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Abstract 

Let N be an integer with at least two distinct prime factors. We reduce 
the problem of factoring N to the task of finding random integer solutions 
( e l , .  . . , e t )  E Zt of the inequalities 

I t  I 

t 

where c > 1 is fixed and p 1 , .  .., pt are the first t primes. We show, 
under the assumption that the smooth integers distribute "uniformly', 
that there are NCt4') many solutions (el ,..., et) if c > 1 and if 
c := c - 1 - (2c - 1) log log N / l o g p ,  > 0. We associate with the primes 
p 1 , .  . . , p t  a lattice L c Rt+' of dimension t and we associate with N 
a point N E ELtt'. W e  reduce the problem of factoring N to the task of 
finding random lattice vectors z that are sufficiently close to N in both the 
w-norm and thr 1-norm. The dimension t of the lattice L is polynomial 
in log N. For N M Z512 it is about 6300. We also reduce the problem of 
computing, for a prime N, discrete logarithms of the units in Z f N Z  to 
a similar diophantiue approximation problem. 
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1 Summary 
The task of factoring large composite integers N has a long history and is still a 
challenging problem. In this paper we reduce this task to the following problem 
of diophantine approximation. Find about t+2 integer vectors (el, . . . , et) E Zt 
SO that IC:=leilogpi-logNI 5 N-' and xi=, leilogpi] 5 ( 2 ~ -  1) logN+ 
o(1ogpt) hold for some c > 1 where p1,  . . . , pt are the first t prime numbers. 

Given these t + 2 diophantine approximations of logN we can factorize N 
as follows. The integer u := fl,,,, p;' must be a close approximation to v N 

Hence the residue u(modN) factorizes completely over the primes p 1 , .  . . , p t  
and we obtain a non trivial congruence flej>,p;' = f p:'(mod N). Using 
about t + 2 of these congruences we can factorize N according to the method in 
section 2. 

where v = n , j , o p ~ J ' .  In fact we show in Lemma 2 that Iu - vNl = p ,  41) . 

The above diophantine approximation problem can be formulated as a closest 
lattice vector problem. In section 3 we associate with N a point N E Rt+' 
and with the primes p 1 , .  . . ,p t  a lattice L so that the desired approximations 
C:=, e i  logpi of log N can be generated from the lattice vectors z such that 
llz-Nl11 and llz-Nllm are sufficiently small. Weshow in Lemma2 that every 
lattice vector that is sufficiently close to N yields a desired approximation of 
log N. Under a reasonable hypothesis we show in Theorem 7 that, for some fixed 
E > 0 , there are at least NC+"(l) sufficiently close lattice vectors provided 
that the number t of primes is larger than (logN)2. These results reduce the 
problem of factoring N to the task of finding lattice vectors in L that are close 
to N in both the 1-norm and the oo-norm. 

The lattice basis reduction algorithm of Lenstra, Lenstra, LoviiSz (1982) ap- 
parently let some experts think on the possibility to factorize N by finding good 
approximations to N by a linear combination of log's of small primes. Since 
this approach seemed to be impractical it has never been analysed. We intro- 
duce negative coefficients into the approximation problem and we set up this 
problem as a nearest lattice vector problem. We also obtain explicit numbers 
on the size of the lattice and error bounds needed to make the method work. 

We have solved the diophantine approximation prclblem using a prime basis 
o f t  = 125 primes. We reduce the lattice basis by blockwise Korkine Zolotarev 
reduction, a concept that has been introduced by Schnorr (1987). Schnorr and 
Euchner (1991) give improved practical algorithms for lattice basis reduction. 
For a basis of 125 primes the diophantine approximation problem can be solved 
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within a few hours on a SPARC 1+ computer. In general it may be hard to 
find a lattice vector that is very close in both the 1-norm and the oo-norm. 
Our experience with the particular problem indicates that it is sufficient to 
reduce by a strong reduction algorithm for the Euclidean norm, the lattice basis 
61,. . . , bt,N described in section 3. In order to factor integers N that are 500 
bits long the basis should have about 6300 primes. It is difficult to estimate the 
required computer time. 

I 
i 

The paper is organized as follows. In section 2 we show how to factor N if 
we are given about t + 2 pairs of integers (ui, U i )  such that ui is of the form 
n f = , p ; '  and lui - uiNI 5 p t .  In section 3 we show that these pairs (Ui,uj) 
can be generated from the lattice vectors in the lattice L that is associated 
with the primes PI,. . . , pt that are sufficiently close to the point N We show in 
section 4 that there are N'+"(l) lattice vectors that are sufficiently close to N. 
In section 5 we reduce the problem of computing discrete logarithms to the task 
of solving a closest lattice vector problem in an associated lattice. 

2 Factoring integers via smooth numbers 
Notation Let IN, Q, IR be the sets of natural, integer, real numbers. Let log z 
denote the natural logarithm of z E R, z > 0. 

The factoring method 

Input. N (a composite integer with at  least two distinct prime factors and a, c 
with a, c > 1 . The choice for a, c is discussed in section 3) 

1. Form the list p1, . . . , pt  of all primes smaller than (log N ) a .  

2 .  Generate from lattice vectors, as explained in section 3, a list of m 2 t + 2  
pairs (ui, u i )  E IN2 with the property that 

3. Factorize ui - UiN for i = 1,. . . , m over the primes p 1 , .  . . , p t  and 
= PO = -1. Let ui - u ~ N  = n?= t o 3  p:'*' , bi = (6;,0,. . .,hilt) and 

(ai,o,. . .,silt) with ai,o = 0. 
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4. Find a nonzero 0, l-solution (c1,. . , c,) of the equation 

m 
cc;(a; - b;) = 0 (mod2) 

j =O 

(The construction implies that z2 = y2(modN).) 

to 4 and generate a different solution (c1, . . . , c,). 
6. If 2 # fy(modN) then ouipui gcd(z + y, N) and stop. Otherwise go 

Remarks. 1. If 2, y in step 5 behave like a random solution of t2 = y2(mod 
N) then the success rate of step 6 is at least 1/2. Therefore the time that 
the algorithm takes to factorize N is essentially the time to generate the list of 
rn 2 t + 2 pairs (Ui, ui )  required in step 2. 
2, Steps 4 - 6 of the algorithm only require that ui and ui(modN) factorize 
completely over the prime basis p1,. . . , p t .  In case of the weaker inequality 
1.i - U i N l  = Pt O(') we expect that ui - UiN factorizes completely over the 
prime basis for at least some fixed positive fraction of the pairs (ui, Vi). 

3. In the next section we introduce a lattice La,e and we show that essentially 
every vector in La,c that is sufficiently close to the point N yields some pair 
(ui,ui) E IN2 such that (l), (2) hold. Moreover assuming an unproved but 
reasonable hypothesis we show that if a > (2c-l)/(c-l) then the lattice vectors 
that are close to N yield sufficiently many suitable pairs (ui, ui) satisfying (1) 
and (2). 
4. By the prime number theorem the number t of primes < (logN)a is 

t = (logN)a/aloglogN (1 +o(l)) . 

3 How to generate Ui,Vi from lattice vectors 
that are close to N 

Let L = La,c C R'+' be the lattice that is generated by the column vectors 
bl, . . . ,bt of the following (t+ 1) x t matrix B and let N E Rt+' be represented 
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N - 0 .  

by the following column vector: 
0 
0 

... log 2 0 

I _ [  0 i log 3 

log Pt 1.. 0 0 
NClog 2, Nclog 3 - * .  N'logpt, 

N =  

' 0  
0 

0 
N e  log N 

We let the rational numbers Q,C > 1 vary only slightly with the size of N. 
The real entries of the matrix B must be approximated by rational numbers. 
We show below that it is sufficient to approximate them with an error less than 
1/2, i.e. we can approximate them by the nearest integer.- 

Notation. We associate with a lattice vector z = (29.. . , zt+l) = xi=, e ib i ,  
e l , .  . . , et E Z, the pair of integers g(z) := (u, u )  E IN with 

e j > O  e j < O  

The mazimvm norm of a vector z = ( % I , .  . . , q+l)  
t+ l  1 1 ~ 1 1 ~  = maxi ; the I-norm is 11z111 = 

&nf=,p i i  7-smooth if pi"' 5 y for i = 1,. . . , t .  
is 7-smooth if both u and u are r-smooth. 

Lemma 1. If  z E L and llz - Niloo 5 logp, 
p t  -smooth. 

E Et+' is by definition 
It;/. We call an integer 
A pair (u, u )  of integers 

then ( u , ~ )  = g(z) is  

Proof. Let z = C I = l e i b i  . We have leilogpi1 = logp!c'' 5 logpt for 
i =  1,...,t . QED 
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We see from Fact 1 and Lemma 2 that if z E L satisfies (5) and (6) for 
sufficiently large N then the pair (u, u )  = g(z) satisfies the conditions (l), (2) 
in step 2 of the factoring algorithm. 

Proof. We let p denote zt+l - N c  log N ,  i.e. 
inequality ( 5 )  we only use that 1/31 5 logpt. We see from (4) and (5) that 

p = (z - N)t+1. From the 

(5) - < N-Clogp, = o(1). 

Using that log( 1 + z) = z + o( 1) for small z this yields 

I U  - u N ~  5 ~N'-" logp , ( l+  ~ ( l ) )  

Since logpt = p:") it remains to show that u 5 Nc-'py('). We have 

log u g) llz - Nlll - log u - 1/31 

'2) llz - Nlll - loguN - pN-' - 1/31 

5 - Nlll - logvN. 

By (6) this implies 2logu 5 2(c - l)logN+o(logpt), and thus u 5 NC-lpy( ' ) .  
QED 

If we replace in Lemma 2 the inequality (6) by the weaker bound 

IIZ - Nllr 5 (2c - 1) log N + O(1OgPt) 

it follows that Iu - uNl = p:('). This latter inequality is still sufficient for our 
factoring method. 

Lemma 3. 
(6) only that 

In the proof of Lemma 2 we have used from the inequalities (5), 

i 

i= 1 
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Therefore in order to find an integer pair ( u , v )  for our factoring method 
it is sufficient to solve the inequalities (7), (8) with e l , .  . . , et E Z. The 
factor logpt in (7) is negligible. It can be eliminated by replacing c by 
c' = c - loglogpt/ log N. This substitution does not affect the inequality (8) 
since loglogpt = o(1ogpt). 

Rational approximation of the basis matrix. In practice we must a p  
proximate the real - entries of the basis matrix B = [b l , .  . . ,bt] by rational 
vectors 51, . . . , bt . The approximation must be sufficiently close so that the 
error in 1zt+11 N-' for z = Ci=, ei b; is negligible whenever lei logpi1 5 logpt 
for i = 1, . . . , t. For this it is sufficient to approximate N e  logpi , N" log N 
, logpj by the nearest integer. Then the bit length of N'logpi, N'logN is 
c log, N and the bit length of logpj is logzpt. If we choose for N C  a power 
of 2 (10, resp.) then N'logpi, N'logN is the initial segment of the binary 
(digital, resp.) representation of logpi, logN shifted to the right of the point. 

4 There are sufficiently many lattice vectors 
that are close to N 

We show under a reasonable hypothesis that at least N'+"(') lattice vectors 
z E L satisfy the inequalities (5 ) ,  (6) of Lemma 2 for E = c - 1 - (2c - 
1) log log N /  logpt . Therefore we can factorize N efficiently if c > 0 and if we 
can efficiently generate random lattice vectors z E L satisfying (5) and (6). 

Our argument showing the existence of suitable lattice vectors z E L is 
not constructive. We derive these lattice vectors from smooth integers U , U  

satisfying lu - uNl = U(1). The existence of these smooth integers follows 
from the assumption that the smooth integers distribute "uniformly". 

Let INt denote the set of integers that factorize completely over the primes 
P I , .  . . ,pt. For u = nipti , u = Dip; E IN* let ~ ( u , u )  = Z;=,(ei -e{)bj. The 
mapping f : I N t  x I N 1  + L is inverse to g, i.e. fgf = f. f is not oneone since 
we have f(u,u) = f (uw,uw) for all w E lNt. At most one preimage (u,w) 
of each z E f(N:) can be used in step 2 of the factoring algorithm. We can 
always use the minimal preimage (u, w )  = g(z). 

G: 

Lemma 4. If u,u E I N t ,  Iu - vNl = o(;ogpt) and v = Q ( N " - ' )  then z 
= f(u, w )  safisfies IIz - "11 5 (2c - 1) logN + o(1ogpt) and I(. - N)t+iI = 
o(10g Pr ) * 
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Proof. Let z = (21,. . . ,zt+l)  = C:=, e jb i .  We put p := (z - N)t+l = 
zt+l - N'logN. We have by (4) I/31NeIlog(u/uN)l = NcIlog(l+ T )  U-VN I 5 
N e  -1 + O ( P (  (logpt)/uN)2). 
It follows from PIe-' = O(u), Iu - ulvl = o(1ogpt) that IpI = o(logpt). From 
this and u = 8 ( N e - ' )  we see that 

(4) 
IIz - Nlll (Z'logu + logu + 1/31 5 logu2N + l/31(1+ N-') 

- < (2c - 1) log N + o(l0gpt). 

We put pt = (log N ) a ,  log p: = a log log N. In order to estimate the number 
of pairs (u, u )  E IN: with Iu - uNl 5 a loglogN we will assume the following 

Hypothesis. The fraction of pairs (u,u) in {(u,u) E IN2 I Ne'l/2 < u < 
N + l ,  Iu- uNl 5 a log log N )  for which u and u are (log N ) a  -smooth is at leasf 
l/(log N)O( ' )  -times as large as the probability fhaf  a random pair in {(u, u)  E 
N2 I u 5 N e ,  u 5 is (log N)a-smooih in u and u. 

Theorem 5. (Norton 1971 and Canfield, Erdk, Pomerance, 1983) 
Lei E > 0 be fized, let r safisfy N1/' >, (log N)'+'. Then #{z 5 N I z is 
free of primes > ~ 1 1 '  } / N = P-'+o(') where lim o(r) / r  = 0. 

N-mo 

Remark The proof of Theorem 5 also shows that 
#{z 5 N I z is free of prime powers pc  > N'/')/N = r-r+4r) 
where lim o(r) /r  = 0 provided that N1/' >, (log N)l+',  with E > 0 fixed. 

NdCO 

Let 

Iu - U N l  5 aloglogN 

N e - l / 2  < u < N"", u, u (log N)O - smooth 
Ma,c ,N  = { (11, u )  E IN2 1 

Proposition 6.  If the hypothesis holds, c > 1 and a > (2c- 1) / ( c -  1) are 
fixed then we have # M a , c , N  2 N '+o( ' )  with E = ( c  - 1) - (2c - I)/& vhere 
lim o(1) = 0. 

N+CO 



Proof. Let r = logN/aloglogN, and thus (logN)a = PI1/'. By the 
hypothesis, Theorem 5 and the remark we have for sufficiently large N and 
a > 1 that 

# Ma,c,N > - N"" [.(. - 1)]-'(4) Cp-e'+o(') / (log N ) O ( ' ) .  

Hence 

log # M a , c , N  
lo N 2 ( c -  W g N -  ,1,,"1,N((C--I)log[r(c- 1)1+clogc4 

+o( r log c r )  

e+<Iog N 
-2 [ (c - 1) - (2c - 1)a-l] logN + o(l0g N) 

2 (e + o(1)) logN with E = (c  - 1) - (2c  - 1)a-'. 

Hence # M a , e , ~  2 N C + O ( ' ) .  QED 

Theorem 7 .  
that satisfy the inequalities (5) and (61, where E = (c - 1) - (2c  - l ) / a .  

If the hypothesis holds there are NC+"(') m a n y  vectors z E L 

Proof. 
least # f ( M a , e , ~ ) .  It will be sufficient to show for all z E L the inequality 

By Lemma 4 the number of vectors z E L that satisfy ( 5 ) ,  (6) is at 

#f-'(~) n M a , e , ~  5 aloglogN = ~ ( l )  

This inequality and Proposition 6 implies the claim: 

# f ( M a , c , N )  2 #Ma,c,N / No(') = N'+o('). 
For any z E f ( M o , " , ~ )  there exists (u, v )  E M a , e , ~  with f(u, v )  = z and 
gcd(u ,v )  = 1. We get ( u , v )  from any preimage (Z,T) E f-'(z) by dividing 
both u and v by gcd(u, v ) .  The pair (u, v )  is the "minimal" preimage of z 
and any preimage @,IT) E f-'(z) is of the form @,T) = (uw,vw)  with 
w E INt. We have w I (a - T N ) .  Since IZ - T N (  5 a log log N holds for all 
(i.i,T) E M a , e , ~  we see that w 5 aloglogN. The desired upper bound on 
#f-'(z) n Ma,e ,N follows from w 5 aloglog N. QED 

Conclusion. We have reduced, by the algorithm in section 2 ,  Lemma 2 and 
Theorem 7,  the problem of factoring N to the problem of finding a random 
solution (e l , .  . . , e t )  of the inequalities (7), (8) (to the problem of finding 
random lattice vectors z satisfying (5 ) ,  (6), resp.). Our reduction is polynomial 
time. Its correctness uses two heuristic arguments. First, we assume that z # 
fy (mod N) holds with positive probability for the solution of the congruence 
2 2  = y2 (mod N) that generated by the algorithm. Second, we assume in the 
hypothesis that the set of smooth integers is somewhat "uniformly" distributed. 
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The condition a > (2c- 1) / (c- 1) in Proposition 6 can be relaxed for small 
N. We give some examples of parameters a, c so that # M a , c , ~  is larger than 
t .  

A scenario for factoring N M 2 512 
Let c = 3 , a = 1.9 . Hence (log N)" = 70013 , t M (log N)" / a  loglog N M 
6276 and r = logN/a loglogN w 31.8. 
We have 

log#Mar,c ,~  M ( c -  1)logN-r(c- l)logr(c- 1)-rclogrc 

1 710 - 264.3 - 435.2 
2 10.5 > logt k: 8.75 

At present this seems to be a formidable task. So far we have no experience with 
lattice basis reduction for lattices with dimension 6300. Moreover the bit length 
of the input vectors is at least 1500 and a substantial part of the arithmetic 
has to be done with 1500 precision bits. On the other hand congruences can 
be constructed within only a few hours computation time in case of dimension 
125. 

Example solutions of the inequalities (7), (8) using a basis of 125 
primes. 
Using 1 = 125 primes with the largest prime pt = 691 we have solved 
the inequalities (7), (8) ((l), (2), resp.) using variants of the LLL-algorithm. 
Simple LLL-reduction did not generate any solution of the inequalities (7), (8) 
for this N. We have reduced the lattice basis B of section 3 with 4 precision 
bits to the right of the point using blockwise Korkine Zolotarev reduction with 
block size 32. The general concept of blockwise Korkine Zolotarev reduction 
has been developped in SCHNORR (1987). SCHNIORR and EUCHNER (1991) 
give practical algorithms and evaluate their performance in solving subset sum 
problems. For N = 2131438662079, NC = lo'', c = 2.03 we have found the 
following solutions: 

1. u = 24 - 11 - 29 37' - 43 - 61' - 71 - 79 * 97 - 107 139 - 167 - 211 
v = 53 * 7 41' * 53' - 683, u - VN = 69. 
The vector z = f(u, v )  satisfies ~ ~ z - N ~ ~ ~  M 95.88 FS (2c- 1) log N+9.19. 

2. u = 24 e l l  . 312 - 37 - 61 - 73 - 97 - 107 113 - 127 .149 - 163 ' 241 - 257 
v = 52 ~7~ -43.47 -59.67 -83.173.271, u - VN = 29 * 137 , 
The vector z = f(u, v )  satisfies ~ ~ z - N ~ ~ ~  = 102.5 = (2c-1) log N+15.81. 
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3. u = 34 * 53 - 112 * 17 - 19 - 61 - 67 - 73 * 109 - 193 * 211 263 
v = 2 * 59 * 101 * 127 - 163 * 173 * 353, u - V N  = 7. 
The vector z = f(u, u) satisfies IIz - Nlll w 91. 

4. u = 3 * 19 -47 * 67 * 71 * 97 * 113 - 151 - 157 - 199 * 239 * 269 + 359 
v = 17 31 107 * 137 * 211 * 223 * 373, u - VN = 166. 
The vector z = f(u, v) satisfies llz - "11 w 99 

5. u = 33 * 13 * 23 * 31 43 * 47 * 101 - 103 * 107 * 173 * 239 - 251 * 283 * 401 
~ = 2 . 7 * 1 7 . 2 9 - 5 9 . 6 1 * 8 9 * 2 2 3 . 6 3 1 ,  U-VN = 139. 
The vector z satisfies IIz - Nlll w 97. 

Note that in our example solutions we have llz-Nll1 w (2c-1) log N+2 log lu- 
vNI. 

5 Computing discrete logarithms 
We reduce the problem of computing discrete logarithms in 22; to the closest 
vector problem in an associated lattice L. The dimension of L is polynomial in 
log N. 

Let N be a prime and let z E Z N  = Z / N Z  be a primitive root of the 
subgroup of units Z; C Z N .  The logarithm of y E Zh to base z ,  denoted 
as log,(y), is the number z E Z N - ~  satisfying y = z"(modN). 

Let p1,. . . ,p t  be the t smallest prime numbers and let po = -1. We can 
compute log,(y) and log,(pi) for i = 0, .  . . , t if we are given m > t + 2 general 
congruences of the form 

t 

with ai, j ,  b i , j  E IN. These congruences can be written as 

t 

C ( a i , j  - b i , j ) b Z ( p j )  + ai,t+l+ ai,t+;rlogz(y) = O(modN - 1) 
j =O 

This id a system of m linear equations in the t + 2 unknowns log,(p,) j = 
0 , .  . . , t ,  log,(y). If we have t + 2 linearly independent equations then we can 
determine these unknowns by solving these equations modulo N - 1. 
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0 - ... log 2 0 
0 log 3 

log Pt 
1% Y 

0 0 log z 
Nelog2 N‘l0g3 * - *  ... N‘logt 

The congruences 9 can be obtained from vectors in the following lattice 
L = LQ,e,L,Y c ELt+‘ ’that are 11 JI1-close to the vector N. The lattice L is 
generated by the column vectors bl, . . . , bt+2 of the following ( t  + 3) x (t + 2) 
matrix and N E Rt+3 is the following column vector. 

N =  

0 

0 
Ne log N 

We associate with a lattice vector z = (21 , .  . . , zt+3) = ei bi the integer 
u = np;J where j ranges over the set of indices j 5 f + 2 with e j  > 0 and 
where pt+l = y, pt+2 = z .  If the residue u(mod N) factorizes completely over 
the basis po = - 1, p1,  . . . , p1 this yields a congruence 

t 

as in (9). 

Conclusion. Computing the discrete logarithm in Zk via closest lattice vec- 
tors takes about the same time as factoring, via closest lattice vectors, integers 
having the same length as N. 
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