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Abstract 

For public key cryptosystems multiplication on elliptic curves can be used 
instead of exponentiation in finite fields. One attack to such a system is: em- 
bedding the elliptic curve group into the multiplicative group of a finite field 
via weilpairing; calculating the discrete logarithm on the curve by solving the 
discrete logarithm in the finite field. This attack can be avoided by constructing 
curves so that every embedding in a multiplicative group of a finite field requires 
a field of very large size. 

1 Introduction 

In 1985 (lo] Miller has suggested to use the chord tangent group law over elliptic curves 
for public key cryptosystems. These elliptic curve groups are used in a way similar to 
multiplicative groups of finite fields A la Diffie/Hellman (see [5][6]) .  

In this paper we discuss different possibilities to choose elliptic curves over finite 
fields with respect to application for such cryptosystems. The supersingular curves E 
with #E(GF(q)) = q + 1 elements on the curve earlier proposed by Koblitz ((71) are 
not well suited for that purpose. Cryptosystems based on such a type of curves can 
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be attacked by a new discrete logarithm algorithm recently presented by A. Menezes, 
T. Okamoto and S. Vanstone([9]). 
This algorithm uses the Weil pairing for embedding the group of the curve into 

the multiplicative group of a finite field. By that the discrete logarithm problem on 
the curve is reduced to the discrete logarithm problem in the finite field. Menezes, 
Okamoto and Vanstone propose to use some other supersingular elliptic curves instead, 
because this class of elliptic curves provides some advantages with respect to imple- 
mentation. However, these curves can still be embedded in finite fields of a somewhat 
larger size. 

In this paper we show, that the crucial embedding can be hardened by using curves 
over GF(p") with p prime and p > 2 or by using non supersingular curves over GF(2"). 
Then the breaking algorithm sketched above cannot feasibly be applied even if some 
progress in solving discrete logarithms is obtained. Due to the advantages provided 
by the use of fields with characteristic 2, especially for purposes of VLSI design, we 

concentrate in this paper on the arithmetic on non supersingular curves over these 
fields. 

2 Mathematical Preliminaries 

An elliptic curve E ( k )  over a field k is defined to consist of all points (z ,y)  E k x k, 
which are solutions of a socalled Weierstrass equation: 

where al, ..., a6 E k are constants such that E has no singularities, 

together with an additional point 0, the "point at infinity". 
We have to regard these curves in projective instead of affine coordinates. Then 

one has to consider the homogeneous equation: 

(*) Eh : Yzz + alXYZ + ad'Zz = x3 + azXZ 4- a4X 4- as. 

Points on this curve are described as equivalence classes of tripels (X, Y, 2)  fulfilling 
the equation (*), where the equivalence relation (**) is defined: 

(**) ( X ,  Y, 2)  E (Xo, Yo, 20) if€ 3 c E k with X = d o ,  Y = cYo and Z = CZO. 
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Then the point at infinity 0 can be represented by (0, 1, 0), because this represents the 
only solution of the homogenous equation (*) for 2 = 0. 

On elliptic curves an additive group operation can be defined in such a way, that the 
point at infinity becomes the zero element of this group. Using the affine coordinate 
representation of above, the group operation can be calculated as follows: 

Let P := ( 5 1 ,  y l )  and Q := (22, yz) be two points on the curve E ( k )  and P + Q =: 

(z3,y3) be the sum. Then: 
For 5 1  # xz defhe: 

YlSZ - YZXl 

5 2  - 51 
, v : =  Yz - Y1 

5 2  - 2 1  
:= - 

For 5 1  = 52, but y1 + y2 + al tz  + a3 # 0 define: 

35: + 2a251+ a4 - a1y1 

2Yl+ a l t l  + a3 
X := 7 

-5: + a421 + 2a6 - a3yl 
u := 

2Yl+ QlZl+ a3 

Using this definition of X and u the line y = Xz + u passes through P and Q, or is 

Now P + Q =: (x3, y3) is given by: 
a tangent to  E if P = Q. 

Thus the sum P + Q is the third intersection point of the line y = Ax + u with 
E(L)  reflected at the symmetry line of the curve E. 

If 5 1  = 5 2  and y1 + yz + q x z  + a3 = 0, then: 

P + Q = O  

From this addition on the curve a multiplication with a scalar rn E N can be 
defined: 

m E N, r n -  P := P + , . . + P. 

With elliptic curves one usually asserts certain quantities. The fact, that E should 
not have any singularities can be expressed in terms of the discriminant. Let c4, q be: 

C4 := (a: + 4Uz)' - 24(2U4 + t~1.3) 

:= (a: + 4 ~ 2 ) ~  + 36(a: + 4a2)(2al + a103) - 216(~:  + 4 U 6 ) .  
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Then for the discriminant A holds: 

1728 A = C: - C$ . 
For elliptic curves A # 0 is supposed. This ensures that there are no singularities on 
the curve. 

Closely related to the dicriminant is the j-invariant. It is defined by: 

and characterizes curves over algebraic closed fields up to isomorphism. 
Another important tool for analysing elliptic curves is the endomorphism ring over 

the curve, where the curve is considered over the algebraic closure of the underlying 
field: 

End(E) := End(E(E)). 

The multiplication defined above gives a natural embedding of the ring of integers 
Z into End(E). A curve is said to have comples muItiplication, if End(E) is stricly 
larger than Z. For curves over finite fields this is always the case. 

An elliptic curve is called supersingular, iff the endomorphism ring End(E) is non- 
commutative. The commutativity of End(E) is only dependent on the structure of 
the curve over algebraic closures. Therefore it can be related to the j-invariant. For 
curves over fields with characteristic 2 the supersingular curves are exactly those with 
j-invariant = 0 (see [12] for proofs and further details). 

3 Elliptic Curve Cryptosystem 

A general concept to find one way functions is to construct a large finite cyclic group 
(G, 0) together with a generator g E G, such that it is "eaciy" to calculate rn . g := g o 

. . .og for all rn E N but "difficult" to retrieve the rn for some arbitrary element h E G, 
such that r n e g  = h holds. Here "easy" to calculate means solvable in polynomial time, 
where the polynom has a degree in the size of log IGl, and "difficult" to calculate means 
has more than polynomial time complexity, at least for the best known algorithms. 

One realization using this construction is given by the exponentiation in large finite 
fields proposed by Diffie and Hellman. This principle is also used here to construct 
a public key cryptosystem based on elliptic curves using the above defined group 
operation: 
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Choose an elliptic curve E(GF(q) )  over a finite field GF(q)  together with a base 
point P E E(GF(q)) .  This base point should be of high order. Then it is comparatively 
easy to calculate a scalar multiplication mP (:= P + . . . + P rn-times), but difficult 
to calculate rn given P and mP. 

The later problem is called the discrete logarithm problem for elliptic curves. The 
best algorithm for descrete logarithms working for every type of elliptic curves is the 
GiantStepBabyStep algorithm. It has a complexity of O(&), where l p  is the largest 
primefactor of the order of the base point P. This algorithm can be used to calculate 
discrete logarithms in any finite cyclic groups. 

4 The Weil Pairing and the Discrete Logarithm 

To motivate our further reasoning on how the curves should be choosen, a short re- 
view of the reduction algorithm due to A. Menezes, T. Okamoto and S. Vanstone 
is given([9]). The main idea is to reduce the calculation of a discrete logarithm in 
the elliptic curve group E ( k )  to a discrete logarithm problem in a finite field GF by 
embedding the elliptic curve group E ( k )  into the multiplicative group of a finite field 
GF. This embedding is delivered by the Weil pairing: 

which maps the n-torsion group over the algebraic closure of the field 

E [ N ]  := {P E E(X) I N . P = 0) 

into the set of N-th roots of unity (for details see [12]). Using the bilinearity and the 
non-degeneracity of the Weil pairing, such an embedding of an elliptic curve group 
into a finite field can be constructed. 

By choosing the second component of the map in such a way, that the image of 
P under e N  is a primitive root, one gets a multiplication preserving function. Thus 
calculating a discrete logatithm in an elliptic curve group can be reduced to calculating 
a discrete logarithm in a finite fielc containing the N-th roots of unity. 

algorithm( [3]) with a complexity of 
Discrete logarithm in finite fields GF(2") can be calculated by Coppersmith's 
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E(GF(21W)) 

E( GF(22W)) 

Thus the calculation of a discrete logarithm in an elliptic curve group is fastened up 
by this embedding as long as we can find the N-th roots of unity in a finite field of 

low extension degree over the basic field. 
For the special case of the curve 

Giant S t ep Baby S t ep Dim. Log in GF(q4) 

R 1016 ~ ~ ( 2 4 * 1 ~ )  k! lo* 
x 1031 ~ ~ ( 2 4 ' 2 9  M 1031 

E : y 2 * y = x  3 

over fields with characteristic 2 the Weil pairing gives an embedding: 

E(GF(2")) L--, GF(2'")' 

(see [9]). That means that in this case the embedding leads to much faster algorithm 
for the calculation of discrete logarithms. 

In general this is only true, if the roots of unity are in an extension field with low 
degree over the field GF(q) .  To avoid this kind of attack in [9] the following curves 
are proposed: 

El:  y 2 * y = z 3 + z ,  

E2:  y 2 * y = t 3 + z + l .  

For these two curves the Weil pairing deliveres an embedding of E(GF(q)) into 
GF(q4)', i.e. a field with a representation of four times the bitlength. Then the time 
for computing discrete logarithms with the reduction algorithm rises properly. 

Table 1: The complexity of discrete logarithm algorithms in E(GF(q)) by Giantstep- 
BabyStep method compared to the complexity of discrete logarithm in GF(q4) cal- 
culated by Coppersmith's method. 

The figures in Table 1 shows, that the exponent of 4 is not satisfying for implemen- 
tations with higher level of security and with respect to further progress in algorithm 
technique and machine speed. Already for curves over fields of size larger than 2#wl 
it is easier to attack the cryptosystem by embedding and solving discrete logarithm 
than by using the GiantStepBabyStep method. 
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5 The Number of Points on Elliptic Curves 

To avoid the attack described in the previous paragraph, we consider different types 
of curves. The following theorem gives the possible number of points on elliptic curves 
depending on the supersingularity. It is formulated in this way in Waterhouse’ thesis, 
but its content is going back to Deurings work on elliptic function fields in the 19400s 

“41). 

Theorem 1 Let E be an elliptic curve over the finite field GF(q) with q = p” a power 
of the prime p .  Let the number of points on E be: 

In the case of supersingular curves one of the following condition holds: 

(i) n even: P = f 2 f l 1  

(ii) n even and p f 1 

(iii) n odd and p = 2 or 3: p = k,/jGjl 

(iv) either n odd or n even and p f 1 

(mod 3): P = *fi, 

(mod 4): p = 0. 

In the case of non supersingular curves, p fulf;lls the following properties: 

0 1/31 5 2& (Hasse-bound) and 

0 gcd(P,p) = 1 * 

The inverse statement is also valid in the sense that all the cases above occur. 

(For proofs see [14] and [4]). For illustration of the theorem we give an example, which 
will be used later on: 

Example 2 Over the finite field GF(16) the possible sizes of elliptic curves are 

dE(GF(16)) = 16 + 1 - P E {9,13,17,21,25} 

for supersingular curves, and 

flE(GF(16)) = 1 6 + l - P €  {10,12,14,16,18,20,22,24} 

for non supersingular curves. 
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Note that in general, there are at most 5 supersingular elliptic curves over a finite 
field GF(2") and 2 x 2Lf1 non-supeningular ones. As shown in [9] all elliptic curves 
over GF(2") with j ( E )  = 0, i.e. supersingular curves, allow an embedding in a finite 
field of at most four times the bitlength. For the reasons explained above we look for 
curves which can not be embedded in extension fields of such small degree. 

One possibility is to change the characteristic of the underlying field. For example 
in fields with characteristic 3 the supersingular curves with q + 1 f f i  points require 
fields with six times the bitlength for such embeddings. But due to faster and smaller 
implementations of arithmetic in fields of characteristic 2 these are of more interest. 
The non-supersingular curves give suitable candidates. 

6 Construction of Suitable Non Supersingular 
Elliptic Curves 

Over finite fields with characteristic 2 the non supersingular curves can be represented 
as: 

8 : y2 + sy = s3 + a2Z2 + as, 

where the j-invariant j ( E )  = &. As shown in the previous paragraph we find curves 
with IE(GF(2")) = 2" + 1 - p for any given p with p odd and IpI 5 2& by choosing 
the coefficients a2 and a6 in GF(2") and a6 # 0. 

An important point for the security of such a crypto system is to guarantee that 
there is a very large prime factor pE(GF(2")) in the number of points calculated. Oth- 
erwise the GiantStepBabyStep algorithm can be applied succesfully to the subgroups. 
Thus the cyclic subgroup of order pE(GF(2n)) is the cryptographic essential part of the 
elliptic curve group. 

To embed this cyclic subgroup into the multiplicative group of some extension field 
of GF(2"), let say GF((2")'), the following condition is necessary: 

We are interested in curves where this divisibility property does not hold at least up 
to some extension degree k. This can be checked by calculating the following gcdos: 
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or respectively: 
gcd(/fE(GF(2"),2"' - 1 )  ( i  = 1 , .  . . , k). 

How can we construct examples of curvea fulfilling the divisibility property for k 
large enough and at the same time having a large prime factor in the group order. 
The algorithms to count the number of points on curves have rather high complexity. 
Therefore it is di5cult to find curvea for a given P in very large fields in general. If 
the number of points of a fixed curve over a finite field is known,then the number of 
points over any extension of this field can be calculated easily. 

One proceeds as follows: We start with aome small extension field of GF(2),  say 
GF(q).  Here it is easy to determine curves for all the possible number of points: 

W ( G F ( q ) )  = q + 1 - Po Po odd and IPI I 2 f i -  

Using the weil conjecture (see [12]) we find the number of points of this curve for any 
extension field of GF(q): 

8E(GF(qk)) = qk + 1 - P k i  

where p k  = ak+bk and a, b are the complex solutions of 1-PoT+qT2 = ( l -aT)( l -bT) .  
Obviously E(GF(q)) is a subgroup of E(GF(qk)).  Therefore #E(GF(qk))  has a 

small factor, namely jE(GF(q)).  It can be checked, whether the remaining factor 

is prime. For 1 E N with 1 A k, E(GF(q')) 
sufficient to consider only extensions of prime degree over GF(q).  

E(GF(qk))  is a subgroup. Thus it is 

By this method it is possible to find curves over GF(2") fulfilling the divisibility 
property for relatively large k with a large prime factor in the group order. 

For illustration a special example suited for public key cryptosystems is construct- 
ed. In Example 2 we considered the number of elements on curves over GF(16). The 
smallest non-supersingular elliptic curve group over this fidd haa order 10. Comput- 
er search gives all curve with 10 elements over GF(16). Representing the field as 

GF(2)[z]/(z4 + z + 1 )  and the curve as y' + t y  = z3 + a& + ag, the coe5cient a2 

can be choosen as a polynomial of degree 3 and a6 as one of the polynomials z2 + z 

or z2 + z + 1 .  
Enlarging GF(16) by a finite field extension of degree 47 we get a group of order 

2 * 5 * 39231885846166754773973683894299771512806466793403150729, 
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where the last factor is a probable prime with 56 digits. These curves fulfills the 
divisibility property for k = 2 . .  ,100. The factor 10 is due to the subgroup E(GF(16)). 

7 Implementation 

In this chapter some ideas are given how to implement the group operation on non- 
supersingular curves over fields of characteristic 2. In comparison to supersingular 
curves the addition here is slightly harder to compute, because doubling of a point is 
more complicated to calculate. 

The complexity of the basic arithmetic operations in finite fields differs consider- 
ably. The additions are negligable in comparison to multiplications. The inversions 
are by fare the most time consuming operations. Therefore the curve is represented in 
projective coordinates. Then the inversions can be eliminated. Only at the end of each 
calculation two inversions are needed to get a unique representation (see [2],[8],[11]). 

The homogeneous equation for non-supersingular curves over fields with charac- 
teristic 2 is: 

Y'Z + X Y Z  = X 3  + a2X2Z + %Z3 
with points P = (X, Y, 2). 

From a base point P = (2, y, l ) ,  we calculate m*P with a double and add algorithm. 
Starting with the highest bit of rn, we need only doublings of a point and additions 
of two different points of the form (z, y, 1) + (z,, yi, zi) ,  i.e. we can assume that one 
of the points in the sums is given in afEne coordinates. Then the following addition 
formulas are obtained: 

Given PI = ( x I , Y I , ~ )  and P2 = ( z z , Y ~ , . z z )  2 (2, Ell ) ,  
and let A := ( ~ 2 ~ 1  + 1 2 )  and B := (z2yI+ yz), then 

z2A2x3 

z2A3Y3 = z2A2(Y1z2 + xlY2) + (A + B)(z2A2z3), 

= z2B2 + z2AB + A2(xls2 + z2 + ~ 2 . ~ 2 )  

thus : 

PI + p2 = (z2A3X3, z2A3Y3, z2A3) 2 (539Y391). 

For the doublinG of a point P = (3, y, z ) ,  defining A = (yz + x2), we have: 
X2Z2Zd = A2 + xzA + agx2z2 
x3z3yd = X'Z + (A + xz)(x2z2x3) 

thus 2P = ((X3z3)Xd, (Z3Z3)Yd, (X3Z3)) 2 (Zd, Yd, 1). 
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The addition of above can be calculated with 12 multiplications and 1 squaring 
and the doubling of a point with 7 multiplications and 2 squarings. 

Implementing the elliptic curve group operation in a VLSI design, the squarings 
can be calculated parallel with the multiplications, if the polynomial bases multiplier 
unit, invented by D. Gollman ([l]), is used. By using three multiplier units, these 
multiplications can be executed parallel. Thus the computing time is reduced to 3 
repectively 4 multiplication steps for doubling and addition. Assuming that the factor 
na has a bit representation with half zeros and half ones, this means, that the average 
computation time would be 5 multiplication steps per bit. Additionaly there are 
around 4 * log n find multiplications for two inversions. 

8 Conclusion 

For public key cryptosystems based on problems like discrete logarithms, large groups 
are needed. The security depends on the structure of these groups. 

Elliptic curves give the possibility to choose between a lot of different groups with 
different orders, especially if non supersingular curves are considered. This variety is 
the main advantage in comparison to the use of multiplicative groups of finite fields, 
where we have only one candidate for every field. 

For algorithms, as the different index calculus methods, a large data base is calcu- 
lated once for every candidate of group and out of this database single logarithms can 

be derived quickly. Also in this respect elliptic curves are a powerful1 tool because of 

the richness of the many occuring cases. 
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