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Abstract  

In this contribution two conditions are stated which safe RSA moduli n = 
p - q  must fulfill. Otherwise the factors of n can be found. First we consider the 
cycle-lengths of the recursion c t c'(")-* +1 mod n which leads to a condition 
in terms of Fibonacci numbers. The second condition involves a property of 
Euler's function. We introduce a number-theoretic distance measure - the 
power-of-two distance (ptd) - which may be useful for evaluating the security 
of RSA moduli against 'number-theoretic integration'. The ptd of an RSA 
prime p must iiot be too small. 

1 Introduction 

The factorization of large numbers is a very old mathematical problem, which 
has found increasing interest since the advent of the RSA public-key cryptosystem 
(see [l]), whose security essentially relies on the difficulty of factoring. Nowadays 
- for security reasons - every user gets a different MA modulus n = p . q. As 
result thereof, a great amount of "secure" RSA moduli have to be generated. Hence 
there will not oe enough (CPU-) time and resources to try all known factorization 
algorithms for a sufficiently long time on each RSA modulus n. For this reason it is 
of interest to have criteria telling whether a particular modulus n may be insecure 

D.W. Davies (Ed.): Advances in Cryptology - EUROCRYPT '91, LNCS 547, pp. 294-301, 1991. 
0 Springer-Verlag Berlin Heidelberg 1991 



295 

(eg. it is well known that p - 1 and q - 1 must contain at least one large prime 

factor). In this contribution we state two conditions which secure RSA moduli must 
fulfill. 

2 The first Condition 

We start by giving a ’small’ example. The ”RSA number” 

n = 525 169521 9926276 14583344 195951527749 

can be factored easily by assigning c the initial value 1 and then using the iteration 

c t c-l+ 1 mod n (1) 

until the greatest common divisor of c and n is greater than 1. c-l denotes the 
inverse of c modulo n. A program implementing (1) on a powerful computer rapidly 
(much less than a second) finds the factor p = 8242065050061761. Hence the second 
factor is q = 63718196690123467909. 

Now neither p - 1 nor q - 1 do have only ’small’ prime divisors: 

p - 1 
q - 1 

= 

= 

26 * 5 

22 . 3  . 13 * 67 * 6096268340042429 , 
53 * 107 * 109 * 41667737 

and the primes dividing p + 1 and q + 1 are not all ’small’ either: 

p + 1 = 2 .  33 .17 .577 . 15560284867 

q + 1 = 2 . 5  * 11 * 59 * 431 - 449 9677 * 5242693 . 
The reason why the program handles this number so well is that the index up 

of the smallest Fibonacci number Fup which contains p as a factor is quite small, 
we have up = 107 (for Fibonacci numbers see the appendix), and, clearly, for initial 
value 1 the recursion (1) computes the convergents F’+l/Fj. Before we study the 
cycle-lengths of (1) for arbitrary initial value a, we state the first condition: 

Condition 1 A prime p selected as factor of an RSA modulus n must have a large 
index up, where Fu, is the smallest Fibonacci number which contains p as a divisor. 

To find the cycle-lengths of (1) we use continued fractions and set 

1 
a = 1 $  

l +  . . .+ 
l + p  

= [ 1 ? 1,1? . . . I 1 , 4  = [kl I bl 1 bz 7 . . . , 4 7 4 7 
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where computations are done modulo n. Note that if we set c-l = c'+'(")-' mod n 
the recursion (1) does make sense even if gcd(n, c) > 1. 

Let us first consider the recursion modulo a prime p. We set c equal to an initial 
, 

value a and start the recursion 

c + cP-2 t 1 m o d p .  (2) 

The question we ask is how many calls of (2) do we need until we come back to the 
initial value a. 

The answer to this question can be obtained by considering the j t h  convergents 
f' = Aj /B j  of the continued fraction [l, 1,. . . , a ] .  \Ve get 

a 4 + 2  + Fl+l 

- aFl+1 + f i  1+1 - Hence a = 

If a # -FJ/F,+I we get (a2 - a - 1)Fl+1 G 0 mod p and the cycle-length is up or 1, 
otherwise the cycle-length equals up - 1. To summarize, the possible cycle-lengths 
uf (2) are 

1 for a = +$ 

up else 
u p -  1 for a = -5 F,+1 (3) 

The cycle-length 1 occurs if 5 is a quadratic residue of p ,  i.e. if the last digit of p is 
1 or 9. From the properties of the Fibonacci numbers we find that there is only one 
cycle of length up - 1. The remaining p-(5t)-up cycles all have length up. 

Example: p = 101, u101 = 50 

l;3icycle;rthi 

79 
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a 
1 
4 

8 

cycle-lengt h 
63 = lcm“i.9) = lcm(u7 - 1,u11 - 1) 
7 = lcm(’i.1) = lcm(u7 - 1, l )  
7 = lcm(’T.1) = I c ~ ( u ,  - 1,l)  

By ’square a.nd multiply’ any F, mod n can be computed with O(1og n)  operations. 
For a prime p we get (see appendix) 

a 
1 
3 
4 
6 
. .  . .  . .  

Equation (5) can be used as primality test (for a composite number (:) denotes Ja- 
cobi’s symbol). There are 7 odd composite numbers smaller than 50000 which fulfill 
equation (5), namely (4181,5777,6721,10877,13201,15251,34561). Even if a com- 
posite odd number fulfills eqn. ( 5 )  its compositeness can sometimes be established 
within the test, e.g. for n = 6721 we have n - ( 5 / n )  = 2 6 .  105 and 

cycle-length 
30 = lcm(6.15) = lcm(uI3 - 1, u47 - 1) 
105 = lcm( 7,15) = lcm(u13, u47 - 1) 
112 = lcmii, 16) = lcm(u13, uq,) 

48 = lcm(6,16) = lcm(uI3 - 1, u47) 

2*.105 

(:  :) ( 6 ~ 9  6579 o )moc in  

{ ;:3 . 
+ 657g2 = ( -l)24.i05 G 1 mod n + gcd(n, 6579 f 1) = 
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AS F, = 5 y  mod p we can  extend eqn. (5) to give the following pr irnal i ty  tes t :  

None of the seven odd composite numbers given above passes this test. 
Eventually the number up can be found among the divisors of p - ( 5 / p ) .  This 

follows from eqn. (5), for further details see e.g. ([4] or [5]). 
To increase confidence in the primdity of a number, we may still run e.g. Miller's 

test for one or two bases. Essentially, however, the combined test for primality and 
large up given above does not increase the cost of selecting an RSA-prime, if the 
primes are generated from the bottom up (as in [l] p.124), i.e. if the factors of 
p - (5/p) are known. 

To summarize. for an RSA number n = p'q we must demand that up and up are 
both large. Otherwise either the recursion ( 1 )  with initial value a = 1 or - faster - 

gcd(n,Fi mod n )  i = 1 , 2 , 3 , .  . . (7) 

will factor n with min{u,,u,} steps. (The only case that gcd(n, Fup) does not factor 
n is if up = u,. Kote that (7) may also be useful to extract small factors from large 
composite numbers.) 

To get very long cycles of (I), we may demand - according to the cycle-lengths 

which do occur - that gcd(up, u,), gcd(up - 1, uq),  gcd(u,, up - l),  gcd(up - 1, ug - 1) 
are small. gcd(up, u,) is small if gcd(p-(5/p), q-(,5/q))  is small, this can be checked 
even if the factors of p - ( 5 / p )  and q - (5/q) are not known. To be sure against 
other ideas exploiting Fibonacci numbers (e.g. the Iteration Theorem in [5]), it is 
reasonable to demand that up and up contain a large prime. Finally note that safe 
primes of the form p = 2p' + 1, where p' is also prime, do ensure a very large up if 
(5/p) = 1, but not if ( 5 / p )  = -1. 

3 The second Condition 

In this section a number-theoretic distance function - the power-of-two distance 
(ptd) - is introduced. The ptd of RSA moduli should not be too small in order to 
give security against cryptanalytic attacks. 

Euler's function cp(n), given in equation (8), plays a central role in the RSA 
cryptosystem and for factoring as well. 

u(n) = I {i I gcd(i ,n)  = 1,1 5 2 5 n }  I (8) 
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Now let us define the iterated function cp{j}(n): 

cptjl(n) = v(v{j-l} ( n ) )  j = 1’2,. . . (10) 

where p{O}(n) = n. By applying Euler’s function 9 repeatedly, we will in most cases 
arrive quite rapidly at a power of two. This follows immediately from eqn. (9)’ as 

in each step every prime factor. is reduced by one and thus contributes at least one 
factor of two. For illustration consider the following example: 

n = 98765432109876543210 

n = ptol(n) = 2 * 3’ * 5.17’ . 101 .3541 . 27961 * 379721 

p{l}(n) = 2’’ - 33. 55 11 17 - 59 233 - 863 
p{2}(n) = 229.32.55.292.431 

p{4}(n) = 240 . 32 .54 . 7 2  

vt6)(n) = 246.32.52 

p{7)(n) = 248.3.5 

p{3}(n) = 234.3.55 - 7 - 2 9 . 4 3  

p{51(n) = 243 . 32 . 53 . 7 

pi8}(n) = 250 = 1125899906842624 

In a way Euler’s function behaves like a ’number-theoretic derivative’ - it makes 
big primes small. Therefore the function y{j}(n)  is refered to as j-th (number- 
theoretic) derivative. For most numbers repeated application of Euler’s function 
leads quite rapidly to a power of two. This simple observation leads to the following 
definition of the power-of-two distance: 

Definition 1 The power-of-two-distance (ptd) of a number n > 1 is defined b y  

p t d ( n )  := min{j I cp{j}(n) = 2’,i = 1,2,. . .I . 
For example ptd(216) = 0, ptd(216 + 1) = 1, ptd(3977) = 2. From the fact that 

almost all numbers around n have about In Inn prime divisors (scc [3]), we obtain 
the following crude approximation for the average value of ptd for a randomly chosen 
number n: 

log, n 
E{Ptd(41 = . 

Our second condition is now: 
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Condition 2 A prime p selected as factor of an RSA modulus n must have a suf- 
ficiently big value of p t d ( p ) .  

Clearly, we have 

max{ptd(a),ptd(b)} 5 ptd(a b)  5 ptd(a) + ptd(b) I 

The left half of the above inequality may be useful to bound the ptd if a number 
can be factored only partially. 

In analogy to 'number-theoretic differentiation' we can refer to 'number-theoretic 
integration' of a number r as finding a number which belongs to the set 3,' which 
is defined by 

3, := { i  I ~ ( z )  = r} . (11) 

We refer to finding the whole set qT as complete integration of r. For example 
integrating r = 100 completely gives QIm = { 101,125,202,250}. 

If the factors of T are known, integration of r is an easy task. It can be done in 
a systematic way from the representations T = nv(p;) . p ip* .  For integration note, 
that all odd numbers 2 3 are non-integrable, and if an odd number t belongs to  3, 
then 2t is also in Qt.  Also the density of non-integrable even numbers increases the 
larger the numbers get. If the ptd(p) is too 'small', the factors of n = p . q can be 
found by repeated integration, starting from a power of 2 close to fi. 

Since the set 3y(g) of a safe prime q contains only one even number - thus 
reducing its effective ptd - we should measure the ptd of primes which lead to long 
chains of safe primes by the ptd of the smallest prime in the chain (e.g. 2379, 1439, 
719, 359, 179, 89 is a chain of length 5, hence it is ptd(89) = 3 which measures the 
security of p = 2879). 

4 Appendix: Fibonacci numbers 

To make this paper self-contained we recall the most important properties of Fi- 
bonacci numbers (see e.g. [2] pp.78-86, or (31 p.150). Fibonacci numbers are defined 
by the recursion 

Fj+l = Fj+l + Fj j = 2,3, .  . . (12) 

with initial values Fo = 0 and Fl = 1. From the roots of the characteristic equation 
xz - x - 1 = 0 we get the n-th Fibonacci number as F,, = ((v)n - (*)")/d. 

5v nodd  
This leads to 2,,-lFn = n + ( ; ) 5  + (1;)5'+. .. + { n5!-* n even * (13) 
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Thus for a prime p from the above equation and Euler’s criterion we get 

p--l Fp = 5 2 = ( 5 / p )  modp , 

where (5/p) denotes Legendre’s symbol. Using Gaull’s law of quadratic reciprocity 
we find 

1 for p f 1 or 4 mod 5 
P 5  -1 for p = 2 or 3 mod 5 

I t  is easily seen (e.g. from the determinant of the matrices of eqn. 
Fn+lFn-l - F: = (-l)n holds. 
that either Fp-l or F,+, contains p as divisor. More precisely, using (13) we find 

(4)) that 
It can be shown Hence F’+,Fp-l G Omodp. 

Fp-l G 0 modp for p~ l , 4 m o d  5 

Fp+l Omodp for p ~ 2 , 3 m o d 5  

By induction one can show that Fn+,,, = FmFn+l + Fm-lFn, and an  important 
divisibility property of Fibonacci numbers follows, namely Fa divides Fa.* where u, b 
are integers. Thus F,,, = 0 mod p + Fk.,,,+Z = F+,+l mod p. 
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