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Abstract 

This paper introduces distributed prover protocols. Such a protocol is a proof system in which 
a polynomially bounded prover is replaced by many provers each having partial information about 
the witness owned by the original prover. As an application of this concept, it is shown how the 
signer of undeniable signatures can distribute part of his secret key to n agents such that any k of 
these can verify a signature. This facility is useful in most applications of undeniable Signatures, and 
aa the proposed protocols are practical, the results in this paper makes undeniable signatures more 
useful. The first part of the paper describes a method for verifiable secret sharing, which allows 
non-interactive verification of the shares and is as secure aa the Shamir secret sharing scheme in the 
proposed applications. 

1 Introduction 
Undeniable signatures were introduced in [CvASO]. Briefly, an undeniable signa- 
ture is a signature which cannot be verified without the help of the signer (see 
[CvASO] and [ChaSl]). They are therefore less personal than ordinary signatures 
in the sense that a signature cannot be related to the signer without his help. On 
the other hand, the signer can only repudiate an alleged signature by proving that 
it is incorrect. 

A manufacturer can use undeniable signatures to sign his products, such that 
someone who wants to verify the genuineness of a given product has to contact the 
manufacturer. This wav the manufacturer can control the usage of his products. 

Convertible undeniable signatures are undeniable signatures with the added 
property that the signer can convert all the undeniable signatures to ordinary 
signatures by releasing a part of the secret key, and selectively convertible undeni- 
able signatures allow the signer to convert single signatures to ordinary signatures 
without affecting other undeniable signatures (see [BCDPSO]). 

In almost all applications of undeniable signatures that one can imagine, it 
might be a problem that only the signer can verify the signatures, because this 

D.W. Davies (Ed.): Advances in Cryptology - EUROCRYPT '91, LNCS 547, pp. 221-242, 1991. 
0 Spnnger-Verlag Berlin Heidelberg 199 1 



222 

requires that he can always be reached. Since an undeniable signature does not 
prove anything in itself, it is very reasonable that a receiver of a signature demands 
that either the signer or an agent authorized by the signer is always willing to 
verify signatures. Such an agent can also be a big help to the signer, since a person 
signing many messages quite rapidly can be overburdened verifying signatures. 

With convertible undeniable signatures it is possible for the signer to autho- 
rize an agent who can verify all signatures, and if the signatures are selectively 
convertible, agents can be authorized to verify single signatures. However, this 
requires that the signer trusts the agents completely. 

If the signer does not (want to) trust single persons, he may want to authorize n 
agents such that verification requires at  least k of these to cooperate. This facility 
was proposed by David Chaum and this paper shows how it can be achieved. The 
construction falls in two parts. First it is described how the signer can distribute 
the keys such that each agent can verify that he has received correct shares, and 
then it is shown how the agents can verify or deny signatures. 

In Section 3 we present a scheme for distributing a secret s which uses the fact 
that information about s is known beforehand through a public key. This scheme is 
based on the secret sharing scheme by Shamir, which is shortly described in Section 
2. After a short description of the undeniable signature scheme from [BCDPSO] 
in Section 4, Section 5 shows how a number of agents can verify these signatures, 
and Section 6 discusses the possibility of using agents to deny signatures. 

2 The Shamir Scheme 
In this section the Shamir secret sharing scheme is briefly described and the pro- 
perties needed in the following sections are summarized (see also [Sha79]). 

A (k, n)-threshold secret sharing scheme is a protocol between n + 1 players in 
which the dealer distributes partial information (share or shadow) about a secret 
(or key) to  n participants such that 

Any group of fewer than k participants cannot obtain any information about 

Any group of at least k participants can compute the secret in polynomial 

Consider a field IF and let the secret, s, be an element of P. In order to 
distribute s among PI,. . . , P,, (where n < IF() the deder chooses a polynomial 
f E F [ z ]  of degree at  most k - 1 satisfying f(0) = s. Participant Pi receives 
si  = f ( z i )  as his private share, where x, E lF \ (0) is public information about Pi 
( x i  # x ,  for i # j). 

Due to the fact that there is one and only one polynomial of degree at most 
k - 1 satisfying f ( q )  = si for k values of i, the Shamir scheme satisfies the 
definition of a (k, n)-threshold scheme. Any k persons (Pi,,  . . . , Pik) can find f by 

the secret. 

time. 
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the formula: 

Thus 
k 

j=1 
s = c a j s j j ,  

where a l ,  . . . , ak are given by 

Thus each ai is non-zero and can easily be computed from the public information. 

3 Verifiable Secret Sharing 
Now the Shamir scheme is applied in a setting where the secret is given as a 
discrete logarithm. The resulting scheme has the advantage that each participant 
c a n  verify his share. In [P.F87] Feldman obtained a verifiable secret sharing scheme 
from the Shamir secret sharing scheme by broadcasting probabilistic encryptions 
of the polynomial used to generate the shares. Under the assumption that the 
encryption function is a “homomorphism” it was possible for each shareholder to 
verify his share without communicating with the other participants. 

The scheme suggested by Feldman aims at hiding the secret to be distributed 
in a very strong sense. However this is not necessary if some information about 
the secret is known beforehand. We now present a scheme very similar to [P.F87] 
which is somewhat simpler due to the fact that the public information about the 
secret is used in the verification of the shares. 

3.1 Verification using Discrete Logarithms 
Throughout this paper p and q are large primes such that q divides p - 1, and g 
generates the subgroup, G,, of Zp of order q. It is assumed that p ,  g and g are 
publicly known. 

Assume the dealer has a secret s E Zq and is committed to s through a public 
key h = 9’. This secret can be distributed to PI,. . . , P,, as follows: 
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PROTOCOL DISTRIBUTE 
1. Compute shares si using the Shamir secret sharing scheme in the field IF = 
Z, by first choosing a polynomial f = fo + f1z + . . . + fk-lzk-' over Z, of 
degree k - 1 satisfying f(0) = s and then computing 

si = f(z;). 

Here zi is public information about Pi as described above. 
2. Send si secretly to P,,  and broadcast (gfi);=l,..+l to all n participants. 

Thus the dealer has to broadcast k - 1 elements in G ,  and to send secretly n 
elements in Zq. 

The public information corresponding to the share si is denoted hi = gad. Thus 
hi depends on s; in the same way that h depends on s. A participant not knowing 
s; can compute hi as (gfo = h) 

When all shares have been distributed each participant verifies his share as follows 

PROTOCOL VERIFY SHARE (at S) 
1. Compute hl = l$;t(gfj).: for all 1 = 1,. . ., n. 
2. Verify, that h; = gsi. 

3. If this is false broadcast si and stop. 
Otherwise accept the share. 

The signer can always detect, if Pi falsely claims to have received a wrong share, 
and in that case he should start all over discarding Pi from future protocols. 

If the signer follows the protocol, all honest agents will accept their shares, 
and h; = g8i will be publicly known for i = 1,. . . , n. The next proposition shows, 
that no matter how the dealer computes the shares, any k participants who have 
accepted their shares can h d  s. 

Proposition 3.1 
Any k participants, who have followed PROTOCOL VERIFY SHARE and ac- 
cepted, can find s. 

Proof 
Assume that the k participants are PI,. . . , 9. It is sufEcient to show that the 
unique polynomial f' of degree at most k - 1 satisfying 

f'(zi) = s; for i = 1,. . . , k 
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also satisfies f ’ (0)  = s. But 

implies 

j=O 

j = O  

and the uniqueness of f’ implies that f’(0) = f(0) = s. 

Theorem 3.2 below shows that any number of participants can simulate the 
dealer perfectly no matter what shares they get. Thus fewer than k participants 
do not get any information about s which allows them to compute something that 
they could not have computed before the secret was distributed. 

Theorem 3.2 
Any 1 participants having shares ( S i j ) j = l , . . , , /  can fhd  (gfj)j=o, . . . ,k - l ,  such that 

f‘(z) = f; + fix + . . . + f;-lxk-l 

is a random polynomial of degree at most Ic - 1 satisfying 

ff(0) = s 
f ’ ( . i j )  = S i j ,  j = 1,. ..,z. 

Proof 
If I 2 k the proposition is trivial as any k agents can find the polynomial used by 
the signer. 

Now assume that 1 5 E < Ic and let the E agents in question be Pi,. . . , Pi. The I 
participants generate f’as follows: 

1. Choose Ic - 1 - 1 random “shares” sl+l,.  . . , st-1 corresponding to the public 

2. Find gf: for i = 0,. . . , k - 1, where the polynomial f‘(z) = fi +, . , + fL-lzk-’ 

As sl+1,, . . , Sk -1 were chosen at random the (unknown) polynomial f’ generated 
this way is completely random such that 

information x1+1,. . . , xt-1. 

satisfies f‘(xi) = s; for i = 1,. . . , k - 1 and f’(0) = s (see below). 

f’(0) = s 

f y x j )  = s j ,  j = l,.. .,z. 
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I It only remains to show how (gf: ) i  ase found. The polynomial f '  is going to satisfy 
(so = 5, 20 = 0): 

This k x k matrix is a Van der Monde matrix, and it has an inverse, A, as xi # 0 
and z, # x, for i # j .  Thus 

Let 

A =  

and note that PI, .  . . ,9 can find each aij. Thus gfl can be computed for i = 
0,. . . , k - 1 by the formula (gso = h is known) 

j =O 

This proves the theorem. I 

4 Convertible Undeniable Signatures 
This section contains a short descript.i.on of the selectively convertible undeniable 
signature scheme from [BCDPSO]. 

Let p ,  q and g be as above. For all a and b in G, with b # 1 the discrete 
logarithm of a to the base b is defined and denoted logb(.). The simultaneous 
discrete logarithm problem is to decide given four elements a, b, c and d if logb(a) 
equals log, (c) . 

The private keys in the scheme are 

KSI = x and KS2 = z ,  1 < z,.z < q 

and the public key is 

K P  = ( p ,  g, g, y, ti), where y = g2 and u = g*. 
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Any receiver of the public key can easily verify that y and u generate G,. 
The signature on the message m is sign(m) = (g ' ,  T, s ) ,  where (T, s) is the El 

Gamd signature on M = g'tzm mod q (in this product gt is considered an element 
in Zq). That is 

giM = Y'T' modp. 

As noted in [BCDPSO] rn should be hashed before signing, but the hash function 

Given m and (T, T, 3) both the signer and the verifier can compute zu = vrn 
and 21 = Y ' T ~ .  The signer can prove that (T, T ,  s )  is (not) a signature on m by 
proving that log,(v) = log,(u) (log,(v) # log,(u)). The protocol in figure 1 is 
a variant of the proof system for simultaneous discrete logarithm in [ChaSl] and 
shows how the signer can verify a signature. 

; is omitted here. 

P V 

Choose a ,  b E Z and compute 

Choose r E iZ and compute 
hl = ch' and h2 = hi 

Qhh2.l 

A N -  
Verify that ch = wagb 

T 

Verify, that hl = (wagb)>' and 
hz = (ZIaub)' 

Figure 1: Proof that logw(z)) = log,(u)(= 2 ) .  

The signer can convert all his signatures to ordinary signatures by releasing z .  
Alternatively, a signature (T, T ,  s) on the message m can be converted to a digital 
signature by releasing t such that T = gt.  Given t ,  a signature can be verified as 
follows: 

1. Verify, that T = g'. 

2. Verify, that (urnT)t = y r P .  

Anyone, who can solve the simultaneous discrete logarithm problem caa obviously 
recognize valid signatures. In [BCDPSO] it is argued that it is hard to verify a 
signature without the aid of the signer even if the signer verifies other signatures. 
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5 Distributed Prover Protocols 
If the signer in an undeniable signature scheme is going away for a while, the 
receivers of signatures might request that a trusted third person gets the secret 
key of the scheme such that this person can verify signatures during the signer’s 
absence. If the signer doesn’t want to give away the secret, an obvious solution is 
to distribute it to n persons (agents) with a (k, n)-secret sharing scheme. When a 
verifier wants a signature to be verified or denied, he can ask k of these n persons 
for assistance. 

Such an (k + 1)-party protocol between the verifier and k agents will in general 
be called a distributed prover protocol (a distributed prover protocol differs from a 
multi-prover proof system (see (BOGKW881) as the provers may have unlimited 
computing power in the latter case). 

These k persons can help the verifier by first finding the secret and subse- 
quently one af them can execute the usual verification/denial protocol. However, 
this would be against the intentions of the signer, because in that case the secret 
could just as well have been given to one person in the first place. 

In this section we construct protocols that allow k persons to verify signatures 
without finding the secret. From a theoretical point of view it is possible to solve 
this problem, if the agents are allowed to talk with each other (for instance by 
using the techniques in [CDvdG88]). However, the distributed verification proto- 
col presented in Section 5.2 is very efficient, and it does not require interaction 
between the agents. Thus secret communication is only needed in the setup phase 
when the secret key is distributed. 

First the model is presented and a definition of security of a distributed prover 
protocol is given. 

5.1 The Model 
It is assumed that the n agents are selected such that at most k - 1 of them will 
ever deviate from the prescribed protocols and try to fmd the secret key. 

Each agent is modeled by a probabilistic polynomial time Turing machine 
having in addition to a computation tape and a random tape 

0 a tape for broadcasting messages (can be read by all other participants); 
0 a tape for common input (shared by all users); 
0 a tape for auxiliary input (can only be read by the owner); 
0 a tape for receiving secret messages from the signer (read only). 

A cryptographic protocol is secure, if any polynomial (in a security parameter) 
number of executions of it does not enable one of the parties to do a computation 
afterwards, that he could not have done beforehand. 
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As a polynomial number of polynomial time Turing machines can be simulated 
by a single polynomial time Turing machine, it can be assumed that the verifier 
is the same in all executions of the protocol (although the verifier may behave 
differently in each execution). This automatically handles the situation where 
different verifiers cooperate. 

Definition 5.1 
An agent is honest if it follows the protocol in all executions. An agent who is not 
honest is called dishonest. 

For any verifier and any set of dishonest agents consider the following protocol: 
1. Distribute the secret. 
2. Repeat a polynomial number of times: The verifier and the dishonest agents 

select a4 input to the distributed protocol and a set of agents with whom 
the protocol is executed. 

Following the ideas of [CDvdG88], where the security of general multi-party pro- 
tocols is defined, we say 

Definition 5.2 
Let Kp be the public key of the original prover. 
A distributed prover protocol is secure, if for every set of dishonest agents and ev- 
ery verifier, V*,  for every set of auxiliary inputs to the verifiers and the dishonest 
agents, there exists a probabilistic polynomial time machine, M ,  such that the 
output of M on input K p  is polynomially indistinguishable from the transcript of 
an execution of the above protocol. 

This definition allows that an execution of the distributed protocol reveals some 
information about the shares of the honest agents as long as this information 
cannot be used to obtain new information about the original prover's secret key 
or the signatures. 

5.2 Distributed Verification 
Consider the case where the signer, S, has signed the message, m, using the ran- 
domexponent, t .  Thus sign(m) = (T, T ,  s) where T = g' and ( T ,  s) is the El Gamal 
signature on the product Tttm modulo g. S distributes the ability to verify this 
signature to n agents (PI , .  . . , Pn with corresponding public keys 21, . . . , Zn) by 
distributing t .  As T = gf is part of the signature (and therefore not secret), the 
secret sharing scheme from Section 3 can be used: 
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PROTOCOL DISTRIBUTE SINGLE SIGNATURE 
1. S broadcasts T to the n agents. 

2. S distributes t using PROTOCOL DISTRIBUTE in section 3. Thus 8 gets 
the share t i  = f(zj), where f is a polynomial over Zq of degree k - 1 such 
that f(0) = t .  

3. Each agent Pi executes PROTOCOL VERIFY SHARE from section 3. 
4. S sends H ( m ,  T ,  s) to each agent, where H is a collision-free hash function. 

After the execution of this protocol each Pi has a secret share tj with corresponding 
public information hi = 9''. In addition to these values each agent has a hash value 
of the signature and the signed message, which is used to decide if a signature 
should be verified. 

When a person, V, asks k agents (say 9,. . . ,Pk) to verify a signature (T', T',  s') 
on a message m', the agents first have to make sure that they ore abZe to verify it 
and then decide if the signature is correct. Let a l ,  . . . , a k  be elements in Zq such 
that 

C tiaj = t .  
k 

a= 1 

As mentioned in Section 3, each ai can be computed from (zi)i=l, , . . ,k. 

PROTOCOL DECIDE 
1. V and each Pi verify that T' = nf h?. 

If this is not the case, the agents can neither verify nor deny the signature. 
2. Each Pi verifies that the signer has sent H ( ~ ' , T ' , s ' ) .  If this is true, the 

agents agree to verify the signature and otherwise they tell V that they are 
not able to verify it. 

The result of PROTOCOL DECIDE is not a proof that the signature is cor- 
rect/false, because the decision is based on values that anyone could have pro- 
duced. 

PI, . . . , Pk can verify a signature by executing (now T' = T) 

PROTOCOL DISTRIBUTED VERIFICATION 
1. Pi and V compute w = uTm' and v = yr ' r fd .  

2. PI,. . . , Pk proves that log,(v) = log#') as shown in figure 2. 

3. V accepts the signature if and only if it  accepts the proof. 

An honest agent reveals w*i in an execution of the protocol, as it can be 
computed from chPiti when ~i is known. The following theorem shows, that an 
honest agent does not reveal more than this, and it is shown that the agents 
cannot verify an invalid signature. 
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8 V 

Choose a , b  E Z and compute 
ch = wagb ch cc-- 

Choose r-i E Z and compute 

Verify that ch = wagb 

Verify, that hi1 = (wagb)"r 
and that h$"' = vaTb 

Figure 2: Distributed proof that log,(v) = log,(T)(= Cait i ) .  

Theorem 5.3 
The protocol in figure 2 satisfies 

1. If v = wt, the verifier accepts with probability 1. 
2. If v # wt, the verifier accepts with probability at most 

3. For any probabilistic polynomial time verifier V* and for any set D 

- even if the agents 
have unlimited computing power. 

(1,. . . , k} of dishonest agents there is a machine Mv.,D running in expected 
polynomial time such that Mv.,D given 

0 the common input (p ,  q, g, T,  20, u) ,  where log,(T) = log,(v); 
0 the auxiliary input of V' (auzv.); 

the auxiliary input of the dishonest agents ( ( a u Z i ) i E D ) ;  and 
0 ( w t i ) j E ~  where H = (1,. . . , k} \ D 

outputs a conversation having the same distribution as in real executions of 
the protocol. 

Proof 
If 21 = wt and the provers follow the protocol then 

k k n hy;/ri = n (Chriti )ai/ri 

i= 1 i=l 
k 

i=l 
= I-J &ti% 
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= chi 
= vaTb. 

and therefore the verifier accepts. 
If, on the other, hand there exists k agents, who can convince the verifier 

about a false claim with probability greater than q-', then there is a strategy for 
the prover in the corresponding single prover protocol (see figure l), which makes 
the verifier accept with probability greater than q-'. This is a contradiction (see 
[BCDPSO]). 

The third property can be proven by a standard simulation. Let V' and D 
be given and let H = { 1,. . . , k} \ D be the set of honest agents. Mv.,D works as 
follows 

1. V' produces a challenge ch. 
2. For the honest provers compute hi1 = gei and hi2 = hiei where ei E Zq is a 

random element. 
For the dishonest provers (h,l ,  hi2) is computed as in the protocol. 

If ch # wogb stop. 
3. Get (a ,b )  from the verifier. 

4. Rewind V* and the provers in D to after ch was sent. 
5 .  For i E H compute hi1 = ch'i and hi2 = ((w'i)ahf)ri. 

The dishonest provers compute (hil, biz) as usual. 
6. Get (u',b') from the verifier. 

If ch # wa'gb': goto (4). 
If (a',b') # (a ,b ) :  find log,(w) = 3 mod q, simulate the honest provers 
perfectly and then stop. 
If (u', b') = (a, b): give T ;  to the verifier for i E H ,  and for i E D compute ~j 

as usual. Then stop. 
This machine runs in expected polynomial time, and its output has the same 
distribution as the conversations of a real execution, because the pairs (hil, hjz) 
always have the same distribution as in real executions. 

As the verifier may execute the protocol several times on input, (w,~), the 
verifier may learn (wfi) for all i E H ,  where H = { 1,. . . , n} \ D denotes the set of 
honest agents. The following theorem shows that as long is the honest agents get 
randomly chosen shares, then no matter what secret shares the dishonest agents 
get, this information is completely useless with respect to any polynomial time 
computation of the verifier and the dishonest agents. 

This is proven by giving for any verifier, V* and any set of dishonest agents, 
D, a polynomial time machine, which on input g ,  h, ( t j ) i E ~  simulates the following 
perfectly (see Section 5.1): 
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Let ti = f(zj) ( t i  is not known for i E H \ H'). 

1. The signer chooses random shares for i E H with the property that any k 
agents in H U D can find t and publishes hi E G, for i E H .  

2. A polynomial (in 1q1) number of times, V* and the agents in D, choose a set 
of k agents among H U D. Then these k agents execute the protocol with V* 
on input (w, v). 

Note, that we have assumed that the same input will be used in all executions, 
The distributed protocol is secure, even if the agents get different inputs in each 
execution, but in the proposed application, the input will always be the same 
unless a collision of the hash-function has been found. 

Theorem 5.4 
For any probabilistic polynomial time verifier, V*, and all sets of dishonest agents, 
D, all sets of shares, ( t j ) jE~ ,  there exists a probabilistic expected polynomial time 
machine, Mv*,D, which on input (p, q, g,  h, ( t j ) j E o )  and the auxiliary inputs of V* 
and the dishonest agents simulates the above scheme perfectly. 

Proof sketch 
If ID1 2 k, the theorem is obviously true. 

For 101 < k the simulator is based on the same principles as the proof of Theorem 
3.2 and works as follows: 

1. Choose a subset H' 2 H, such that IH' U Dl = k - 1. 

2. As in the proof of Theorem 3.2 compute gfj and wfj for j = 0,. . . , Ic - 1, 
Choose random shares ti E Z, for i E H' and let hj = gfi and 'uj = wti. 

where the polynomial 

satisfies 

f(0) = t 
j(zi) = ti for i E H'u D 

3. Compute for i E H \ H' the public information 

I 

and 

j = O  



234 

&Run V* and the dishonest agents to choose a set of agents to execute the 

5.  Run the simulator from the proof of Theorem 5.3 giving it 2rj for i E H as 

6 .  Run V* and the dishonest agents in order to decide whether to go to 4) or 

By assumption the protocol is only executed a polynomial number of times and 
thus M V . , ~  stops in expected polynomial time. 

Furthermore, the output of Mv*,D has the same distribution as a a real execu- 
tion of the protocol described above Theorem 5.4, because the hi’s and 2ri’s have 
the correct distribution and the simulation in the proof of Theorem 5.3 is perfect. 

protocol. 

input. 

to stop. 

It has silently been assumed that ad executions of the protocol are done sequen- 
t idy .  Due to the fact that the protocol in figure 1 is also perfect zero-knowledge 
when executed many times with different verifiers simultaneously, the distributed 
protocol is also secure, when executed in parallel (with different sets of agents). 

In particular this implies that the verifier cannot use a transcript of an execu- 
tion of PROTOCOL DISTRIBUTED VERIFICATION as a proof of the validity 
of a signature. 

5.3 Generalizations 
The simulator in the proof of Theorem 5.4 can be modified to handle different 
inputs to each execution of the protocol by computing the q ’ s  in step 5. By 
distributing z, the signer can therefore authorize agents, that are able to verify 
all the signatures. 

This facility, however, requires that the agents are able to decide whether a 
given triple (T, r ,  s) is a signature on m or not. They can do this by performing 
a multi-party computation, whose output says if the signature is valid or not. 
In this case, care must be taken to prevent that a dishonest agent convinces the 
verifier of the result of this computation. 

Alternatively, the signer could give the agents a list of hash values of signatures 
and then the agents make their decision based on this list. This requires, that the 
signer updates this list every time a new message is signed. 

6 Distributed Denial 
This section investigates the possibility of using the agents to deny signatures. 
It can be argued that this facility is not necessary, since denial of signatures is 
not expected to take place as often as verification. Furthermore, it is likely, that 
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denial will take place in court, and in that case it is more reasonable that the 
signer or a single agent authorized by the signer is present. 

In spite of this, the following section suggests how a number of agents can 
prove that an alleged signature is false. Suppose (T, r,  s) is a legal signature on rn 
which has been distributed to the n agents as described above. Thus t = log,T 
has been distributed to n agents and at some point k of these are asked to prove 
that a given triple (T', r', s') is not a signature on rn', where T equals 7''. 

As the signer only uses T in one signature the agents know that the signature 
is invalid if T' = T and the signer did not send H(rn',r',s') when the correct 
signature was distributed (see Section 5.2). 

Using the techniques described below, agents sharing z can deny any (false) 
signature, but as discussed in Section 5.3 this requires that they are able to decide 
whether an arbitrary signature is correct or not. 

6.1 Denial by the Agents 
Assume that the signer has distributed T to PI, ..., Pn as described in Section 
5.2. 9,. . . , Pk can prove that (T, r ,  s) is not a signature on rn as follows: 

PROTOCOL DISTRIBUTED DENIAL 
1. P, and V compute w = uTm and v = yprs, 

2. PI,. . . , Pk proves that log,(v) # logg(T) as shown in figure 3. 
3. V accepts that the signature is false if and only if he accepts the proof. 

Figure 3 shows how the agents can prove inequality of discrete logarithms. All 
participants in this protocol get p ,  q, g, T, ( h l , .  . . , h k )  and (v,w) as common 
input, and the i'th prover gets t i  = log, hi as auxiliary input. The keys to the 
commitment scheme should be supplied by a trusted key authentication center. 

Theorem 6.1 
The protocol in figure 3 satisfies 

1. If log,(v) # log,(T) then V accepts with probability 1 - a, if the agents 

2. If log,(v) = logg(?') then no matter what k agents with unlimited computing 
follow the protocol. 

power does, V accepts with probability at most i. 
Proof 
For e # 0 mod q 
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pi V 

Choose e; E Zq and T ;  E (0, l}*. 
Compute wlj = wei 

a and pi = E(wli,  T i ) .  

When everybody has sent pj, 

the commitments are opened. 

Find all wli and compute w1 = 
r ~ t  wli 
If w1 = 1 stop. 
Compute ulj = vei 

Prove to V that lOg,(vlj) 

log,(wli) as in figure 1 

f i  - 

'uli - 
= 

Compute 211 = l$ uli 

Compute, ~ 2 i  = W? 

Prove that log,,(w2j) = log,(hj) 
as in figure 1 
Compute w2 = wi'j 

W2i 
___c 

Find all W l i  and compute zu1 = 

If w1 = 1 stop and reject the 
proof. 

II: wli. 

Execute the proof in figure 
1 with Pi and verify that 
log,( vli) = logW(w1i) 
Compute 211 = nf Vli 

Compute 202 = nt w$ 
If one of the proofs is not ac- 
cepted, stop. 
Otherwise: accept, if w2 # 211 

and reject, if w2 = 211. 

Figure 3: Distributed proof that logw(v) # logg(T), where T = n h? and hi = gt'. 
E ( a ,  r )  denotes a commitment to CY using the random string P E ( O , l ) * .  
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Therefore the first claim follows from the fact that V accepts the proof if w1 # 1, 
which happens with probability 1 - $. 

The second claim follows from the fact that a cheater in the proof system in 
m figure 1 will succeed with probability at most i. 

The proof system in figure 3 is probably not auxiliary input zero-knowledge, 
because if the verifier does not cooperate with any provers, each Pi reveals 

( ~ 1 ,  ~ 1 ,  w2i) = ( w e ,  we,  4 1 ,  
which presumably cannot be constructed by a polynomial time machine which 
gets v and w as input (here e = Cfei, is unknown). 

Despite this the following shows that it is very hard for the verifier to obtain 
any advantage by executing the protocol. 

First notice, that the verifier cannot choose v and w freely, but they must be 
chosen on the form 

v = y’r’ and w = u ~ ~ ( ~ )  

where H is a hash-function. Under the assumption that the image of m under 
H looks like a random string of bits, w looks like a random element of G,. Fur- 
thermore, if the ElGamal scheme is secure, then w is the image of T and s under 
a one-way function, and thus it is hard for the verifier to control v and w. In 
Appendix A, it is argued that if the verifier cannot choose w and w better than 
at random, then the protocol is secure. 

As it also seems to be very hard to exploit the knowledge of T ,  s, rn and T, the 
only possibility for a cheating verifier is to execute the protocol several times with 
the same w and/or w (perhaps with different sets of agents). But due to the fact 
that w1 is chosen (almost) at random in each execution, it seems hard to obtain 
any information by comparing different executions of the protocol. 

7 Conclusion 
This paper has introduced distributed prover protocols. This notion has many 
potential applications, and here we have shown how the signer of undeniable 
signatures can use it to authorize agents, such that any k of these agents can verify 
an undeniable siepature without being able to sign new messages. Furthermore, 
it is shown that the agents can be authorized to verify either a single signature or 
all signatures produced by the signer. 

In order to distribute the secret key to the agents, a variation of the verifiable 
secret sharing scheme proposed by Feldman has been presented. The resulting 
scheme is designed for situations where the secret key is “known” as the discrete 
logarithm and is optimal with respect to the secrecy of the key. We have mainly 
focused on the application of this scheme in distributed prover protocols, but it 

: 
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can be used in any multi-party computation in which the secret input of each 
player (q) can be recognized through the public information (g"i, 9). 

Finally it has been shown how the agents can deny false signatures. 
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A The Distributed Proof of Different Discrete 
Logarithms 

This appendix contains an analysis of the protocol in figure 3. An honest prover 
in a single execution of the protocol will be simulated by generating 

where e is chosen at random in Z,. This simulation does not work against a 
verifier who (for example) knows a and b such that 

v = h !  and w = g *  

because then w2j must satisfy (remember hi = gti) 

but this is very unlikely for a randomly chosen w2i. However, as noted in Section 
6.1 it is very hard for the verifier to choose such a pair (Y,w) in PROTOCOL 
DISTRIBUTED DENIAL. 

In the following it is therefore assumed that Y and w are chosen uniformly at 
random in G,. Consider an execution of the protocol between PI,. . . , pk and a 
verifier V*, and assume that D C {PI,. . . , P’} is the set of dishonest provers. Let 
ci denote the common input to the protocol (omitting p ,  q and 9). Then ci is on 
the form 

(T, hl, * * - , ht,  v, 4. 
where 

k 

i= 1 
T = IT hf and log, Y # log, T. 

A polynomially bounded machine, M V . , ~ ,  with access to the dishonest provers 
and V* simulates an honest prover as following on input ci: 

1. Choose ei at random and compute p;. 
2. Open pj and when all k values of w1j are known, compute w1 as their product. 
3. Compute -1j = vei and when all k values of vlj are known, prove that lOg,(vlj) 

4. Choose w2i at random. 
5. Simulate the “proof” that logWl(w2j) = log,(hi). 

is equal to log,(wii). Finally compute 211 = l$=1 vlj- 
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In step 5) the simulator is going to simulate a “proof” of a false claim as it is 
very unlikely that w2i equals wp. Lemma A.l below shows that it is possible to 
simulate the proof system for equality of discrete logarithms in such a way that 
the simulator always stops in expected polynomial time (this is not the case for 
the “obvious” simulator). Furthermore, if the input to the simulator is correct, 
then the output of the simulator is statistically indistinguishable from executions 
of the protocol in figure 1. 

Mv.,D generates (vli, wlj) with the same distribution as executions of the pro- 
tocol. The only difference between a simulated conversation and a transcript of 
a real execution of the protocol is that the simulator chooses 2u2i at random. If 
this random w2i cannot be distinguished from wp then the the simulation of the 
“proof” that logwl w2i = log, hi cannot be distinguished from an execution of a 
correct proof. 

However, in order for the signature scheme to be undeniable it must be infea- 
sible to decide if log, T equals log, v for randomly chosen v and w .  As v ,  w and 
w1 are chosen at random (almost) it is reasonable to assume that w2j cannot be 
distinguished from wy, and thus the simulations can not be distinguished from 
real executions. 

Lemma A.l 
Consider the proof-system in figure 1. 
For any probabilistic polynomial time verifier V* there is a machine Mv. running 
in expected polynomial time on all inputs (p ,  q, g ,  u, v, w ) .  If logg(u) = log,(v), the 
output of Mv. is statistically indistinguishable fiom a transcript of an execution 
of the protocol. 

Proof 
Let V* be a polynomial time verifier. Mv. does the following: (remember that 
21 = 9”) 

1. V* produces a challenge ch. 
2 .  Compute hl = ge and h2 = ue where e E Zq is a random element. 
3. Get (u,b)  from the verifier. 

4. Alternately execute one round of procedure A and B below until one of them 
If ch # wagb stop. 

stops: 
Procedure A: 
(a) Rewind V* to after ch was sent. 
(b) Compute hl = ch’ and h2 = ( ~ O U ~ ) ~ .  

(c) Get (u’,b’) from the verifier. 
If ch # wa‘gv: goto (a). 
If (u’, b’) # (a, b): find log,(w) = E, simulate the protocol perfectly 
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and then stop. 
If (u', b') = (a, b):  give r to the verifier and stop. 

Procedure B: 
(a) count := 0. 
(b) Rewind V* to after ch was sent. 
(c) Compute hl = ge and h2 = ue, where e E Zq is chosen at random. 
(d) Get (u', b') from the verifier. 

(f) If count < 141: goto (b); 
(e) If ch = wa'gb'* . count := count + 1. 

Otherwise: stop. 
Let P(ch) be the probability that V' sends (a, b) such that ch = wagb when given 
random pairs (hl, h2) satisfying hf = h2. 

To show that Mv. runs in expected polynomial time it is sufficient to show 
that the expected number of iterations of procedure B is polynomial. As each 
round of B is run independently of previous rounds, this number is 

Next it will be shown that the output of the simulator is statistically indistinguish- 
able from executions of the protocol whenever the input satisfies log,(u) = log,(v). 
If Mv. stops in step 3, the generated output has the correct distribution. 

If Mv. stops, because procedure A stops before procedure B, there are two 
possibilities: 

0 The simulator has found (u,b) # (u',b') such that ch = wagb = wa'gy. In 

0 The simulator has generated the messages 
this case the simulation is perfect. 

hl = ch', hz = (vaub)' and r randomly chosen. 

These messages have the same distribution as the messages in real executions. 
Finally there is the possibility, that procedure B stops before A, in which case 
the output of the simulator differs from executions of the protocol. It wil l  now be 
shown that this happens with negligible probability. 

We say that A has success in a round, if it stopcl. Similarly B has success in 
one round if the verifier sends (u', b') such that ch = wa'gb'. A wins as soon as it 
has one success, and B wins if it has 1q1 successes before A has had any. Let the 
outcome of one execution of a round of A and B be (P = P(ch)) 

0 a, if A has success. Prob[a] = P. 
0 /3, if B has success and A has not. Prob[P1 = P(l - P). 
0 discard, if neither A nor B has success. 



242 

By performing many (independent) experiments with outcomes and probabilities 
as above and by removing all occurrences of discard we get a list of a and p. The 
probability that p occurs at a given place in the list is (P > 0 as the protocol did 
not stop in step 3) 

P(1- P )  1 < -. Ps= P + P ( I - P )  2 
B only wins if the first 1q1 elements in the list are p: 

Thus a simulated conversation has the same distribution as in a real execution of 
the proof system except with probability less than 2 4 .  
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