
Distributed Provers with
Applications to Undeniable Signatures

Torben Pryds Pedersen
Aarhus University, Computer Science Department

Ny Munkegade, DK-8000 Arhus C, Denmark

Abstract

This paper introduces distributed prover protocols. Such a protocol is a proof system in which
a polynomially bounded prover is replaced by many provers each having partial information about
the witness owned by the original prover. As an application of this concept, it is shown how the
signer of undeniable signatures can distribute part of his secret key to n agents such that any k of
these can verify a signature. This facility is useful in most applications of undeniable Signatures, and
aa the proposed protocols are practical, the results in this paper makes undeniable signatures more
useful. The first part of the paper describes a method for verifiable secret sharing, which allows
non-interactive verification of the shares and is as secure aa the Shamir secret sharing scheme in the
proposed applications.

1 Introduction
Undeniable signatures were introduced in [CvASO]. Briefly, an undeniable signa-
ture is a signature which cannot be verified without the help of the signer (see
[CvASO] and [ChaSl]). They are therefore less personal than ordinary signatures
in the sense that a signature cannot be related to the signer without his help. On
the other hand, the signer can only repudiate an alleged signature by proving that
it is incorrect.

A manufacturer can use undeniable signatures to sign his products, such that
someone who wants to verify the genuineness of a given product has to contact the
manufacturer. This wav the manufacturer can control the usage of his products.

Convertible undeniable signatures are undeniable signatures with the added
property that the signer can convert all the undeniable signatures to ordinary
signatures by releasing a part of the secret key, and selectively convertible undeni-
able signatures allow the signer to convert single signatures to ordinary signatures
without affecting other undeniable signatures (see [BCDPSO]).

In almost all applications of undeniable signatures that one can imagine, it
might be a problem that only the signer can verify the signatures, because this

D.W. Davies (Ed.): Advances in Cryptology - EUROCRYPT '91, LNCS 547, pp. 221-242, 1991.
0 Spnnger-Verlag Berlin Heidelberg 199 1

222

requires that he can always be reached. Since an undeniable signature does not
prove anything in itself, it is very reasonable that a receiver of a signature demands
that either the signer or an agent authorized by the signer is always willing to
verify signatures. Such an agent can also be a big help to the signer, since a person
signing many messages quite rapidly can be overburdened verifying signatures.

With convertible undeniable signatures it is possible for the signer to autho-
rize an agent who can verify all signatures, and if the signatures are selectively
convertible, agents can be authorized to verify single signatures. However, this
requires that the signer trusts the agents completely.

If the signer does not (want to) trust single persons, he may want to authorize n
agents such that verification requires at least k of these to cooperate. This facility
was proposed by David Chaum and this paper shows how it can be achieved. The
construction falls in two parts. First it is described how the signer can distribute
the keys such that each agent can verify that he has received correct shares, and
then it is shown how the agents can verify or deny signatures.

In Section 3 we present a scheme for distributing a secret s which uses the fact
that information about s is known beforehand through a public key. This scheme is
based on the secret sharing scheme by Shamir, which is shortly described in Section
2. After a short description of the undeniable signature scheme from [BCDPSO]
in Section 4, Section 5 shows how a number of agents can verify these signatures,
and Section 6 discusses the possibility of using agents to deny signatures.

2 The Shamir Scheme
In this section the Shamir secret sharing scheme is briefly described and the pro-
perties needed in the following sections are summarized (see also [Sha79]).

A (k, n)-threshold secret sharing scheme is a protocol between n + 1 players in
which the dealer distributes partial information (share or shadow) about a secret
(or key) to n participants such that

Any group of fewer than k participants cannot obtain any information about

Any group of at least k participants can compute the secret in polynomial

Consider a field IF and let the secret, s, be an element of P. In order to
distribute s among PI,. . . , P,, (where n < IF() the deder chooses a polynomial
f E F [z] of degree at most k - 1 satisfying f(0) = s. Participant Pi receives
si = f (z i) as his private share, where x, E lF \ (0) is public information about Pi
(x i # x , for i # j).

Due to the fact that there is one and only one polynomial of degree at most
k - 1 satisfying f (q) = si for k values of i, the Shamir scheme satisfies the
definition of a (k, n)-threshold scheme. Any k persons (Pi,, . . . , Pik) can find f by

the secret.

time.

223

the formula:

Thus
k

j=1
s = c a j s j j ,

where a l , . . . , ak are given by

Thus each ai is non-zero and can easily be computed from the public information.

3 Verifiable Secret Sharing
Now the Shamir scheme is applied in a setting where the secret is given as a
discrete logarithm. The resulting scheme has the advantage that each participant
c a n verify his share. In [P.F87] Feldman obtained a verifiable secret sharing scheme
from the Shamir secret sharing scheme by broadcasting probabilistic encryptions
of the polynomial used to generate the shares. Under the assumption that the
encryption function is a “homomorphism” it was possible for each shareholder to
verify his share without communicating with the other participants.

The scheme suggested by Feldman aims at hiding the secret to be distributed
in a very strong sense. However this is not necessary if some information about
the secret is known beforehand. We now present a scheme very similar to [P.F87]
which is somewhat simpler due to the fact that the public information about the
secret is used in the verification of the shares.

3.1 Verification using Discrete Logarithms
Throughout this paper p and q are large primes such that q divides p - 1, and g
generates the subgroup, G,, of Zp of order q. It is assumed that p , g and g are
publicly known.

Assume the dealer has a secret s E Zq and is committed to s through a public
key h = 9’. This secret can be distributed to PI,. . . , P,, as follows:

224

PROTOCOL DISTRIBUTE
1. Compute shares si using the Shamir secret sharing scheme in the field IF =
Z, by first choosing a polynomial f = fo + f1z + . . . + fk-lzk-' over Z, of
degree k - 1 satisfying f(0) = s and then computing

si = f(z;).

Here zi is public information about Pi as described above.
2. Send si secretly to P,, and broadcast (gfi);=l,..+l to all n participants.

Thus the dealer has to broadcast k - 1 elements in G , and to send secretly n
elements in Zq.

The public information corresponding to the share si is denoted hi = gad. Thus
hi depends on s; in the same way that h depends on s. A participant not knowing
s; can compute hi as (gfo = h)

When all shares have been distributed each participant verifies his share as follows

PROTOCOL VERIFY SHARE (at S)
1. Compute hl = l$;t(gfj).: for all 1 = 1,. . ., n.
2. Verify, that h; = gsi.

3. If this is false broadcast si and stop.
Otherwise accept the share.

The signer can always detect, if Pi falsely claims to have received a wrong share,
and in that case he should start all over discarding Pi from future protocols.

If the signer follows the protocol, all honest agents will accept their shares,
and h; = g8i will be publicly known for i = 1,. . . , n. The next proposition shows,
that no matter how the dealer computes the shares, any k participants who have
accepted their shares can h d s.

Proposition 3.1
Any k participants, who have followed PROTOCOL VERIFY SHARE and ac-
cepted, can find s.

Proof
Assume that the k participants are PI,. . . , 9. It is sufEcient to show that the
unique polynomial f' of degree at most k - 1 satisfying

f'(zi) = s; for i = 1,. . . , k

225

also satisfies f ’ (0) = s. But

implies

j=O

j = O

and the uniqueness of f’ implies that f’(0) = f(0) = s.

Theorem 3.2 below shows that any number of participants can simulate the
dealer perfectly no matter what shares they get. Thus fewer than k participants
do not get any information about s which allows them to compute something that
they could not have computed before the secret was distributed.

Theorem 3.2
Any 1 participants having shares (S i j) j = l , . . , , / can fhd (gfj)j=o, . . . ,k - l , such that

f‘(z) = f; + fix + . . . + f;-lxk-l

is a random polynomial of degree at most Ic - 1 satisfying

ff(0) = s
f ’ (. i j) = S i j , j = 1,. ..,z.

Proof
If I 2 k the proposition is trivial as any k agents can find the polynomial used by
the signer.

Now assume that 1 5 E < Ic and let the E agents in question be Pi,. . . , Pi. The I
participants generate f’as follows:

1. Choose Ic - 1 - 1 random “shares” sl+l,. . . , st-1 corresponding to the public

2. Find gf: for i = 0,. . . , k - 1, where the polynomial f‘(z) = fi +, . , + fL-lzk-’

As sl+1,, . . , Sk -1 were chosen at random the (unknown) polynomial f’ generated
this way is completely random such that

information x1+1,. . . , xt-1.

satisfies f‘(xi) = s; for i = 1,. . . , k - 1 and f’(0) = s (see below).

f’(0) = s

f y x j) = s j , j = l,.. .,z.

226

I It only remains to show how (gf:) i ase found. The polynomial f ' is going to satisfy
(so = 5, 20 = 0):

This k x k matrix is a Van der Monde matrix, and it has an inverse, A, as xi # 0
and z, # x, for i # j . Thus

Let

A =

and note that PI, . . . ,9 can find each aij. Thus gfl can be computed for i =
0,. . . , k - 1 by the formula (gso = h is known)

j =O

This proves the theorem. I

4 Convertible Undeniable Signatures
This section contains a short descript.i.on of the selectively convertible undeniable
signature scheme from [BCDPSO].

Let p , q and g be as above. For all a and b in G, with b # 1 the discrete
logarithm of a to the base b is defined and denoted logb(.). The simultaneous
discrete logarithm problem is to decide given four elements a, b, c and d if logb(a)
equals log, (c) .

The private keys in the scheme are

KSI = x and KS2 = z , 1 < z,.z < q

and the public key is

K P = (p , g, g, y, ti), where y = g2 and u = g*.

227

Any receiver of the public key can easily verify that y and u generate G,.
The signature on the message m is sign(m) = (g ' , T, s) , where (T, s) is the El

Gamd signature on M = g'tzm mod q (in this product gt is considered an element
in Zq). That is

giM = Y'T' modp.

As noted in [BCDPSO] rn should be hashed before signing, but the hash function

Given m and (T, T, 3) both the signer and the verifier can compute zu = vrn
and 21 = Y ' T ~ . The signer can prove that (T, T , s) is (not) a signature on m by
proving that log,(v) = log,(u) (log,(v) # log,(u)). The protocol in figure 1 is
a variant of the proof system for simultaneous discrete logarithm in [ChaSl] and
shows how the signer can verify a signature.

; is omitted here.

P V

Choose a , b E Z and compute

Choose r E iZ and compute
hl = ch' and h2 = hi

Qhh2.l

A N -
Verify that ch = wagb

T

Verify, that hl = (wagb)>' and
hz = (ZIaub)'

Figure 1: Proof that logw(z)) = log,(u)(= 2) .

The signer can convert all his signatures to ordinary signatures by releasing z .
Alternatively, a signature (T, T , s) on the message m can be converted to a digital
signature by releasing t such that T = gt. Given t , a signature can be verified as
follows:

1. Verify, that T = g'.

2. Verify, that (urnT)t = y r P .

Anyone, who can solve the simultaneous discrete logarithm problem caa obviously
recognize valid signatures. In [BCDPSO] it is argued that it is hard to verify a
signature without the aid of the signer even if the signer verifies other signatures.

228

5 Distributed Prover Protocols
If the signer in an undeniable signature scheme is going away for a while, the
receivers of signatures might request that a trusted third person gets the secret
key of the scheme such that this person can verify signatures during the signer’s
absence. If the signer doesn’t want to give away the secret, an obvious solution is
to distribute it to n persons (agents) with a (k, n)-secret sharing scheme. When a
verifier wants a signature to be verified or denied, he can ask k of these n persons
for assistance.

Such an (k + 1)-party protocol between the verifier and k agents will in general
be called a distributed prover protocol (a distributed prover protocol differs from a
multi-prover proof system (see (BOGKW881) as the provers may have unlimited
computing power in the latter case).

These k persons can help the verifier by first finding the secret and subse-
quently one af them can execute the usual verification/denial protocol. However,
this would be against the intentions of the signer, because in that case the secret
could just as well have been given to one person in the first place.

In this section we construct protocols that allow k persons to verify signatures
without finding the secret. From a theoretical point of view it is possible to solve
this problem, if the agents are allowed to talk with each other (for instance by
using the techniques in [CDvdG88]). However, the distributed verification proto-
col presented in Section 5.2 is very efficient, and it does not require interaction
between the agents. Thus secret communication is only needed in the setup phase
when the secret key is distributed.

First the model is presented and a definition of security of a distributed prover
protocol is given.

5.1 The Model
It is assumed that the n agents are selected such that at most k - 1 of them will
ever deviate from the prescribed protocols and try to fmd the secret key.

Each agent is modeled by a probabilistic polynomial time Turing machine
having in addition to a computation tape and a random tape

0 a tape for broadcasting messages (can be read by all other participants);
0 a tape for common input (shared by all users);
0 a tape for auxiliary input (can only be read by the owner);
0 a tape for receiving secret messages from the signer (read only).

A cryptographic protocol is secure, if any polynomial (in a security parameter)
number of executions of it does not enable one of the parties to do a computation
afterwards, that he could not have done beforehand.

229

As a polynomial number of polynomial time Turing machines can be simulated
by a single polynomial time Turing machine, it can be assumed that the verifier
is the same in all executions of the protocol (although the verifier may behave
differently in each execution). This automatically handles the situation where
different verifiers cooperate.

Definition 5.1
An agent is honest if it follows the protocol in all executions. An agent who is not
honest is called dishonest.

For any verifier and any set of dishonest agents consider the following protocol:
1. Distribute the secret.
2. Repeat a polynomial number of times: The verifier and the dishonest agents

select a4 input to the distributed protocol and a set of agents with whom
the protocol is executed.

Following the ideas of [CDvdG88], where the security of general multi-party pro-
tocols is defined, we say

Definition 5.2
Let Kp be the public key of the original prover.
A distributed prover protocol is secure, if for every set of dishonest agents and ev-
ery verifier, V*, for every set of auxiliary inputs to the verifiers and the dishonest
agents, there exists a probabilistic polynomial time machine, M , such that the
output of M on input K p is polynomially indistinguishable from the transcript of
an execution of the above protocol.

This definition allows that an execution of the distributed protocol reveals some
information about the shares of the honest agents as long as this information
cannot be used to obtain new information about the original prover's secret key
or the signatures.

5.2 Distributed Verification
Consider the case where the signer, S, has signed the message, m, using the ran-
domexponent, t . Thus sign(m) = (T, T , s) where T = g' and (T , s) is the El Gamal
signature on the product Tttm modulo g. S distributes the ability to verify this
signature to n agents (PI , . . . , Pn with corresponding public keys 21, . . . , Zn) by
distributing t . As T = gf is part of the signature (and therefore not secret), the
secret sharing scheme from Section 3 can be used:

230

PROTOCOL DISTRIBUTE SINGLE SIGNATURE
1. S broadcasts T to the n agents.

2. S distributes t using PROTOCOL DISTRIBUTE in section 3. Thus 8 gets
the share t i = f(zj), where f is a polynomial over Zq of degree k - 1 such
that f(0) = t .

3. Each agent Pi executes PROTOCOL VERIFY SHARE from section 3.
4. S sends H (m , T , s) to each agent, where H is a collision-free hash function.

After the execution of this protocol each Pi has a secret share tj with corresponding
public information hi = 9''. In addition to these values each agent has a hash value
of the signature and the signed message, which is used to decide if a signature
should be verified.

When a person, V, asks k agents (say 9,. . . ,Pk) to verify a signature (T', T', s')
on a message m', the agents first have to make sure that they ore abZe to verify it
and then decide if the signature is correct. Let a l , . . . , a k be elements in Zq such
that

C tiaj = t .
k

a= 1

As mentioned in Section 3, each ai can be computed from (zi)i=l, , . . ,k.

PROTOCOL DECIDE
1. V and each Pi verify that T' = nf h?.

If this is not the case, the agents can neither verify nor deny the signature.
2. Each Pi verifies that the signer has sent H (~ ' , T ' , s ') . If this is true, the

agents agree to verify the signature and otherwise they tell V that they are
not able to verify it.

The result of PROTOCOL DECIDE is not a proof that the signature is cor-
rect/false, because the decision is based on values that anyone could have pro-
duced.

PI, . . . , Pk can verify a signature by executing (now T' = T)

PROTOCOL DISTRIBUTED VERIFICATION
1. Pi and V compute w = uTm' and v = yr ' r fd .

2. PI,. . . , Pk proves that log,(v) = log#') as shown in figure 2.

3. V accepts the signature if and only if it accepts the proof.

An honest agent reveals w*i in an execution of the protocol, as it can be
computed from chPiti when ~i is known. The following theorem shows, that an
honest agent does not reveal more than this, and it is shown that the agents
cannot verify an invalid signature.

231
F

8 V

Choose a , b E Z and compute
ch = wagb ch cc--

Choose r-i E Z and compute

Verify that ch = wagb

Verify, that hi1 = (wagb)"r
and that h$"' = vaTb

Figure 2: Distributed proof that log,(v) = log,(T)(= Cait i) .

Theorem 5.3
The protocol in figure 2 satisfies

1. If v = wt, the verifier accepts with probability 1.
2. If v # wt, the verifier accepts with probability at most

3. For any probabilistic polynomial time verifier V* and for any set D

- even if the agents
have unlimited computing power.

(1,. . . , k} of dishonest agents there is a machine Mv.,D running in expected
polynomial time such that Mv.,D given

0 the common input (p , q, g, T, 20, u) , where log,(T) = log,(v);
0 the auxiliary input of V' (auzv.);

the auxiliary input of the dishonest agents ((a u Z i) i E D) ; and
0 (w t i) j E ~ where H = (1,. . . , k} \ D

outputs a conversation having the same distribution as in real executions of
the protocol.

Proof
If 21 = wt and the provers follow the protocol then

k k n hy;/ri = n (Chriti)ai/ri

i= 1 i=l
k

i=l
= I-J &ti%

232

= chi
= vaTb.

and therefore the verifier accepts.
If, on the other, hand there exists k agents, who can convince the verifier

about a false claim with probability greater than q-', then there is a strategy for
the prover in the corresponding single prover protocol (see figure l), which makes
the verifier accept with probability greater than q-'. This is a contradiction (see
[BCDPSO]).

The third property can be proven by a standard simulation. Let V' and D
be given and let H = { 1,. . . , k} \ D be the set of honest agents. Mv.,D works as
follows

1. V' produces a challenge ch.
2. For the honest provers compute hi1 = gei and hi2 = hiei where ei E Zq is a

random element.
For the dishonest provers (h,l , hi2) is computed as in the protocol.

If ch # wogb stop.
3. Get (a ,b) from the verifier.

4. Rewind V* and the provers in D to after ch was sent.
5 . For i E H compute hi1 = ch'i and hi2 = ((w'i)ahf)ri.

The dishonest provers compute (hil, biz) as usual.
6. Get (u',b') from the verifier.

If ch # wa'gb': goto (4).
If (a',b') # (a ,b) : find log,(w) = 3 mod q, simulate the honest provers
perfectly and then stop.
If (u', b') = (a, b): give T ; to the verifier for i E H , and for i E D compute ~j

as usual. Then stop.
This machine runs in expected polynomial time, and its output has the same
distribution as the conversations of a real execution, because the pairs (hil, hjz)
always have the same distribution as in real executions.

As the verifier may execute the protocol several times on input, (w,~), the
verifier may learn (wfi) for all i E H , where H = { 1,. . . , n} \ D denotes the set of
honest agents. The following theorem shows that as long is the honest agents get
randomly chosen shares, then no matter what secret shares the dishonest agents
get, this information is completely useless with respect to any polynomial time
computation of the verifier and the dishonest agents.

This is proven by giving for any verifier, V* and any set of dishonest agents,
D, a polynomial time machine, which on input g , h, (t j) i E ~ simulates the following
perfectly (see Section 5.1):

233

Let ti = f(zj) (t i is not known for i E H \ H').

1. The signer chooses random shares for i E H with the property that any k
agents in H U D can find t and publishes hi E G, for i E H .

2. A polynomial (in 1q1) number of times, V* and the agents in D, choose a set
of k agents among H U D. Then these k agents execute the protocol with V*
on input (w, v).

Note, that we have assumed that the same input will be used in all executions,
The distributed protocol is secure, even if the agents get different inputs in each
execution, but in the proposed application, the input will always be the same
unless a collision of the hash-function has been found.

Theorem 5.4
For any probabilistic polynomial time verifier, V*, and all sets of dishonest agents,
D, all sets of shares, (t j) jE~ , there exists a probabilistic expected polynomial time
machine, Mv*,D, which on input (p, q, g, h, (t j) j E o) and the auxiliary inputs of V*
and the dishonest agents simulates the above scheme perfectly.

Proof sketch
If ID1 2 k, the theorem is obviously true.

For 101 < k the simulator is based on the same principles as the proof of Theorem
3.2 and works as follows:

1. Choose a subset H' 2 H, such that IH' U Dl = k - 1.

2. As in the proof of Theorem 3.2 compute gfj and wfj for j = 0,. . . , Ic - 1,
Choose random shares ti E Z, for i E H' and let hj = gfi and 'uj = wti.

where the polynomial

satisfies

f(0) = t
j(zi) = ti for i E H'u D

3. Compute for i E H \ H' the public information

I

and

j = O

234

&Run V* and the dishonest agents to choose a set of agents to execute the

5. Run the simulator from the proof of Theorem 5.3 giving it 2rj for i E H as

6 . Run V* and the dishonest agents in order to decide whether to go to 4) or

By assumption the protocol is only executed a polynomial number of times and
thus M V . , ~ stops in expected polynomial time.

Furthermore, the output of Mv*,D has the same distribution as a a real execu-
tion of the protocol described above Theorem 5.4, because the hi’s and 2ri’s have
the correct distribution and the simulation in the proof of Theorem 5.3 is perfect.

protocol.

input.

to stop.

It has silently been assumed that ad executions of the protocol are done sequen-
t idy . Due to the fact that the protocol in figure 1 is also perfect zero-knowledge
when executed many times with different verifiers simultaneously, the distributed
protocol is also secure, when executed in parallel (with different sets of agents).

In particular this implies that the verifier cannot use a transcript of an execu-
tion of PROTOCOL DISTRIBUTED VERIFICATION as a proof of the validity
of a signature.

5.3 Generalizations
The simulator in the proof of Theorem 5.4 can be modified to handle different
inputs to each execution of the protocol by computing the q ’ s in step 5. By
distributing z, the signer can therefore authorize agents, that are able to verify
all the signatures.

This facility, however, requires that the agents are able to decide whether a
given triple (T, r , s) is a signature on m or not. They can do this by performing
a multi-party computation, whose output says if the signature is valid or not.
In this case, care must be taken to prevent that a dishonest agent convinces the
verifier of the result of this computation.

Alternatively, the signer could give the agents a list of hash values of signatures
and then the agents make their decision based on this list. This requires, that the
signer updates this list every time a new message is signed.

6 Distributed Denial
This section investigates the possibility of using the agents to deny signatures.
It can be argued that this facility is not necessary, since denial of signatures is
not expected to take place as often as verification. Furthermore, it is likely, that

235

denial will take place in court, and in that case it is more reasonable that the
signer or a single agent authorized by the signer is present.

In spite of this, the following section suggests how a number of agents can
prove that an alleged signature is false. Suppose (T, r, s) is a legal signature on rn
which has been distributed to the n agents as described above. Thus t = log,T
has been distributed to n agents and at some point k of these are asked to prove
that a given triple (T', r', s') is not a signature on rn', where T equals 7''.

As the signer only uses T in one signature the agents know that the signature
is invalid if T' = T and the signer did not send H(rn',r',s') when the correct
signature was distributed (see Section 5.2).

Using the techniques described below, agents sharing z can deny any (false)
signature, but as discussed in Section 5.3 this requires that they are able to decide
whether an arbitrary signature is correct or not.

6.1 Denial by the Agents
Assume that the signer has distributed T to PI, ..., Pn as described in Section
5.2. 9,. . . , Pk can prove that (T, r , s) is not a signature on rn as follows:

PROTOCOL DISTRIBUTED DENIAL
1. P, and V compute w = uTm and v = yprs,

2. PI,. . . , Pk proves that log,(v) # logg(T) as shown in figure 3.
3. V accepts that the signature is false if and only if he accepts the proof.

Figure 3 shows how the agents can prove inequality of discrete logarithms. All
participants in this protocol get p , q, g, T, (h l , . . . , h k) and (v,w) as common
input, and the i'th prover gets t i = log, hi as auxiliary input. The keys to the
commitment scheme should be supplied by a trusted key authentication center.

Theorem 6.1
The protocol in figure 3 satisfies

1. If log,(v) # log,(T) then V accepts with probability 1 - a, if the agents

2. If log,(v) = logg(?') then no matter what k agents with unlimited computing
follow the protocol.

power does, V accepts with probability at most i.
Proof
For e # 0 mod q

236

pi V

Choose e; E Zq and T ; E (0, l}*.
Compute wlj = wei

a and pi = E(wli, T i) .

When everybody has sent pj,

the commitments are opened.

Find all wli and compute w1 =
r ~ t wli
If w1 = 1 stop.
Compute ulj = vei

Prove to V that lOg,(vlj)

log,(wli) as in figure 1

f i -

'uli -
=

Compute 211 = l$ uli

Compute, ~ 2 i = W?

Prove that log,,(w2j) = log,(hj)
as in figure 1
Compute w2 = wi'j

W2i
___c

Find all W l i and compute zu1 =

If w1 = 1 stop and reject the
proof.

II: wli.

Execute the proof in figure
1 with Pi and verify that
log,(vli) = logW(w1i)
Compute 211 = nf Vli

Compute 202 = nt w$
If one of the proofs is not ac-
cepted, stop.
Otherwise: accept, if w2 # 211

and reject, if w2 = 211.

Figure 3: Distributed proof that logw(v) # logg(T), where T = n h? and hi = gt'.
E (a , r) denotes a commitment to CY using the random string P E (O , l) * .

237

Therefore the first claim follows from the fact that V accepts the proof if w1 # 1,
which happens with probability 1 - $.

The second claim follows from the fact that a cheater in the proof system in
m figure 1 will succeed with probability at most i.

The proof system in figure 3 is probably not auxiliary input zero-knowledge,
because if the verifier does not cooperate with any provers, each Pi reveals

(~ 1 , ~ 1 , w2i) = (w e , we, 4 1 ,
which presumably cannot be constructed by a polynomial time machine which
gets v and w as input (here e = Cfei, is unknown).

Despite this the following shows that it is very hard for the verifier to obtain
any advantage by executing the protocol.

First notice, that the verifier cannot choose v and w freely, but they must be
chosen on the form

v = y’r’ and w = u ~ ~ (~)

where H is a hash-function. Under the assumption that the image of m under
H looks like a random string of bits, w looks like a random element of G,. Fur-
thermore, if the ElGamal scheme is secure, then w is the image of T and s under
a one-way function, and thus it is hard for the verifier to control v and w. In
Appendix A, it is argued that if the verifier cannot choose w and w better than
at random, then the protocol is secure.

As it also seems to be very hard to exploit the knowledge of T , s, rn and T, the
only possibility for a cheating verifier is to execute the protocol several times with
the same w and/or w (perhaps with different sets of agents). But due to the fact
that w1 is chosen (almost) at random in each execution, it seems hard to obtain
any information by comparing different executions of the protocol.

7 Conclusion
This paper has introduced distributed prover protocols. This notion has many
potential applications, and here we have shown how the signer of undeniable
signatures can use it to authorize agents, such that any k of these agents can verify
an undeniable siepature without being able to sign new messages. Furthermore,
it is shown that the agents can be authorized to verify either a single signature or
all signatures produced by the signer.

In order to distribute the secret key to the agents, a variation of the verifiable
secret sharing scheme proposed by Feldman has been presented. The resulting
scheme is designed for situations where the secret key is “known” as the discrete
logarithm and is optimal with respect to the secrecy of the key. We have mainly
focused on the application of this scheme in distributed prover protocols, but it

:

238

can be used in any multi-party computation in which the secret input of each
player (q) can be recognized through the public information (g"i, 9).

Finally it has been shown how the agents can deny false signatures.

Acknowledgements
I wish to thank David Chaum for suggesting this problem and Ivan Damgkd for
many discussions about the proposed methods.

References
(BCDPSO] J. Boyar, D. Chaum, I. Damgkd, and T. Pedersen. Convert-

ible undeniable signatures, 1990. To appear in the proceedings of
Cryp to'90.

[BOGKW88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-

[CDvdG88]

[Chagl]

[Cv A901

[P.F87]

(Sha791

prover interactive proofs: How to remove intractability. In Proceed-
ings of the 20th Annual ACM Symposium on the Theory of Com-
puting, pages 113 - 131, 1988.
D. Chaum, I. Damgkd, and J. van de Graaf. Multiparty computa-
tions ensuring privacy of each party's input and correctness of the
result. In Advances in Cryptology - proceedings of CRYPTO 87,
Lecture Notes in Computer Science, pages 87-119. Springer-Verlag,
1988.
D. Chaum. Zero-knowledge undeniable signatures. In Advances
in Cryptology - proceedings of EUROCRYPT 90, Lecture Notes in
Computer Science, pages 458 - 464. Springer Verlag, 1991.
D. C h a m and H. van Antwerpen. Undeniable signatures. In Ad-
vances in Cryptology - proceedings of CRYPTO 89, Lecture Notes
in Computer Science. Springer Verlag, 1990.
P.Feldman. A practical scheme for non-interactive verifiable secret
sharing. In Proceedings of the 28th IEEE Symposium on the Foun-
dations of Computer Science, pages 427 - 437, 1987.
A. Fhamir. How to share a secret. CACM, 22:612-613, 1979.

A The Distributed Proof of Different Discrete
Logarithms

This appendix contains an analysis of the protocol in figure 3. An honest prover
in a single execution of the protocol will be simulated by generating

where e is chosen at random in Z,. This simulation does not work against a
verifier who (for example) knows a and b such that

v = h ! and w = g *

because then w2j must satisfy (remember hi = gti)

but this is very unlikely for a randomly chosen w2i. However, as noted in Section
6.1 it is very hard for the verifier to choose such a pair (Y,w) in PROTOCOL
DISTRIBUTED DENIAL.

In the following it is therefore assumed that Y and w are chosen uniformly at
random in G,. Consider an execution of the protocol between PI,. . . , pk and a
verifier V*, and assume that D C {PI,. . . , P’} is the set of dishonest provers. Let
ci denote the common input to the protocol (omitting p , q and 9). Then ci is on
the form

(T, hl, * * - , ht, v, 4.
where

k

i= 1
T = IT hf and log, Y # log, T.

A polynomially bounded machine, M V . , ~ , with access to the dishonest provers
and V* simulates an honest prover as following on input ci:

1. Choose ei at random and compute p;.
2. Open pj and when all k values of w1j are known, compute w1 as their product.
3. Compute -1j = vei and when all k values of vlj are known, prove that lOg,(vlj)

4. Choose w2i at random.
5. Simulate the “proof” that logWl(w2j) = log,(hi).

is equal to log,(wii). Finally compute 211 = l$=1 vlj-

240

In step 5) the simulator is going to simulate a “proof” of a false claim as it is
very unlikely that w2i equals wp. Lemma A.l below shows that it is possible to
simulate the proof system for equality of discrete logarithms in such a way that
the simulator always stops in expected polynomial time (this is not the case for
the “obvious” simulator). Furthermore, if the input to the simulator is correct,
then the output of the simulator is statistically indistinguishable from executions
of the protocol in figure 1.

Mv.,D generates (vli, wlj) with the same distribution as executions of the pro-
tocol. The only difference between a simulated conversation and a transcript of
a real execution of the protocol is that the simulator chooses 2u2i at random. If
this random w2i cannot be distinguished from wp then the the simulation of the
“proof” that logwl w2i = log, hi cannot be distinguished from an execution of a
correct proof.

However, in order for the signature scheme to be undeniable it must be infea-
sible to decide if log, T equals log, v for randomly chosen v and w . As v , w and
w1 are chosen at random (almost) it is reasonable to assume that w2j cannot be
distinguished from wy, and thus the simulations can not be distinguished from
real executions.

Lemma A.l
Consider the proof-system in figure 1.
For any probabilistic polynomial time verifier V* there is a machine Mv. running
in expected polynomial time on all inputs (p , q, g , u, v, w) . If logg(u) = log,(v), the
output of Mv. is statistically indistinguishable fiom a transcript of an execution
of the protocol.

Proof
Let V* be a polynomial time verifier. Mv. does the following: (remember that
21 = 9”)

1. V* produces a challenge ch.
2 . Compute hl = ge and h2 = ue where e E Zq is a random element.
3. Get (u,b) from the verifier.

4. Alternately execute one round of procedure A and B below until one of them
If ch # wagb stop.

stops:
Procedure A:
(a) Rewind V* to after ch was sent.
(b) Compute hl = ch’ and h2 = (~ O U ~) ~ .

(c) Get (u’,b’) from the verifier.
If ch # wa‘gv: goto (a).
If (u’, b’) # (a, b): find log,(w) = E, simulate the protocol perfectly

241

and then stop.
If (u', b') = (a, b): give r to the verifier and stop.

Procedure B:
(a) count := 0.
(b) Rewind V* to after ch was sent.
(c) Compute hl = ge and h2 = ue, where e E Zq is chosen at random.
(d) Get (u', b') from the verifier.

(f) If count < 141: goto (b);
(e) If ch = wa'gb'* . count := count + 1.

Otherwise: stop.
Let P(ch) be the probability that V' sends (a, b) such that ch = wagb when given
random pairs (hl, h2) satisfying hf = h2.

To show that Mv. runs in expected polynomial time it is sufficient to show
that the expected number of iterations of procedure B is polynomial. As each
round of B is run independently of previous rounds, this number is

Next it will be shown that the output of the simulator is statistically indistinguish-
able from executions of the protocol whenever the input satisfies log,(u) = log,(v).
If Mv. stops in step 3, the generated output has the correct distribution.

If Mv. stops, because procedure A stops before procedure B, there are two
possibilities:

0 The simulator has found (u,b) # (u',b') such that ch = wagb = wa'gy. In

0 The simulator has generated the messages
this case the simulation is perfect.

hl = ch', hz = (vaub)' and r randomly chosen.

These messages have the same distribution as the messages in real executions.
Finally there is the possibility, that procedure B stops before A, in which case
the output of the simulator differs from executions of the protocol. It wil l now be
shown that this happens with negligible probability.

We say that A has success in a round, if it stopcl. Similarly B has success in
one round if the verifier sends (u', b') such that ch = wa'gb'. A wins as soon as it
has one success, and B wins if it has 1q1 successes before A has had any. Let the
outcome of one execution of a round of A and B be (P = P(ch))

0 a, if A has success. Prob[a] = P.
0 /3, if B has success and A has not. Prob[P1 = P(l - P).
0 discard, if neither A nor B has success.

242

By performing many (independent) experiments with outcomes and probabilities
as above and by removing all occurrences of discard we get a list of a and p. The
probability that p occurs at a given place in the list is (P > 0 as the protocol did
not stop in step 3)

P(1- P) 1 < -. Ps= P + P (I - P) 2
B only wins if the first 1q1 elements in the list are p:

Thus a simulated conversation has the same distribution as in a real execution of
the proof system except with probability less than 2 4 .

	Distributed Provers withApplications to Undeniable Signatures
	1 Introduction
	2 The Shamir Scheme
	3 Verifiable Secret Sharing
	3.1 Verification using Discrete Logarithms

	4 Convertible Undeniable Signatures
	5 Distributed Prover Protocols
	5.1 The Model
	5.2 Distributed Verification
	5.3 Generalizations

	6 Distributed Denial
	6.1 Denial by the Agents

	7 Conclusion
	Acknowledgements
	References
	A The Distributed Proof of Different Discrete

