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Cryptosystems can be viewed as sets of permutations from which one per- 
mutation is chosen as cryptofunction by specifying a key. Interconnection 
networks have been widely studied in the field of parallel processing. They 
have one property that makes them very interesting for cryptology, i.e. they 
give the opportunity to access and perform permutations at the same time. 
This paper presents two examples of how cryptology can benefit from the use 
of interconnection networks. One is a new construction of a pseudo-random 
permutation (generator) from one single pseudo-random function (genera- 
tor). The search for such constructions has been of major interest since 
Luby and Rackoff gave the first construction in 1986. The second example 
presents a cryptosystem based on interconnection networks and a certain 
class of boolean functions. Some arguments for its security are given. Alt- 
hough there is a relation between the two examples they complement each 
other in using different properties of interconnection networks. This can be 
regarded as an argument that exploiting the full potential of interconnection 
networks can establish completely new techniques in cryptology. 

1 Introduction 
Interconnection netwo ks have been widely studied in the field of parallel proces- 
sing. They have one property that makes them very interesting for cryptology, 
i.e. they give the opportunity to specify and perform permutations at the same 
time. This paper introduces a new class of cryptosystems which is constructed 
using boolean functions and interconnection networks. The construction is secure 
in the sense that it can be used to construct pseudo-random permutation gene- 
rators from pseudo-random Boolean function generators ([LuRa86], [GGM86], 
[Schn88], [PiepSO], [Piepgl]). It is proposed, to use simpler functions instead 
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of pseudo-random functions to construct cryptosystems, e.g. theoretical pseudo- 
random number generators (as proposed by [Yao81],[BBS],etc), practical pseudo- 
random number generators (linear shift register etc.) or oneway functions [Yao81]. 
The security of a specific cryptosystem based on boolean functions fulfilling the 
strict avalanche criterion [LZoy89] is investigated. 
Chapter 2 gives a short introduction to the theory of interconnection networks. 
In chapter 3 a new construction of pseudo-random permutation generators from 
pseudo-random function generators is described. In chapter 4 a new one-key cryp- 
tosystem based on interconnection networks and boolean functions fulfilling the 
strict avalanche criterion [LZoy89] is presented. Some arguments for its security 
are given. An outlook on further research is given in chapter 5 .  The rest of this in- 
troduction is used to give a short review of known results. 1.1 contains the results 
concerning pseudo-randomness and 1.2 the results concerning boolean functions 
as mentioned above. 

1.1 Pseudo-randomness and Permutation Generators 
During the last years a lot of work has been spend on the construction of per- 
mutation generators. One reason for this is, that most cryptosystems (e.g. RSA, 
DES) are nothing more than generators of permutations. Specifying a certain 
key in such a cryptosystem means specifying (or generating) a certain permu- 
tation on a very large ordered set. On the other hand there has been a cryp- 
tographical interest in pseudo-randomness for a long time, too, dealing mostly 
with the (pseudo)randomness of numbers or bitstrings. In [GGM86] the notion 
of pseudo-randomness is extended to functions and a construction of pseudo- 
random functions from pseudo-random bitstrings is described. Luby and Rackoff 
were the first to look at the special case of pseudo-random bijective functions 
[LuRa86] [LuRa88]. They proved, that such pseudo-random permutations (which 
bijective functions can be identified with) can be constructed from pseudo-random 
functions. 
The construction given by Luby and Rackoff has the same iterative structure as 
the DES (Fig. 1). Three (instead of 16) of these iterations are performed and in 
each iteration a different pseudo-random function is used (Fig. 2). Naturally the 
question arises, whether the number of functions used can be reduced [Schn88]. 
Zheng, Matsumoto and Imai [Zit41891 give a positive answer to that question and 
proved that two functions are the minimum if three iterations are performed (Fig. 
3). Pieprzyk [PiepSO] was able to perform a construction based on one pseudo- 
random function and four iterations (Fig. 4). 

In this paper only a short review of some of the basic definitions is given. Let 
throughout the definitions n and k represent any positive integers. With I = (0 , l )  
let F, and 3 be defined as: 

F" = {f I f : I" + I"} 3= I I ,F" 
n 
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... 

Fig. 1: Iterationstructure of DES 

Fig. 2: Lubys and Rackoffs Construction 

Definition: A function generator with key length function kZf(n) (kZf a po- 
lynomial) is a collection 7-i = Un>,, H,, H ,  = {hn,k I logk 5 kZf(n)},  where each 
hn,k is a function from F,. It  is required that, given a key k of length k l f ( n ) ,  and 
an input a of length n, h,,k(a) can be computed in time polynomial in n. 

The following definition defines function generators mapping to I instead of map- 
ping to I“. Bn and B be defined as: 

Definition: A Boolean function generator with key length function kZf(n) 
(kZf a polynomial) is a collection 31 = UnZO Hn, Hn = { h n , k  I logk 5 k Z f ( n ) } ,  
where each h n , k  is a function from B,. It is required that, given a key k of length 
kZf(n) ,  and an input a of length n, hn,k(a)  can be computed in time polynomial 
in n. 

Definition: A permutation generator ‘H is a function generator such that 
each function hn,t is bijective. Let = {h i , : } .  We say 
‘FI is invertible if is the inverse 
permutation generator for 31. 

Luby and Rackoff give a formal definition of pseudo-randomness which is based 
on a definition of “undistinguishability”. Informally a function generator is called 

- 
= Un,O Hn where 

is also a permutation generator. In this case, 
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Fig. 3: Ohnishis Construction 

Fig. 4: Pieprzyks Construction 

pseudo-random if for large n no function hn ,k  can for randomly generated k be 
distinguished from a really random function. 

Definition: A (Boolean) function generator 'H is pseudo-random if there is 
no distinguishing circuit family for X. A distinguishing circuit family for f i  is 
an oracle circuit family {C,,, C,,, . . .} where n1 < 122 < . . ., such that for some 
polynomial Q1 and for each n for which there is a circuit C n  the { H n , F n }  (or 
{H,, Bn} respectively) distinguishing probability of C, is at least &. 
An oracle circuit family is an infinite family of circuits {Cn1, C,, , , , .} such that 
for some polynomial Q2 and for each n for which there is a circuit C,: 

1. C, is a circuit which contains the usual boolean gates together with oracle 
gates, where each oracle gate has n inputs and n outputs. C, has one boolean 
output, where the value of the output depends on the way the oracle gates 
are evaluated. Such a circuit is called an oracle circuit. 

2. The size of C, is less than or equal to Q2(n) (size defined as number of 
inter-gate connections) 

The {H,, F,} ({Hn, B,} respectively) distinguishing probability of C, is defined 
as follows. Let z, be the output value of C,. Let r n  = P[zn = 11 when a function 
is randomly chosen from F, and this function is used to evaluate the oracle gates 
in C,. Let p ,  = P(z,  = 11 when a key k of length IcZf(n) is randomly chosen 
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and h,,k is used to evaluate the oracle gates in C,. Then d, = Ip, - T , I  is the 
{H,, F,} ({H,, B,} respectively) distinguishing probability of C,. 
Note, that pseudo-random Boolean functions are not explicitely defined in the 
previous papers, but their existence is implicitly proven in [GGM86]. 
Theorem: [LuRa88] There is a way to construct an invertible pseudo-random 
permutation generator from a pseudo-random function generator. 
In this paper the following new theorem is proven: 
New Theorem: There is a way to construct an invertible pseudo-random per- 
mutation generator from a pseudo-random Boolean function generator. 

1.2 Lloyds result 
In her Eurocrypt'89 paper Lloyd gives a formula for estimating the number of 
boolean functions which fulfil the strict avalanche criterion of order (rn - 2). Here 
only boolean function f : I" + I are considered. The criterion guarantees, 
roughly speaking, the cryptographically important property, that changing one 
input-bit of f or of any subfunction of f leads to a probability 1/2 that the output 
bit changes, too. The formula she uses to count the functions can as well be used 
to choose one of these functions randomly. The formula for an n-bit function f 
(given here for 0 - l-values, Lloyd gives it for the function f(z) := (-1)f'")) is as 
follows: 
(Let h be the Hamming weight function (number of 1's in the bitstring represen- 
tation of its argument), ei be the i-th unity vector, eo be the zero vector and 
x E I".) 

Obviously the function f is completely defined by its values on {eo,  . . . , e m }  and 
so it is very easy definable and accessible. On the other hand f can be completely 
reconstructed from knowing only m + 1 of its function values. This can be done by 
solving a system of linear equations, taking the values { f ( e o ) ,  f(el), . . . , f(em)} as 
variables. 

2 Interconnection Networks 
Interconnection networks are commonly dealt with in the context of concurrent 
processing. They are used to connect a set of input elements (usually processors 
or memory locations) with a set of output elements (usually processors or memory 
locations, too). Research on interconnection networks deals in most cases with 
finding routing algorithms (i.e. how can a given set of connections be realized by a 
given interconnection network) or finding new topologies which are both efficient 
and capable of realizing given sets of connections. In our context a different pro- 
perty of interconnection networks is used: they are a very easy way to specify and 
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perform permutations at the same time. The following terminology is according 
to [Feng81]. 

2.1 Control strategy 

# 
I$- 

An interconnection network is build up from switching elements (so- 
metimes called @elements). A switching element takes two inputs and 
produces two outputs. Whether the inputs should be exchanged in the 
specific switching element or not is determined by a control-setting fun- 
ction h. This function maps the unique index of any switching element 
of the interconnection network onto the set I = (0’1) (0; don’t exchange,lG 
exchange). 

2.2 Topology 

The topology of an interconnection network specifies how 
the switching elements are connected to each other. Any 
topology describes a set of permutations. Choosing the 
control-setting function h means choosing a specific per- 
mutation from this set. This is an interesting property 
which interconnection networks and cryptosystems have 
in common. Even more interesting in this context are to- 
pologies which are capable of generating all permutations on the input-set. Such 
networks were introduced by Benes [Bene65]. Waksman gives a topology which 
uses asymptotically the minimal number of switching elements [Waks68]. Here 
the Benes-topology is used, because of its slightly simpler design. At the right- 
hand side a Benes-network for 4 input-elements is shown. Figure 5 shows one for 
8 elements. The recursive structure of these networks can easily be seen, so its 
not stated formally: a Benes-network N ,  with 2, input-elements is build from two 
Benes-networks Nn-l and 2” additional switching elements. 
This subsection is completed by an example. Let h : I” -+ I be a boolean 
function. Note that in the case of an Benes-network N ,  m must at least have the 
value rlog(Zn-l(2n - 1))l. In the following example n = 3 and m = 5 .  Then N ( h )  
denotes the permutation which results from using h as the control-setting function 
in a Benes-network of appropriate size. Let further N(7-f) denote the resulting set 
of permutaiions, if ‘H is a set of boolean functions. Figure 5 shows an example 
of an interconnection network with Benes-topology and control-setting function 
h : I5 + I and resulting permutation N ( h ) .  

x 0 1 2 3 4 5 6 7 8 9 1011121314151617181920 ... 31 
h(x)l 0 0 0 1 1  0 0 0 1 1  1 0  0 1 0  1 0  0 1 Y ... x 

W )  = ( 0 , 5 , 3 , 6 , 4 ,  271’7) 
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Fig.5: Activated Benes-Network with 8 Inputs 

2.3 Virtual Interconnection Networks 
To be ready to investigate the use of interconnection networks in the design of 
cryptosystems one has to overcome one last difficulty: If one chooses the input 
size of an interconnection network according to the security constraints normally 
put on cryptosystems, one cannot establish the interconnection network physically 
any more. Cryptosystems like DES and RSA usually describe sets of permutations 
on P4 elements or - 2512 elements respectively. A solution to this is dealing with 
a virtual interconnection network, which could be derived from the topology. 
A virtual interconnection network only realizes those parts of an interconnection 
network, which are absolutely necessary to compute a certain output. This is 
done by additionally defining the next-index-function ni. This function computes 
the index of the next switching element out of the index of the present switching 
element and its relative output position. 

3 The New Construction 
The new construction can be described very short: Let 'H be a pseudo-random 
Boolean function generator. Then N ( N )  should be the constructed permutation 
generator. 
Theorem: If 'H is a generator for pseudo-random Boolean functions, then N('H) 
is an invertible pseudo-random permutation generator. 

This theorem is proven as corollary to the following lemma, where S = Un,O SZm, 
S k  denoting the set of all permutations of k elements. 
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Lemma 1: There is no distinguishing circuit family for N ( B )  and S. 

The proof of the theorem shows that if lemma 1 holds and if there were a distin- 
guishing circuit family for N(3.t) and S there would be a distinguishing circuit 
family for ‘H and 0 as well, contradicting the assumption that there is none. 

3.1 Proof of the Lemma 1 
The idea of the proof is to prove that the output-distribution of any polynomial- 
sized sample of N ( f )  is approximately the same as the output-distribution of 
any polynomial-sized sample of 7~ E Szn, namely the Laplace-distribution. The 
following remarks give an impression of the proof technique. 

Remark 1: Each single input-value to a Benes-network is uniformly distributed 
onto the outputs by N ( f ) ,  if f is a uniformly distributed random variable mapping 
to B, for some n. 

Remark 2: The decision, whether an input-value is mapped to the upper half or 
to the lower half of the output-set [0 : 2” - 11 is made in the middle (the n-th) 
column (Fig. 6). A similiar statement holds for all further “halfs”: the decision, 
whether an input-value is mapped to the upper half or the lower half of the half 
which has been chosen in column n is made in column n + 1. The decision, whether 
an input-value is mapped to the upper half or the lower half of the quarter (half 
of half) which was specified in columns n and n + 1 is made in column n + 2 ,  
and so on. From this remark it follows immediately, that if two values decide for 
different output-intervals, they cannot collide anywhere behind the column, where 
they made their decision. 
One special case, which is of interest for the rest of the proof, is the situation in 
column f + n - 1: in this column the decision is made, into which intervall of size 
24 each output is mapped. 

Remark 3: No matter what Ic 5 28 sample points one chooses, the probability 
that not two of them will enter the same internal box in column 2% is bigger than 9;. (An internal box is any of the sub-Benes-networks Nk<n of a Benes- 
(2 1 
network N,(see section 2 . 2 ) )  

From these three remarks it follows, that for large n (virtually with probability 1): 
- each input-value chooses a different internal box of a certain size (remark 3). 
- thus the input-values are mapped uniformly distributed onto the outputs of 

- they are mapped uniformly distributed onto the output-intervals of size 2% 

- there will be no collision in the columns starting from up to 2 n  - 1, which 

These remarks and their conclusions roughly describe the proof. They show that 
it is simply not possible to choose input-values, so that one can learn anything on 

these internal boxes (remark 1). 

(remark 2 ) .  

is the last one (remark 3 and remark 2 ) .  
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In 0 the decision is made wether the value is mapped to the upper or to the lower half 

Fig. 6: Illustration of remark 2, N4 

the resulting outputs of the permutation. The reason for that is, that as long as 
one is restricted to polynomially many (in n)  input-values, the input-values are 
routed independently through the main part of the network. 
Preliminaries: Let throughout the rest of this section denote B, = { f : I" + I} 
and B = &Bm. To emphasize the fact, that m depends on n as described in 
subsection 2.3, m is replaced by Z(n) as follows: For red numbers T let from now 
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on I' denote the set [0 : L2'J - 11. If r E N nothing changes; if r = logz $2 N 
although one cannot deal anymore with bitstrings, one has at  least a set which 
contains the right number of elements. Now we are able to replace m by I(n) = 

First of all one has to define an appropriate probability space. Here the space 
must describe the following event. For a certain n 

log(2n-l(2n - 1)). 

- with probability f one set out of 
- from the chosen set one element is drawn uniformly distributed. 

Sz*} is chosen. 

To describe this experiment it turns out to be best to choose 

with C being the Laplace-distribution. Further some notations have to be given, 
to be able to describe certain events in this probability space. 
Notations: The probability, that a random function mapping to a set of 2' dif- 
ferent elements does not map any two of k randomly picked arguments onto the 
same value, is described by: 

where (z)k denotes the Pochhammer-symbol which is defined as: 

(2)k = z * (Z - 1) * . . . . (Z - k + 1) 
The notation rU describes the permutation which results from w.  Formally: 

N ( w )  w E On,l(= Bl(n)) 
w E on,z(= SZ~) 

Additionally, if w is a control-setting function (i.e. drawn from 52,,1), 7rW, denotes 
the permutation one gets, if one cuts the Benes-network vertically at the inputs 
of the + 1-th column. Thus w( is the subfunction of the control-setting function 
w which suffices to compute the settings of the switching elements in the first $ 
columns. 
Definition: The (partial) output of a permutation is said to fulfil the least 
distance condition (LDC), if not wo of the ( 0 1 , .  . . , oh} are in the same output 
interval of size 2?. 
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The following random variables and subsets of 0, are defined: 

with: o j  = nu(ij),O 5 i l  

) fulfils the LDC} 
L J  

1 1 1  

I:] 
L2," = {w I nu( j ) fulfils the LDC} I:] 

The set L1 describes those control-setting functions, which map each input 
z j , ~  E [l : k ]  into a different internal box of size 25(= sub-Benes-Network N , ? ) ,  . .  

Pl 
whereas L2jk1 contains those w ,  which spread the inputs good enough regarding 
the output intervals of size 2 P .  With these notations and definitions it is now 
possible to formulate the necessary lemmata. 
Lemma 2: Let Q and q be any polynomials. There is no probabilistic algorithm 
which is restricted to at most k < q(n) queries to an oracle realizing a permutation 
ru, w chosen according to P, from On, which can choose inputs 1'1 so that for 
more than finite many n: 

' k  

1 

2 

Lemma 3: For all the following holds: 

The proofs of lemma 2 ,  lemma 3 and lemma 1 (the latter one being a corollary to 
the former two) can be found in [PortSl]. 

3.2 Proof of the Theorem 
The proof of the theorem now can make use of lemma 1. Let again be 7-i be a 
pseudo-random Boolean function generator, B be the set of all Boolean functions 



31 3 

and S be the set of all permutations. It shows, that if there is no distinguishing 
circuit for S and N(f3)  (i.e. lemma 1 holds) and if there were a distinguishing 
circuit family for S and N(’H) there were a distinguishing circuit family for ‘H and 
L? as well. Note that the invertibility is trivially achieved using this construction. 
The full version of this proof like all the other proofs can be found in [PortSl]. 

4 Other Control-set t ing Functions 
In this context naturally one question arises: how simple can the functions be 
which are used as control-setting functions without making the resulting cryp- 
tosystem crytpographically insecure. One proposal which is made here is to use 
“simple” boolean functions mapping I” to 1 which fulfil the strict avalanche crite- 
rion of order rn - 2. This properties guarantees a “statistical perfectness”, in that 
changing one input bit means that the output bit changes exactly with probability 
$. S.Lloyd gives an enumeration, which shows, that there are 2“+l such functions 
[Lloy89]. Each of these functions can be expressed as 

for an appropriate choice of f ( e j ) , j  E [0 : m], eo being the zero-vector and ej, j > 0 
being the j- th unity vector in I”. h denotes the Hamming-weight function, which 
computes the number of 1’s in the binary representation of its argument. 
These functions are easy in that each function is easily accessible and each function 
value is computable fast. Only m + 1 bits (namely f ( e j ) , j  E [0 : m]) are needed 
to define such a function. All operations which are involved in computing any 
function value are done modulo 2. The most complex computation is the one of 
h ( z ) ,  which is nevertheless fast. 
One has to be careful, if one wants to use such simple functions. Only m + 1 
function values 2 0 , .  . . , zm are needed to reconstruct the whole function. This can 
be done by solving the following set of linear equations ( j  E (0, . . . , m}): 

The main argument for the security of such a system is, that interconnection 
networks prevent the cryptanalyst from completely determining any value f(zj) 
of the control-setting function. So he will never be absolutely sure, which set of 
linear equations he has to solve. 
Up to now it is not known, whether there is a less expensive way of choosing 
the correct set of equations than doing an exhaustive search, assuming a chosen 
plaintext attack. The system is breakable, if one assumes a combined chosen 
plaintext/chosen ciphertext attack, but this kind of attack does not seem to be 
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very realistic. Even this attack can be prevented, if one uses additional design 
criteria on the network [BHPSl]. 

5 Future Research 
In section 1 it has already been pointed out, that cryptosystems and interconnec- 
tion networks are related in that both are able to generate permutations. The 
main question for future research is, what classes of “cryptograpically interesting” 
boolean functions define secure cryptosystems, if one uses them as control-setting 
functions for a Benes-network. 
A related question is, whether it is possible to construct pseudo-random permuta- 
tion generators immediately from pseudo-random number generators or even from 
oneway-functions? A positive answer to this question would allow more efficient 
cryptosystems to be built which are “provable secure”. The author conjectures 
that both constructions are possible if one uses interconnection networks. 
Finally it must be pointed out, that Benes-networks are only one possible network 
topology, and that there are numerous other topologies with different properties, 
which possibly are useful for the construction of cryptosystems, too [BHPSl].  

6 Conclusion 
The notion of interconnection networks has been viewed from the cryptographic 
point of view. It has been shown, how to construct a set of permutations out of 
a set of Boolean functions. The appropriateness of two classes of Boolean func- 
tions as control-setting functions has been investigated: Pseudo-random Boolean 
functions as control-setting functions result in pseudo-random permutations and 
Boolean functions fulfilling the strict avalanche criterion of higher order result in 
fast computable permutation generators, which possibly turns out to be a good 
cryptosystem. Finally it has been proposed to use different network topologies 
and different Boolean functions to define cryptosytems. 
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