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Abstract. Probabilistic Context-Free Grammars can be used for speech
recognition or syntactic analysis thanks to especially efficient algorithms.
In this paper, we propose an instanciation of such a grammar, whose
mathematical properties are intuitively more suitable for those tasks than
SCFG’s (Stochastic CFG), without requiring specific analysis algorithms.
Results on Susanne text show that up to 33% of analysis errors made by
a SCFG can be avoided with this model.

1 Motivations

Stochastic Context-Free Grammars (SCFGs) are far from beeing up-to-date
models for the desciption of natural languages, but they still remain interest-
ing models for Parsing and Speech Recognition [4], thanks to particularly effi-
cient algorithms they provide for those tasks [6, 11, 2]. They can also be used
as computational representations of richer grammars, such as Polynomial Tree
Substitution Grammars [3].

However, their mathematical properties seem a bit strange and lower the
quality of the results they provide when used for such tasks [10].

This article describes a new probabilisation of Context-Free Grammars, which
essentially is a non-generative variation of the SCFGs, and which will be denoted
as GCFG (for "Gibbsian CFG"). In this model, each context-free rule of the CFG
is mapped to a "potential” instead of a probability, and the learning criteria is
turned to fit the analysis task instead of a generative task. This model should
have a better parsing behaviour while taking benefit of the efficiency of SCFGs
parsing algorithms.

In the remaining of this paper, an example of a non-intuitive behaviour of
SCFGs is shown in section 2, the GCFG model is described, along with a learning
algorithm, in section 3, SCFGs and GCFGs are experimentally compared in
section 4, and conclusions are given in section 5.

2 Non-intuitive Behaviour of a SCFG

This example is extracted from M. Johnson’s study [7], and illustrates a seem-
ingly paradoxal behaviour of SCFGs. Suppose we have a treebank 71 with two
trees (A) et (B) (Fig.1), where (A) appears with relative frequency f. An SCFG
is trained on this corpus with the usual method, which consists in assigning to
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Fig. 1. Training corpus 71. This corpus contains the tree (A) with relative frequency
f, and (B) with r.f. (1 — f).

the rules probabilities proportionnal to their frequency in the corpus. Rules prob-
abilities (P,) obtained from this corpus are as follows : P,(VP — V NP) = f,
P{(VP — VNP PP) =1— f, P{(NP — Det N) = 2/(2+ f) and P,(NP — NP
PP) = f/(2 + f). Thus, the probablitities of producing (A) and (B) with the
resulting model are : P;(A) = 4f%/(2+ f)? and P,(B) =4(1— f)/(2+ f)?. The
estimated relative frequency of (A) among trees yielding V Det N P Det Nis:
fi = Py(A)/(Pi(A) + Py(B)) = f2/(2 — f). Ideally, f1 should be close to the
observed relative frequency f. Fig.2 shows fl as a function of f; as can be seen,
f1 and f can differ substantially. For instance, if f = 0,75, fl = 0,45, i.e. even
if (A) appears three times as often as (B) in the training corpus, the yields V
Det N P Det N will be parsed as (B).

M. Johnson suspects that this behaviour is due to the non-systematicity of
the structures in the training corpus : in tree (A), (NP =* Det N PP) follows
Chomsky’s Adjonctive Form, whereas (VP =* V NP PP) has a flat structure
in (B). To test this hypothesis, the corpus is modified, either by flattening (NP
=* Det N PP) in (A) (i.e. representing the structure by the unique rule NP
— Det N PP), or by replacing (VP — V NP PP) in (B) with (VP — VP PP)
and (VP — V NP). Each of the two modified corpora thus obtained are used
to train an SCFG, and the estimated relative frequency of the first tree as a
function of its observed frequency is respectively : fo = (f2—2f)/(2f2— f —2),
and fg = f2/(2 — 3f + 2f?). Those estimated frequencies are closer to f than
fl, but remain lower, as illustrated by Fig.2. In each case, when the observed
frequency of the NP-attachment of PP is 0.6, the computed model will affect a
higher score to the VP-attachment of PP.

3 Gibbsian Context-Free Grammar (GCFG)

We now describe the GCFG model, which is strongly inspired from SCFGs. The
grammar is composed of a set of IV, rewriting rules X — Y7...Y},|, N, terminal
and non-terminal symbols, terminal symbols only appearing in right parts of

rules. Moreover, each rule r; is associated with a potential value \; (instead of
a probability as in SCFGs).
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Fig. 2. Estimated relative frequencies of NP-attachment of the PP group, as a function
of its observed relative frequency in the different training corpora.

3.1 Potential of a Tree and Conditional Probability

Contrary to a SCFG, this model is not generative. One thus does not seek to
define the probability of producing a tree with this model. On the other hand,
one defines the potential of an analysis tree z as the sum of the potentials
of the rules which constitute it. It is thus the scalar product X - f(x) of two
vectors of size N, (the number of context-free rules), component i of \ being the
potential \; of rule r;, and component i of f(z) being the number of occurrences
fi of the rule r; in the tree x.

One defines moreover the probability of an analysis tree = conditionnally
to its yields w = (wj...w,) (i.e. w stands for the analysed sentence) with the
formula :

e f(z)
p(rlw) = S oo T
where Zy =y, 18 the sum over all trees y of the grammar whose yields are w.

3.2 Syntactic Analysis with a GCFG

The syntactic analysis of a sentence w consists in finding the tree  with the high-
est potential among possible analysis trees. As stated by the previous formula,
this is equivalent to finding the tree with the highest conditionnal probability :

Z = Argmax A - f(z) = Argmax p)(z|w) = Argmax H erifi(@)

T=*w T=*w T=*w
= T, ET

The last expression shows how close this model is to a SCFG, where the solution
of the syntactic analysisis : = Argmax,_,.,, p(z) = Argmax,_ ., [[, c, p(r:)"®)



GCFGs thus do not require the development of specific analysis algorithms :
one can use as is any SCFG’s algorithm, provided it does not make use of the
condition p(r;) < 1. In particular, Ax-algorithms use this condition by making
the assumption that the score monotonically decreases with the length of the
hypotheses, and cannot be used here. A bottom-up chart parser, described in
[2], has been used for our tests, by simply replacing the rule probabilities p(r;)
with e

3.3 Parameters Learning

Learning Principle : From a learning corpus, constituted of sentences (W)
and their analysis trees (X), we seek to compute the parameters \ so as to
maximize the probability of the trees conditionnally to the sentences :

A = Argmax py (X |W) = Argmax Z In py(z|w(z)) = Argmax A(N)
A reX A

(by writing w(z) the yields of z, i.e. its leaves.) A()\) is the "conditionnal log-
likelihood" of the corpus; note that this is one of the main difference between
GCFGs and SCFGs, for which one usually seeks to maximize the probability
pa(X) of the corpus, the solution beeing easily obtained by affecting to each rule
a probability proportionnal to its observed frequency.

Improved Iterative Scaling principle : As directly maximizing A(\) is
too difficult, we start from an initial model \g (the choice of this initial model
can be crucial, but is not discussed here), and iteratively improve it. A step of
iteration consists in passing from a model A to a model X', by trying to maximize
Dr(N) = AN) = AN) = > ,exn %. As this maximization is again
untractable, a step of IIS will maximize the intermediary function By ()\’') which
is a minorant of Dy (\) :

BaN) =S (V=X fa)- > Z pa(ylw(z Z B MORED ¢

reX z€X y—w(x)

where f#(y) = Y, fi(y) is the number of rules appearing in a tree y. Details
about the mathematical derivations of B (\') from Dy ()\’) are well explained in
1,9, 8.

Maximizing By (\') is done by finding the point where its partial derivatives
are null, i.e. by solving for each rule r; :

==Y S0+ 3 3 plE)hETHTO )

zeX r€X y—w(x)

Due to the convexity of the polynoms involved in these equations, their solutions
can easily be computed with a Newton’s method.



Inside-Outside Algorithm : The first term of the polynom, — 3 _ fi(z),
is trivially obtained as the frequency of 7; in the training corpus. But the other
coefficients are far more complex to compute : the term Zy —yxq - TEQuires a
summation over all possible analyses of w, which can be an exponential problem.
This step is sometimes approximatively solved by sampling methods [9]. Here,
we can happily factorize the computation by using an Inside-Outside algorithm,
as shown by the following manipulations.
Let us rewrite the third sum of (1) :

Sual@) = 3 palwlw)fily)a! ) = (37 M) R A0 fiy)al @

1<j<k<|w| y="w

where C(y, [j, i, k]) is the number of occurrences of r; in y at position (j, k) (i-e.
when 7; yields w;...wy, in y), where V(y) = MW" W) = Hmey(fia)fi(y) is
the product of the polynoms P;(a) = (\;«) associated with the rules r; that
constitute y, and 7, ,, = Zu:>*w eNf(@),
Following [5] (pp-26-57) Zy:>*w V(y)C(y, [4, 74, k]) can then be computed for
each r;, j and k with an Inside-Outside algorithm, which we can sketch by :
— For each triplet (j,7;, k), compute inside,[j, r;, k] as the sum of the values
V(y) of trees y whose top rule is r;, and whose leaves are w;...wy.
— For each triplet (j, A, k), compute outside[j, A, k], as the sum of the values
V(y) of trees y whose leaves are wi...w;_1 Awgq1...wp.
— Noting G(r;) the left-side symbol of r;, the result is obtained with :
> ymrw VWO (Y, [4, 74, k]) = inside,[j, ri, k] * outside[j, G(r;), k]

Improved Iterative Scaling Algorithm : Finally, the training algorithm
can be summed up as follows :
Define an initial model )
Repeat :
AN,
/* from \ to \ */
Initialize to zero the polynoms S"(a) associated with rules r.
For each example = of the learning corpus :
Analyze w(z) with the Inside-Outside algorithm.
Compute Z) ;) as the sum of the coefficients of the polynom
>, inside,[1,7,n].
Foe each element [j,7, k] of the Inside-Outside chart
S7(a) = 57(0) + Z3 0y ymsrn VW, i, K])
(= S"(a) + Z;’;(I)msider[j, r, k] x outsidelj, G(r), k])
Foe each rule r; of the CFG :
Solve : S"i(ap) = —sumgex fi(x)
Compute the model parameter )\ with : )\, = \; +logag
until convergence of criterium A()\).



4 Experimental Results

The GCFG model has been tested on a SUSANNE-derived corpus, containing
4292 trees, 1920 non-terminal symbols, 11935 terminal symbols, 17669 rules.
Some unary rules were manually removed so as to obtain a non-looping grammar.

The first test consists of learning the model from the complete corpus, pars-
ing the sentences of the corpus with the obtained parameters, and comparing
the resulting trees with the reference trees. Results are grouped under the label
Test = Learn in Fig.3. Column Tx (Par) represents the rate of sentences receiv-
ing a parse, and among them Tx(Cor) represents the rate of those whose parse
is the correct one. Precision and Recall rates (columns Pre et Rec) are obtained
by considering the sequence of parse trees 7 as a set E(7) of triplets < g, N, d >,
where N is a non-terminal symbol, and g et d are the positions in the corpus of
the first and last words yielded by N. When comparing with the reference trees
7', la precision and recall are computed as :

[E(T) N ET)
E@I

[E(T) N ET)

Tz (Pre)(T) = E@)]

Tz (Rap)(T) =
The second test is identical to the first one, except that the training process takes
place on 9 tenth of the corpus (randomly chosen), and the test is done on the
remaining part. The results appearing in Fig.3 are means of results obtained for
ten random splits of the initial corpus. Precision and Recal rates are computed
on the basis of trees that receive at least one parse.

The SCFG model was tested on the same corpora, and we give the diminution

of Error-Rates that GCFG provide in comparison. These values are computed
as : 1 — L=Ta[GCFG]
: T—Ta[SCFG) "

|| Test = Learn || Test # Learn
Lexicalized corpus
Model Tx(Par) Tx(Cor)| Pre | Rec ||Tx(Par)|Tx(Cor)| Pre | Rec
SCFG 1 0,788 10,989|0,988|| 0,062 | 0,408 |0,878|0,893
GCFG i 0,860 |0,994]0,994][ 0,062 | 0,398 |0,874]0, 889
Diminution of Error-Rate| 33% | 48% | 49% —2% | —3%|—-3%

Fig. 3. Compared results of SCFGs and GCFGs, for a parsing task.

4.1 Discussion

The example of Sec.2 shows that a SCFG whose parameters are learned from
a treebank can exhibit an unexpected behaviour, affecting higher probabilities
to seldom forms. On the same example, a GCFG conforms to intuition, i.e.
the estimated and observed frequencies of (A) are the same (which we do not



demonstrate here). This difference is mainly explained by the difference between
their learning criteria : SCFGs are usually considered as generative models, and
their learning stage maximizes the probability of generating the corpus with an
underlying stochastic process starting from the root of a tree. Their learning
criterium thus is : py(X)!. Such a model makes the assumption that language
is generated by a grammatical process.

In the contrary, GCFGs are designed as analysis models, and their learn-
ing criterium is py(X|W), which intuitively corresponds to the probability of
generating the corpus from its leaves. If possible, this criterium is maximized
when the estimated frequencies of trees of same yields are proportional to their
frequency in the corpus. As there are enough parameters to reach this result in
the example, this explains the perfect adequation of the observed and estimated
frequencies.

Sec.2 also relates the fact that representing the structures (NP =* Det N
PP) and (VP =* V NP PP) in a similar way in the corpus (i.e. either both
flattened or both under Chomsky’s Adjonctive Form) enhances the performance
of the trained SCFGs. Nothing comparable can be observed for GCFGs, which
behave in the same way in every case. However, tests with more realistic cor-
pora [7] show that only the flattening scheme really enhances the performance of
SCFGs. M. Johnson suspects the reason is linked to the weakening of indepen-
dance assumptions of CF grammars this flattening scheme induces. It should be
interesting to measure in the same way the impact of this flattening operation
on a GCFG, for which independance assumption are not so strong : the potential
of a rule is computed in comparison with all rules of the grammar, and not only
with the rules that share the same head, as in SCFGs.

GCFGs perform well in self-test (T'est = Learn column of Fig.3) : with
the same number of parameters as a SCFG trained in the same conditions, the
number of incorrect parses is multiplied by 2/3, and the label precision and recall
error rate are multiplied by 1/2 : GCFGs "stick" undoubtedly better to learning
data than SCFGs.

In the generalisation scheme (T'est # Learn column), the mean behaviour of
GCFGs seems slightly worse than for SCFGs, but the ranking differs from one
experiment to the other : the observed difference between both models is not
significative. This comes from the very low coverage of the underlying CFG :
only 6% of test sentences are parsed by this CFG (26 sentences out of 429).
Moreover, the number of context-free rules (17669) is huge as compared to the
size of the learning corpus (4292 — 429 trees), and the computed parameters are
likely to be insignificant for generalization.

5 Conclusion

This contribution presents a valuation method for Context-Free Grammars,
which differs from SCFGs by its training criterium, suited to a parsing task,

! ¢f Sec.3 for notations



and by the relaxation of stochastic constraints (p; < 1, et > p = 1) imposed
to the parameters of a SCFG. The resulting grammars (GCFG) having essen-
tially the same form as SCFGs, we are provided with standard efficient parsing
algorithms that can be used without modification. We have also detailed an
algorithm for training the GCFG model within a reasonnable time.

Experimental studies show that GCFG parameters better stick to training
data and intuition than SCFG ones. On the other side, we have not shown any
improvement when parsing unseen sentences, due to the weak coverage of the
common underlying CFG. Tests with more covering corpora are under process.

Other applications of the exposed principle are foreseen, such as its adap-
tation to Polynomial Tree Substitution Grammars [3], which enclose richer lin-
guistic informations than CFGs, but are not theoretically well defined from a
probabilistic point of view. We also plan to adapt GCFGs for dealing with a
Speech Recognition task, by changing its learning criterium.
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