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Abstract. In recent years, there has been much research on local
search techniques for solving constraint satisfaction problems, includ-
ing Boolean satisfiability problems. Some of the most successful proce-
dures combine a form of random walk with a greedy bias. These pro-
cedures are quite effective in a number of problem domains, for ex-
ample, constraint-based planning and scheduling, graph coloring, and
hard random problem instances. However, in other structured domains,
backtrack-style procedures are often more effective. We introduce a tech-
nique that leads to significant speedups of random walk style procedures
on structured problem domains. Our method identifies long range depen-
dencies among variables in the underlying problem instance. Such depen-
dencies are made explicit by adding new problem constraints. These new
constraints can be derived efficiently, and, literally, “accelerate” the Ran-
dom Walk search process. We provide a formal analysis of our approach
and an empirical validation on a recent benchmark collection of hardware
verification problems.

1 Introduction

Local search style methods have become a viable alternative to constructive
backtrack style methods for solving constraint satisfaction and Boolean satisfia-
bility problems. Local search techniques were originally introduced to find good
approximate solutions to optimization problems [14]. In subsequent years, many
refinements have been introduced such as simulated annealing and tabu search.
More recently, local search methods have also been used for solving decision style
problems, in particular Boolean satisfiability (SAT) problems. We will restrict
most of our discussion to the SAT domain. However, many of the insights should
carry over to the richer domain of general constraint satisfaction problems.
The first local search methods for SAT, such as GSAT, were based on stan-
dard greedy hill-climbing search [26, 10, 8], inspired by heuristic repair techniques
as studied for optimization [17]. A major improvement upon these algorithms
was obtained by building the search around a so-called random walk strategy,
which led to WalkSat and related methods [24]. These algorithms combine a Ran-
dom Walk search strategy with a greedy bias towards assignments with more
satisfied clauses. A random walk procedure for satisfiability is a deceptively sim-
ple search technique. Such a procedure starts with a random truth assignment.
Assuming this randomly guessed assignment does not already satisfy the for-
mula, one selects one of the unsatisfied clauses at random, and flips the truth
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assignment of one of the variables in that clause. This will cause the clause to
become satisfied but, of course, one or more other clauses may become unsat-
isfied. Such flips are repeated until one reaches an assignment that satisfies all
clauses or until a pre-defined maximum number of flips is made. This simple
strategy can be suprisingly effective. In fact, Papadimitriou [19] showed that
a pure (unbiased) random walk on an arbritary satisfiable 2SAT formula will
reach a satisfying assignment in O(N?) flips (with probably going to 1). More
recently, Schoening [22] showed that a series of short unbiased random walks on
a 3-SAT problem will find a satisfying assignment in O(1.334") flips (assuming
such an assignment exists), much better than O(2%) for an exhaustive check of
all assignments.

In the next section, we will discuss how one can introduce a greedy bias in the
Random Walk strategy for SAT, leading to the WalkSat algorithm. WalkSat has
been shown to be highly effective on a range of problem domains, such as hard
random k-SAT problems, logistics planning formulas, graph coloring, and circuit
synthesis problems [24, 12]. However, on highly structured formulas, with many
dependent variables, as arise in, for example, hardware and software verification,
the WalkSat procedure is less effective. In fact, on such domains, backtrack
style procedures, such as the Davis-Putnam-Logemann-Loveland (DPLL) [2, 3]
procedure are currently more effective. One of the key obstacles in terms of
WalkSat’s performance on highly structured problems is the fact that a random
walk will take at least order N2 flips to propagate dependencies among variables.
On the other hand, unit-propagation, as used in DPLL methods, handles such
dependencies in linear time. With thousands or ten of thousands of variables
in a formula, this difference in performance puts local search style methods
at a distinct practical disadvantage. Moreover, there are also chains of simple
ternary clauses that require exponential time for a random walk strategy, yet
can be solved in linear time using unit propagation [21].

We will consider such dependency chains in detail and provide a rigorous
analysis of the behavior of a pure random walk strategy on such formulas. This
analysis suggest a mechanism for dealing more effectively with long range depen-
dencies. In particular, we will show how by introducing certain implied clauses,
capturing the long range dependencies, one can significantly “accelerate” ran-
dom walks on such formulas. We show how the implied clauses can often reduce
quadratic convergence time down to near linear, and, in other cases, reduce expo-
nential time convergence of the random walk to polytime convergence. Moreover,
the implied clauses can be derived efficiently.

The speedups obtained on the chain-like formulas are encouraging but leave
open the question of whether such an approach would also work on practical in-
stances. We therefore validated our approach on a range of highly structured test
problems from hardware verification applications [28, 29]. Our experiments show
that after adding certain implied dependencies, WalkSat’s overall performance
improves significantly, even when taking into account the time for computing
the dependencies. This work provides at least a partial response to the challenge
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Fig.1. A Random Walk

in [25] on how to improve local search methods to deal with dependent variables
in highly structured SAT problems.

We would also like to stress the benefit from the particular methodology fol-
lowed in this work. By first analyzing special classes of formulas, which bring out
“extreme” behavior of the random walk process, we obtain valuable insights to
remedy this behavior. These insights are subsequently used to improve perfor-
mance on more general formulas. Given the intractability of directly analyzing
local search behavior on general classes of formulas, we believe the use of special
restricted classes is highly beneficial. There are no doubt many other forms of
problem structure that could be studied this way.

The paper is structured as follows. In section 2, we first review Random Walk
strategies — biased and unbiased — for SAT. In section 3, we give results on
special classes of chain formulas and provide a formal analysis. In section 4, we
give an empirical evaluation of our approach. Section 5 contains conclusions and
future directions.

2 Random Walk Strategies for SAT

To gain some further insight into the behavior of random walk strategies for SAT,
let us briefly consider the very elegant argument introduced by Papadimitriou
showing polytime behavior on 2SAT. Consider a satisfiable 2SAT formula F' on NV
variables. Let T denote a satisfying assignment of F'. The random walk procedure
starts with a random truth assignment, 77. On average, this truth assignment
will differ from T on the assignment of N/2 letters. Now, consider an unsatisfied
clause in F' (if no such clause exists, then 7’ is a satisfying assignment). Without
loss of generality, we assume that the unsatisfied clause is of the form (a V —b).
Since this clause is unsatisfied, 7’ must assign both literals in the clause to
False (which means that a is assigned False and b True). Also, the satisfying
assignment 7T is such that at least one of the literals in the clause is assigned to
True. Now, randomly select a variable in the clause and flip its truth value in T”.
Since we have only two variables in the clause, we have at least a 50% chance
of selecting the variable corresponding to the literal set to True in 7. (Note
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that if T" satisfied exactly one literal in the clause, we will select that literal
with 0.5 probability. If T' satisfies both literals, we select the “right” literal
with probability 1.0.) It follows that with at least 50% chance, the Hamming
distance of our new truth assignment to 7" will be reduced by 1, and with at
most 50% chance, we will have picked the wrong variable and will have increased
the Hamming distance to the satisfying assignment. Papadimitriou now appeals
to a basic result in the theory of random walks. Consider a one dimensional
“random walker” which starts at a given location and takes L steps, where each
step is either one unit to the left or one unit to the right, each with probability
0.5 (also called a “drunkards walk”). It can be shown that after L? steps, such
a walker will on average travel a distance of L units from its starting point.
Given that the random walk starts a distance N/2 from the satisfying truth
assignment T, after order N? steps, the walk will hit a satisfying assignment,
with probability going to one. Note that although the walk may at first wander
away from the satisfying assignment, it will “bounce off” the reflecting barrier
at distance . Also, our analysis is worst-case, i.e., it holds for any satisfiable
2SAT formula.

It is instructive to consider what happens on a 3SAT formula, i.e., a conjunc-
tive normal form formula with 3 literals per clauses. In this case, when flipping
a variable selected at random from an unsatisfied clause, we may only have 1/3
chance of fixing the “correct” variable (assuming our satisfying assignment sat-
isfies exactly one literal in each clause). This leads to a random walk heavily
biased away from the solution under consideration. The theory of random walks
tells us that reaching the satisfying assignment under such a bias would take an
exponential number of flips. And, in fact, in practice we indeed see that a pure
random walk on a hard random 3SAT formula performs very poorly.

However, we can try to counter this “negative” bias by considering the gra-
dient in the overall objective function we are trying to minimimize. The idea is
that the gradient may provide the random walk with some additional informa-
tion “pointing” towards the solution, and thus towards the right variable to flip.
In SAT, we want to minimize is the number of unsatisfied clauses. So, in selecting
the variable to flip in an unsatisfied clause, we can bias our selection towards a
variable that leads to the greatest decrease in the overall number of unsatisfied
clauses. Introducing a bias of this form leads us to the WalkSat algorithm and
its variants [24, 15].

For reasons of efficiency, WalkSat uses a bias defined by the so-called “break
value” of a variable. Given a formula and a truth assignment 7', the break value
of a variable, z, is defined by the number of clauses that are satisfied by T
but become unsatisfied (are “broken”) when the truth value of x is changed. In
practice, this bias is a good measure of the overall change in number of unsatisfied
clauses when z is “flipped”.

WalkSat boosts its search by interleaving purely random walk moves and
greedily biased moves. The number of random walk moves is controlled by a
parameter p. That is, with probability p, we select a random variable from the
chosen unsatisfied clause, and with probability 1 — p, we select a variable in the
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Procedure RW

repeat
c:= an unsatisfied clause chosen at random
x:= a variable in ¢ chosen at random
flip the value of z;

until a satisfying assignment is found.

Procedure RWF
repeat
c:= an unsatisfied clause chosen at random
if there exists a variable x in ¢ with break value = 0
flip the value of 2z (freebie move)
else
x:= a variable in ¢ chosen at random from c;
flip the value of x
until a satisfying assignment is found.

Procedure WalkSat
repeat
c:= an unsatisfied clause chosen at random
if there exists a variable x in ¢ with break value = 0
flip the value of x  (freebie move)
else
with probability p
x:= a variable in ¢ chosen at random;
flip the value of x
with probability (1-p)

x:= a variable in ¢ with smallest break value

flip the value of x
until a satisfying assignment is found.

Fig. 2. The main loop of the Random Walk (RW), Random Walk with freebie
(RWF), and WalkSat procedures

clause with the minimal break value (ties are broken randomly). In practice, one
can often identify a (near) optimal value for p for a given class of formulas. (For
example, p = 0.55 for hard random 3SAT formulas, and p = 0.3 for planning
problems.)

As a final refinement, WalkSat incorporates one other important feature to
speed up its search: when there is a variable in the randomly selected unsatisfied
clauses with break value zero, that variable is flipped immediately. Note that
such a flip will increase the total number of satisfied clauses by at least one.
These flips are called “freebies”.

In order to study the introduction of a greedy bias in its minimal form,
we will also consider a Random Walk with just “freebie” moves added. This is
equivalent to running WalkSat with noise parameter p = 1.0. Figure 2 gives the
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Fig. 3. The left panel shows a graph of a binary chain formula, Fb.pqin on n
variables. The right panel shows the formula after adding a number of random
implied clauses

main loop of the Random Walk (RW) procedure, the Random Walk with freebie
(RWF) procedure, and the WalkSat procedure.*

3 Chain Formulas and Theoretical Underpinning

In order to obtain a good understanding of the behavior of pure Random Walk
and biased Random Walk strategies on SAT instances, we now consider several
families of formulas which demonstrate extreme properties of random walk style
algorithms. We elucidate these properties by introducing long chains of depen-
dencies between variables. We consider 2SAT and 3SAT problems. Our 3SAT
formulas are motivated by formulas introduced by Prestwich [21].

3.1 Binary Chains

In the previous section, we derived a quadratic upperbound for the number of
flips for solving a 2SAT problem using a unbiased Random Walk strategy. In
practice, on for example, randomly generated 2SAT problems, Random Walk
may take far fewer than N2 flips. How would one construct a 2CNF formula
that exhibits the worst case quadratic behavior? To obtain such a formula we
need to create a truly unbiased random walk. (A truly unbiased random walk
takes ©(N?) flips to travel a distance N.) As we argued above, when flipping a
random variable in a binary clause, we have at least 50% chance of “fixing” the
correct variable (on a path to a satisfying assignment). We need to ensure that
we have exactly 50% chance of selecting the right variable to flip. We do this by
constructing a formula such that a satisfying assignment of the formula satisfies
exactly one literal (a variable or its negation) in each clause.

1 The WalkSat program [35] performs RW when option -random is selected. When
selecting option -noise 100 100 (i.e., p = 1.0), we obtain RWF.
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This can be achieved by considering the following 2CNF formula, Focpngin,
consisting of a chain of logical implications: (z; — z2) A (x2 — x3) A ...
A(xn — x1). See Figure 3, left panel. This formula has two assignments, namely
the all True assignment and the all False assignment. Each clause is of the form
—x; Vait1). So, each of the two satisfying assignment satisfies exactly one literal
in each clause. We therefore obtain a truly unbiased random walk, and we obtain
the following result.

Theorem 1. The RW procedure takes O(N?) to find a satisfying assignment
Of F2chain-

In contrast, DPLL’s unit propagation mechanism finds an assignment for
Fochain in linear time. Moreover, our experiments show that adding a greedy
bias to our random walk does not not help in this case: both the RWF and the
WalkSat procedure take ©(N?) flips to reach a satisfying assignment on these
formulas.?

3.2 Speeding Up Random Walks on Binary Chains

Given the difference in performance between DPLL and random walk style al-
gorithms on the 2SAT chain formulas, the question becomes whether we can
somehow speed-up the random walk process on such formulas to perform closer
to DPLL.

Intuitively, the random walk process needs to line up the truth values along
the chain, but can only do so by literally “wandering” back and forth based on
local inconsistencies detected in the chain. One possible remedy is to add clauses
that capture longer range dependencies between variables more directly.

We therefore consider adding clauses of the form z; — x;, with ¢ and
j€{1,2,---,n}, chosen uniformly at random. A binary chain with redundancy
(BCR) formula is composed of all clauses from binary chain Fepqin and a frac-
tion of the redundant clauses, generated independently at random. Since any
redundant clause is implied by the binary chain, it follows that any BCR for-
mula is equivalent to the chain itself. We define the redundancy rate of a BCR
formula as the number of redundant clauses divided by the length of its base
binary chain. The right hand side panel of Figure 3 shows a binary chain formula
with added random redundancies.?

2 1In this paper, we derive rigorous results for the unbiased random walk procedure.
Our results for biased random walk strategies are empirical. The reason for this is
that the tools for a rigorous analysis of greedy local search methods are generally
too weak to obtain meaningful upper- and lower-bounds on run time, as is apparent
from the relative paucity of rigorous run time results for methods such as simulated
annealing and tabu search (expect for general convergence results).

For readers familiar with the recent work by Watts and Strogatz [32] on ‘small
world’ graphs, we note the resemblence of our 2SAT chain with redundancies and
small world graphs. In fact, the small world topology where long range and short
range interactions are combined provided an impetus for this work. We are currently
exploring further connections to computational properties of small world graphs. See
also [13, 31].

w
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Perhaps somewhat suprisingly, the implied “long-range” clauses do not make
any difference for the performance of an unbiased random walk. The reason
for this is that the underlying random walk remains completely balanced (i.e.,
50% chance of going in either direction). This follows from the fact that each
of the added clauses again has exactly one literal satisfied in the two satisfying
assignments.

However, the situation changes dramatically for the biased random walk case.
The right panel of Figure 4 gives the scaling for RWF for different levels of
redundancies. We see that the scaling improves dramatically with increased levels
of implied long range clauses. More specifically, with a redundancy rate of 0, we
have a scaling of ©(N?), wich improves to ©(N'?) for a redundancy rate of
2. (Regression fits with MatLab.) The right panel shows that we get a further
improvement when using WalkSat. WalkSat scales as ©(N*1) (redundancy rate
of 2). So, we note that the performance of WalkSat becomes quite close to that
of unit propagation. Interestingly, when we further increase the level of implied
clauses, the performance of biased random walk procedures starts to decrease
again. See Figure 5. We will encounter a similar phenomenon when considering
our benchmark problems from hardware verification.

The clauses added to the binary chain can be understood as results of a series
of resolutions. Therefore, we have shown for this basic structure — which brings
out the worst case behavior in random walks on 2SAT problems — that the
added long distance resolvents, coupled with a greedy bias in the local search
algorithm, effectively reduces the run time required to find a solution. Of course,
for solving a single 2SAT chain formula in isolation, the process of adding long
range resolvents would not make much sense, since the formulas are easily solv-
able using just unit-propagation. However, if such chains are embedded in much
larger formulas, then speeding up the random walk process can be useful because
it may speed up the overall solution process by propagating dependency infor-
mation much more quickly. In fact, we will see in our experimental validation
section that this is indeed the case on large-scale practical formulas from the
hardware verification domain.

3.3 Ternary Chains

We now consider another class of formulas, involving ternary clauses. As dis-
cussed in Section 2, on ternary clauses the Random Walk strategy becomes
biased away from the solution, at least in the worst case. When faced with such
a bias, a Random Walk would require an exponential number of flips to reach a
satisfying assignment. This effect is quite dramatic. For example, in Figure 1, a
random walk with just a 0.1% bias in the wrong direction, i.e., 49.9% to the left
and 50.1% to the right will take exponential time to reach the origin. We will give
a concrete family of chain-like formulas that exhibit such exponential worst-case
behavior. However, on the positive side, we will also show how a quite similar
family of 3CNF formulas exhibits polynomial time behavior. By considering the
differences between the intractable and the tractable structures, we obtain new
insights into methods for speeding up random walk techniques. To the best of our
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Fig. 4. The left panel shows the number of flips vs. the number of variables in
binary chains of different sizes. The right panel shows the curves for RWF and
WalkSat algorithms when the redundancy rate is set at 2
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Fig. 5. This figure shows the number of flips RWF makes on the 500-variable
binary chain formulas with different redundancy rates

knowledge, our results are the first rigorous results identifying a tractable class
of 3CNF problems for a random walk style local search method.

In our analysis, we consider formulas inspired by ternary chain formulas first
introduced by Prestwich [21]. Prestwich provided empirical results on such for-
mulas for the WalkSat procedure. Our analysis extends his observations, and
provides the first rigorous proofs for the convergence rates of unbiased Ran-
dom Walk on these formulas. Our results also show that on these formulas the
difference between biased and unbiased walks is minimal.

Let low(i) be a function that maps i, with 3 < i < n, into an integer in
the range from 1 to i — 2. We consider ternary chain formulas, Fzcpain,iow(i), On
variables 7 through z,, consisting of a conjunction of the following clauses:
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Fig. 6. These three diagrams illustrate our ternary chain formulas. The top panel
shows F5chqin,i—2 which has local links in the form of x;_> Ax;—1 — z; only. The
middle panel gives FSChain,[%J which has longer links of the form T AT —
x;. The bottom panel shows F3.pqin,|10gi] With even longer links of the form
of Tllogi) N Ti-1 — T
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Depending on our choice of the function low(i), we obtain different classes of
formulas. For example, with low(i)= i — 2, we get the formula

1 Axo A (1 Axg — x3) A (e Axg = xg) Ao A (Tp—2 ATp—1 — Tp).

Note that the function low(i) determines how the implications in the chain are
linked together. We will consider three different ways of linking the left hand side
variable in each implication with the earlier variables in the chain. Our choices
are:

) Short range connections: low(i)= i — 2.
b) Medium range connections: low(i)= | 5].
¢) Long range connections: low(i)= |logi].

Figure 6 illustrates each of these formula classes. We refer to these classes of
formulas by given low(i) as a subscript. We thus obtain the classes Fschain,i—2,

F3chain’ L%J ) and F3chain7 logi]-
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Fig. 7. RW on tenary chains (left). RW, RWF, and WalkSat on ternary chain
with low(i)= | 5] (right)

It is clear that each of our ternary chain formulas is trivially solvable by
unit propagation since the effect of the first two unit clauses 1 and o directly
propagates through the chain of implications. The only satisfying assignment
is the all True assignment.* However, it is far from clear how long a Random
Walk would take to find the satisfying assignment, when starting from a random
initial assignment. This brings us to our main formal results.

We found that the convergence rate of RW differs dramatically between the
three formula classes, ranging from exponential on Fscpqin,i—2 (short range con-
nections), to quasi-polynomial on F3chain,[%] (medium range connections), and
finally to polynomial on F3cpqin,|log i (long range connections).

The tractable cases are especially encouraging, since it has been widely be-
lieved that an unbiased RW can hardly solve any 3-SAT formulas in less than
exponential time (unless such formulas have an exponential number of assign-
ments). Consider RW on any of our ternary chain formulas after selecting an
unsatisfied clause. The procedure now has only a probability of 1/3 of selecting
the right variable to fix. To see this, consider a clause in one of our chain formulas
that is not satisfied by the current truth assignment, e.g., i) A i1 — ;.
This means that the current truth assignment must assign z;,,,(;) and z;—1 to
True and z; to False. The “correct” flip to make would be to assign z; to True.
However, with probability 2/3, the RW procedure will flip either Tlow(i) O Ti—1
to False. Thus, strongly biasing the walk away from the unique all True solution.
This general argument might lead one to conclude that RW should take expo-
nential time on all three of our ternary chain formula classes. However, a much
more refined analysis, which also takes into account how variables are shared
among clauses and the order in which the clauses become satisfied /unsatisfied
during the random walk, shows that on the formulas with medium and long

4 One could argue that, in practice, a local search algorithm would never encounter
such a formula, since one generally removes unit clauses before running a local search
procedure. However, note that the forced setting of ;1 and x> to True could be a
hidden consequence of another set of non-unit clauses.
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range connections the RW procedure converges much more quickly than one
would expect.

Let f(s) denote the random variable that represents the number of flips
RW takes before reaching a satisfying assignment when starting from an initial
(arbitrary) assignment s. We want to determine the expected value of f(s), i.e.,
E(f(s)), given any initial starting assignment s.

The following theorems summarize our main formal results.

Theorem 2. Given a ternary chain formula Fscnain,i—2, starting at a random
assignment s, the expected value of f(s), the number of flips to reach a satisfying
truth assignment, scales exponentially in n.

Theorem 3. Given a ternary chain formula Fichain,ow:) and let s be an ar-
bitrary truth assignment, we have for the expected number of flips for the RW
procedure:

a) E(f(s)) =O(n ne") ,  for low(i)= | ;]
b) E(f(s)) =0(n?- - (logn)?), for low(i)= |logi].

The proofs of these theorems require the solution of a series of recurrence
relations that characterize the expected time of the random walk process. As
noted above, instead of analyzing a single random walk, the random walk process
is decomposed into separate subsequences depending on the clauses and variables
involved. The proofs are rather involved and are omitted here because of space
limitations. The interested reader is referred to the long version of the paper,
see www.cs.cornell.edu/home/selman/weiwei.pdf.

Theorems 2 and 3 provide further evidence that links capturing longer range
dependencies among variables can dramatically accelerate the convergence of RW
procedures, just as we saw for biased RW on the binary chain formulas. The left
panel in Figure 7 empirically illustrates our scaling results. Note the logarithmic
vertical scale. We see clear exponential scaling for the chain formulas with only
short range connections. The other graphs curve down, indicating better than
exponential scaling, with the best scaling for the long range dependency links
(polynomial). Finally, in the right panel of the figure, we consider the effect of
adding a greedy bias in the RW. We consider the formulas with medium range
dependency links. We see some improvement for RWF and WalkSat over RW,
but no dramatic difference in scaling. So, the range of dependency links (short,
medium, or long) in the 3chain formulas is the main factor in determining the
scaling both for both biased and unbiased random walks.

4 Empirical Results on Practical Problem Instances

We have shown both theoretically and empirically that the performance of the
WalkSat procedure improves when long range connections are added to our chain
formulas. Given that chains of dependent variables commonly occur in practical
problem instances, we hypothesize that similar performance improvements can
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be obtained on real-world formulas. In this section, we test this hypothesis on a
suite of practical problem instances.

In order to apply our technique to a real-world formula, however, we need to
be able to discover the underlying variable dependencies and add long-distance
links to the corresponding implication graph. Quite fortunately, Brafman’s re-
cent 2-Simplify method [5] looks exactly for such long range dependencies. The
procedure improves the performance of SAT solvers by simplifying propositional
formulas. More specifically, 2-Simplify constructs a binary implication graph
and adds new clauses (links) that are based on the transitive closure of existing
dependencies. (In current work, we are extending this process by adding links
implied by ternary clause chains.)

We built our preprocessor upon Brafman’s implementation. More precisely,
his code simplifies a formula in the following steps. First, it constructs an impli-
cation graph from binary clauses, and collapses strongly connected components
that exist in this graph. Second, it generates the transitive closure from existing
links in the graph, which enables the algorithm to deduce some literals through
binary resolution and hyper-resolution, and remove the assigned variables from
the graph. Third, it removes all transitive redundant links to keep the number
of edges in the graph minimal. Finally, the graph is translated back into binary
clauses. Note that Brafman’s procedure eliminates all the transitively redundant
links in the third step. The procedure was designed mainly for speeding up DPLL
style procedures, which can easily recover the transitive closure dependencies via
unit propagation. However, based on our earlier results on the chain formulas,
to speed up local search methods, we need to keep exactly those implied clauses
that capture long range dependencies. That is, WalkSat may actually exhibit
better performance when working on formulas with a fraction of redundant long
range links kept in place. To implement this strategy, we modified the 2-Simplify
procedure to remove implied transitive links from the transitive closure graph
in a probabilistic manner. More specifically, we introduce a redundancy param-
eter, c, which gives the probability that we keep a redundant link. So, in the
third step of the 2-Simplify procedure, we step through the redundant links and
removes each one with probability 1 — a.

We will now show that this rather straightforward approach makes a tremen-
dous difference in WalkSat’s ability to find a satisfying truth assignment on
structured benchmark problems. (Of course, given our earlier results on the chain
formulas, this is not completely unexpected.) We ran WalkSat on the SAT-1.0
benchmarks used recently by Velev [28, 29] to evaluate a collection of 28 state-
of-the-art SAT solvers. The suite consists of 100 formulas encoding verification
problems for superscalar microprocessors. The instances have been shown to be
challenging for both local search methods and DPLL procedures [29]. Moreover,
they represent an important practical application. From Velev’s results and to
the best of our knowledge, no local search methods is able to solve more than
65 instances in under 40 seconds of CPU time per instance.

Our experiments were performed on a 600 MHz Pentium II processor running
Linux. See Table 4 for our results. The first row shows the results for the original
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Table 1. Number of instances WalkSat (noise = 50) solved (averaged over 10
runs) on Velev benchmark [28; 29] (100 instances total). Prepocessing using 2-
Simplify; « is the redundancy level

Formulas|< 40 sec|< 400 sec|< 4000 sec
a=0.0 15 26 42
a=0.2 85 98 100
a=1.0 13 33 64

formulas in SSS-SAT-1.0 suite after simplification using Brafman’s preprocessor
(a = 0.0). The second row shows the results when a fraction of redundant clauses
is added (o = 0.2). (The preprocessing time is included in the total run time.)

It is clear from the table that WalkSat’s performance improves dramatically
when adding a fraction of redundant clauses: solving 85 instances within 40 sec-
onds with 20% redundancy, compared to just 15 with no redundancy; moreover,
98 instances can now be solved in under 400 seconds, compared to 26 without
redundancies. In future work, we will provide a comparison with the performance
on the original formulas without any preprocessing. Brafman’s current simpli-
fier, unfortunately, leads to theories that are logically slightly weaker than the
original theory. This makes a comparison with the performance on the original
formulas difficult. Nevertheless, our experiments in Table 4 clearly demonstrate
the benefit of adding long range dependencies.

We observed a clear optimal value for the rate of redundancy «. In particu-
lar, adding all implied transitivity constraints can be harmful. This is apparent
from the third row in Table 4. With o = 1.0, we add all redundant transitivity
constraints uncovered by the simplifier. Clearly, adding only a randomly selected
fraction of implied transitivity constraints (20% in this case) gives us much bet-
ter performance. Figure 8 shows the number of flips until solution and the run
time of the WalkSat algorithm for different @ values. These results are consistent
with our observations for adding random long range links to our binary chain
formula. In that setting, there was also a clear optimal level of redundancy for
the biased random walk approach. See Figure 5.

Cha and Iwama [6] also studied the effect of adding clauses during the local
search process. They focus on clauses that are resolvents of the clauses unsatisfied
at local minima, and their randomly selected neighbors. This meant that the
added clauses captured mainly short range information. Our results suggest that
long range dependencies may be more important to uncover.

In summary, our experiments show that the insights obtained from our study
of the chain formulas can be used to speed up local search methods on SAT prob-
lems from practical applications. In particular, we found a clear practical benefit
of adding implied clauses that capture certain long range variable dependencies
and structure in the formulas. Interestingly, to make this approach work one has
to tune the level of redundancy added to the formulas. Somewhat surprisingly,
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Running Time vs. Rate of Redundancy Number of Flips vs. Rate of Redundancy
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Fig. 8. Different levels of redundancy on instance d1x2_cc_bug01. cnf from SAT-
1.0 suite [28]. Results are averaged over 100 runs. Noise level WalkSAT set at 50

the total number of added clauses was only about 4% of the original number of

clauses.

5 Conclusions

We have provided theoretical and empirical results showing how one can speed up
random walk style local search methods. The key idea is to introduce constraints
that capture long range dependencies. Our formal analysis for unbiased random
walks on ternary chain formulas shows how the performance of RW varies from
exponential to polynomial depending on the range of the dependency links, with
long range links leading to a tractable sub-case. We believe this is the first
tractable 3CNF class identified for unbiased random walks. On the binary chain
formulas, we saw how such constraints can also improve the performance of
biased random walks. On the binary chains with added implied clauses, biased
random walks become almost as effective as unit propagation used in DPLL
procedures. Finally, we showed how on practical instances based on hardware
verification problems adding a fraction of long range dependencies significantly

improves the performance of WalkSat on such formulas.

Our results so far show the promise of our technique for speeding up local
search methods on structured benchmarks domains. However, we believe that
there is still much room for further improvements. In particular, it should be
possible to develop formula preprocessors that uncover other types of depen-
dencies between variables that may be useful for further accelerating random
walks. Again, a methodology guided by an analysis of formulas where biased

and unbiased random walks exhibit extreme behavior should be helpful.
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