building blocks of information systems. This is done by dividing object
behavior into rigid and dynamic parts at the specification phase, thus we will extend
this idea to the design phase.
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The rest of the paper is organized as follows: section 2, outlines run-time adaptation
approaches. Section 3, illustrates the proposed approach for object behavior evolution.
Section 4, briefly points at related works in the discipline of building adaptable software
system. Section 5 briefly describes our approach on modeling a banking system. Finally
section 6 concludes with an outline of our ongoing research in adapting object behavior.

2 Run-time Software Engineering Adaptation Techniques

The main motivation for using reflection and design patterns in software engineering is
to build applications able to adapt themselves to environmental changes. The continuous
evolution in information technologies forces the designer to deal with more and more
ambitious requirements. Adaptability is the fundamental property that software systems
must have to satisfy their evolution. A system can be considered to be adaptable when
it can be modified to satisfy new requirements.

2.1 Design Patterns

The use of patterns is essentially the reuse of well-established good ideas. A pattern is
a named, well-understood good solution to a common problem in a specific context.

Collections of design patterns were described in [2,10]. Patterns are used for chang-
ing structure and behavior of a software system. Design patterns have been classified
into structural and behavioral patterns. Strategy patterns, in [10] on page 315, have
been used in the design of dynamically adaptable systems. The design principle under-
lying the strategy pattern is to delegate the implementation of exported operations of
the buffer manager to a replaceable strategy object. Multiple strategies can be derived
from an abstract strategy class and compiled into the system.

In this work we will use two type of design patterns: adapter, in [10] on page 139,
and state patterns, in [10] on page 305. An adapter class implements an interface known
to its clients and provides access to an instance of a class not known to its clients. Hence
it delegates the execution of a method to another object. A state pattern allows an object
to change its behavior when its internal state changes.

2.2 Reflection

Reflection is the ability of a system to observe and to modify its computation [16]. An
object-oriented reflective system is logically structured in two or more levels, constitut-
ing a reflective tower [16]. The first level is the base-level and describes the computations
that the system is supposed to do. The second one is the meta-level and describes how
the base-level computations have to be carried out. Objects working in the base-level are
called base-objects, whereas objects working in the other levels (meta-levels) are called
meta-objects. Each level is causally connected to adjacent levels, i.e. objects working
into a level have data structures reifying the activities and the structures of the objects
working into the underlying level and their actions are reflected into such data struc-
tures. Meta-objects supervise the activity of their referents, i.e., the base-objects. Trap
mechanism explains how supervision takes place. Each base-object action is trapped
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Fig. 1. Structure of an Adaptable System.

by a meta-objects, which performs a meta-computation, then it allows its referent to
perform the action.

3 Reflective Dynamic Adaptation of Software Systems

The main purpose of our approach consists of adapting the object behavior at run-time,
by using its design information. To do this we are going to apply to the dynamic objects
structure offered by Saake et al. [17], a reflective approach as explained by Cazzola et.
al. [4].

In our approach the system is divided into its structure (described by its object
model) and its behavior (described by statechart and sequence diagrams). Similarly an
application is divided into two levels, as shown in Fig. 1: a base-level and a meta-level.
The base-level, which implements the real system, is described by three models:

– Object model, which describes objects and their relations. This model represents
the structural part of the system.

– Sequence diagrams, which trace system operations between objects (inter-object
connection) for each use case at a time.

– Statecharts, which represent different the evolution of the state of each object
(intra-object connection) in the system.

The meta-level is responsible of dynamically adapting the base-level and it is com-
posed of some special meta-objects named evolutionary meta-objects. The meta-object
controller, is an evolutionary meta-object which is directly responsible for changing
the structure of its referents through adding or removing new objects, methods, and
relations. This evolutionary meta-object delegates the adaptation of the behavior of its
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referents to its colleague: the meta-statepattern. Meta-statepattern is responsible for
changing the state of each object, and the behavior of the system in accordance with the
work of the meta-object controller.

There are two kinds of meta-object controllers: meta-object and meta-relation. When
the base-level system begins an operation, an evolutionary meta-object adapts the ob-
jects involved in such an operation and a meta-relation adapts their behavior in accor-
dance with the preconditions to that operation. After that, we need to determine the
states for each referent involved in the execution of that operation. This is done by dele-
gating the control to the meta-statepattern which detects the states of the involved refer-
ents. The relationship among the evolutionary meta-objects and its referents is specified
by means of a meta-object protocol (MOP) [15]. The MOP works as follows: when an
object asks for an operation, the operation and all objects involved in its execution are
reified by the evolutionary meta-object controller. Then, it adapts the reified objects and
reflect the changes on the base-level. Figure 2 shows, through a sequence diagram, the
protocol steering the interactions between base- and meta-level. Basically we have:

– When an object asks for an operation, the meta-object controller sends this op-
eration to the evolutionary meta-object. The evolutionary meta-object reifies the
involved base-objects. At the meta-level some meta-computations involving the rei-
fied objects occur. Base-objects evolution is carried out by these meta-computations.
Evolutionary meta-objects return the result to meta-controller through meta-con-
nection.

– Meta-object controller entrusts the meta-statepattern, to determine the state of each
object and the behavior for the system. There are two kinds of meta-statepatterns:
the meta-scenario which traces the execution of the trapped operation, and the meta-
state which determines the state of each object involved in the its execution.

– Verified the feasibility of the evolution, the changes are reflected on the base-system
via the causal connection relationship among meta-statepattern, meta-object con-
troller and their counterpart in the base-level (the behavioral and structural part).

3.1 Adaptation by Causal Connection and Design Patterns

In the just described architecture the meta-level is causally connected to the base-level,
i.e., each event that occur in the base-level is implicitly reified by the meta-level and ev-
ery action carried out by the meta-level is automatically reflected on the base-level [16].
A system (the base-level) causally connected to another (an active engine supervising
the adaptation) is the key to get a system that can evolve.

Evolutionary meta-objects are responsible for supervising and controlling their ref-
erents in the base-level. They use the pattern Adapter for reifying all objects, and their
behavior involved in the execution of an operation. The implicit mechanism that is re-
sponsible for changing the behavior of the objects is realized by the evolutionary meta-
objects and its MOP. MOP contains reification categories, these categories are entities
representing objects, methods, and relations. Evolutionary meta-objects work directly
with these categories to complete their computations. They also store the changes in
the behavior and structure of the reified entities in the corresponding categories. There-
fore, the MOP steers the adaptation of the reified entities (objects, methods and so on)
without effectively changing the base-level.
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At the end of its computation, the evolutionary meta-object controller entrusts the
changes to the meta-statepattern which has to determine the evolution’s feasibility and
really evolving the system. The meta-statepattern gets the state of each object involved
in the adaptation (thanks to the Adapter), builds the categories reifying such states.
Then, the meta-statepattern uses the State pattern for the evolution of the states in ac-
cordance with the changes computed by evolutionary meta-object controller. Finally,
meta-scenario evolves the trace by using changes in MOP categories. After the opera-
tion completes its execution, then its reification categories are destroyed.

Moreover, the meta-statepattern has to verify the soundness and the consistency of
the base-level against the proposed changes. These checks ensure that the implications
between evolutionary meta-objects and meta-statepattern are respected. This ensures
that the meta-level can carry out the proposed changes without rendering the system
inconsistent. Consistency rules are expressed via the VDM formalism [14].

4 Related Work

In the last few years, there has been a growing interest for dynamically evolving object-
oriented systems. In the literature there are several approaches related to building adap-
tive software systems that allow system behavior to evolve after design time.

Dowling and Cahill [8] have proposed a meta-model framework named K-compo-
nents, that realizes a dynamic, self-adaptive architecture. It reifies the features of the
system architecture, e.g., configuration graph, components and connectors. This model
presents a mechanism for integrating the adaptation code in the system, and a way to
deal with system integrity and consistency during dynamic reconfiguration.

Another approach consists of building a reflective architecture by using cooperative
object-oriented style [19]. Structural elements of this approach are classes as the ba-
sic components, and CO actions (cooperative actions represent the interactions among
objects characterizing the collaborative behavior [7]) as the basic connectors. This ap-
proach achieves adaptability by (1) dynamically extending objects behavior using roles,
and (2) by selecting at run-time the objects and roles participating in a cooperation.

Seiter et al. [18] have proposed a new relation between classes, named context rela-
tion. The context relation is meaningful at analysis, design, and implementation levels.
It may also impact software testing. As inheritance and dynamic binding modify tra-
ditional program flow and subsequent testing models, the context relation may modify
them as well.

In the above approaches, the adaptation is achieved in three ways. First, by control-
ling components and connectors through a reflective architecture. Second, by separating
the objects from their interactions and by entrusting their adaptation to meta-objects.
Finally, by using design patterns to define a new relation, or providing a mapping be-
tween interfaces which are not possible to dynamically change. Our approach exploits
all these techniques: we have a reflective architecture, with meta-objects dealing with
design information and adapting the system by using design patterns.
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Fig. 3. Reflective object model

5 Case Study: Banking System

Now, we show the benefits and drawbacks of applying our approach to dynamically
adapt a system to the environment on a case study.

5.1 Overview of the Case Study

We are considering the classical banking system example with two use cases: open or
close account, and transactions (deposit, transfer, withdraw). The bank allows the client
(1) to get the balance of his account, (2) to withdraw, and deposit cash, and (3) transfer
money from his account to another.

We show the three reflective models of our architecture (see Sect. 3) applied to
the case study. The structural part is reified by the reflective object model (Fig. 3),
every object is associated to an evolutionary meta-object. The adaptation is done by
creating MOP categories, which include objects and their behavior (methods). Meta-
objects, such as Maccount, Mtransaction, MATM, Maccount manager perform meta-
computations. Evolutionary meta-objects are used to reflect changes to objects in the
reification categories.

The behavioral part is reified by: meta-scenario and meta-state. The meta-scenario
traces bank transactions between meta-object and its referent. The evolutionary meta-
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Fig. 4. Reflective objectcharts.

object reifies the following objects (Client, Account, Transactions). The evolu-
tionary meta-objects add new clients, open new accounts and add these instances in the
base-level, initialize the balance, and so on.

Moreover, evolutionary meta-objects add transactions such as deposit, transfer, with-
draw and so on, to client objects. The purpose of all these transactions consists of adding
(or subtracting) money to (from) balance of the client account. Hence, we need only two
meta-scenarios for describing the whole system’s behavior. The former for describing
the open and close operation, the latter for dealing with money movements (Fig. 5). The
adaptation of the state of every object is done by delegating it to the meta-statepattern
which is responsible for detecting and notifying every change to their state during trans-
actions.

Finally, Meta-statecharts control the state of base-level objects (Fig. 4). Evolution-
ary meta-object and its MOP categories have the rules to dynamically change the ob-
jects. The object states change at run-time by reifying the object states from base-level
to state category. Meta-statepattern uses evolutionary meta-objects and its MOP to de-
termine the changes to object states. After that, meta-statepattern reflects the changes
to base-state for every object. We use the logic of partial functions from VDM [14], for
representing a postcondition for transactions between object states. The transactions of
account objects in the bank system are:

– !(suspense):(balance closed no effects)(time=t)
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– (suspense)!(suspense):(balance closed no effects)(settime)(time=
(

t +t)
– (suspense)!(non-suspense):(true)(balance opened for any transactions)
– !(debit):(true)(open client account)(setbalance)(balance=0)
– (debit)!(credit):(true)[tr1=deposit(amount)](amount>-balance)

(setbalance)(balance=
(

balance+amount-charge)
– (credit)!(debit):(true)[tr2=withdraw(amount)][amount>balance]

(setbalance)(balance=
(

balance-amount)
– (debit)!(debit):(true)[tr3=deposit(amount)][amount�-balance]

(setbalance)(balance=
(

balance+amount-charge)
– (credit)!(credit):(true)[tr4=withdraw(amount)][amount�balance]

(setbalance)(balance=
(

balance-amount)
– (credit)!(credit):(true)[tr5=deposit(amount)](setbalance)

(balance=
(

balance+amount)

6 Conclusion

In this paper we addressed the problem of dynamically adapting the behavior of a run-
ning system. This has been done by building a reflective architecture, which integrates
reflection (meta-object) and design pattern (Adapter and State). The proposed reflective
architecture was implemented by two levels: meta- and base-level. In the meta-level,
we defined new meta-objects named evolutionary meta-objects, which are responsible
for reifying objects of the base-level and their behavior at run-time. Also, they reflect
changes to their referents. The architecture consists of three reflective models: reflective
object model, reflective scenario, reflective state. This reflective approach provides a self
adaptable information system that extends the initial trial [4] to move reflection from
linguistic to methodological.

As future works, we are planning to put this approach on a firm semantic foundation
by using object-Z as formal object-oriented language. In our approach, control flow is
shifted from base-level to meta-level. So, we can validate the adaptation of objects and
their behavior by using animation. Finally, we will implement the approach by using a
reflective language, like OpenC++ [5] or OpenJava [6].
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