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Abstract 

Elliptic curves play an important r6le in many areas of modern cryptology such as integer 

factorization and primality proving. Moreover, they can be used in cryptosystems based on 

discrete logarithms for building one-way permutations. For the latter purpose, it is required to 

have cyclic elliptic curves over finite fields. The aim of this note is to explain how to construct 

such curves over a finite field of large prime cardinality, using the ECPP primality proving test 

of Atkin and Morain. 

1 Introduction 

Elliptic curves prove to be a powerful tool in modern cryptology. Following the original work of H. 

W. Lenstra, Jr. [18] concerning integer factorization, many researchers have used this new idea to 

work out primality proving algorithms [8, 14, 2, 4, 221 as well as cryptosystems [21, 161 generalizing 

those of [12, 1, 91. Recent work on these topics can be found in [20, 191. 

More recently, Kaliski [15] has used elliptic curves in the design of one-way permutations. For 

this, the author needs elliptic curves which are cyclic and the easiest solution is to build elliptic curves 

with squarefree order. The aim of this paper is to show how ,,o construct such elliptic curves using 

some byproducts of the Elliptic Curve Primality Proving (ECPP) algorithm of Atkin and Morain 

141. 
The problem of building elliptic curves of given order in finite fields of small characteristic is dealt 

with in (51 and our work can be seen as solving the same problem in large characteristic. 

*On leave from the French Department of Defense, DClCgation GCnCrale pour I’Armement. 

D.W. Davies (Ed.): Advances in Cryptology - EUROCRYPT ’91, LNCS 547, pp. 328-336, 1991. 
0 Springer-Verlag Berlin Heidelberg 1991 



329 

The paper is organized as follows. Section 2 contains a brief summary of the properties of elliptic 

curves modulo some prime p .  Section 3 gives the heart of ECPP. Section 4 describes a theoretical 

means of building curves of given order and it is shown that the running time of this procedure would 

be exponential in l o g p .  Section 5 explains how ECPP can be used to find cyclic curves in a faster 

way, the running time of the process being that of ECPP that is conjectured to be polynomial with 

complexity O( (log p)'+'). 

2 Elliptic curves modulo p 

2.1 Group law 

We briefly describe some properties of elliptic curves. For more information, see [25]. 

An elliptic curve E over a field Z / p Z  with p a prime greater than 3 can be described as a pair 

( a , b )  of elements of Z / p Z  such that A ( E )  = -16(4a3 + 27b2) is invertible in Z / p Z .  This quantity is 

called the discriminant of E. The set of points of E ,  noted E ( Z / p Z )  is the set of triples (z : y : z )  

of elements of Z / p Z  that are solution of 

y2z G z3 + a m 2  + bz3. 

These triples can be interpreted as the coordinates of points in the projective plane of Z / p Z .  There 

is a well known law on E ( Z / p Z ) .  This is called the tangent-and-chord method and the law is noted 

additively. The neutral element is just the point at infinity: OE = (0 : 1 : 0). 

T 

Figure 1: An elliptic curve over R. 

In order to add two points MI = (z1 : y1 : 1) and Mz = (x2 : yz : 1) on E ,  resulting in 

M3 = (z3 : y3 : z3) ,  the equations are 

23 = A* - 2 1  -22, 

y3 = A(z1 - 1 3 )  - Y 1 ,  
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where 

We define also the invariant of the curve E ,  noted j ( E ) :  

We then have the following easy result. 

Proposition 1 All elements of Z / p Z  are invariant of an elliptic curue. 

Proof: Let j o  be an element of Z / p Z .  We look for an elliptic curve E = (a ,  b )  such that j ( E )  = j o .  

If j o  = 0, take a = 0, and any nonzero b. If j ,  = 1728, take any nonzero a and b = 0. In the general 

case, let k = &/(I728 - j,) and choose a = 3k, b = 2 k .  

Among the interesting and deep properties of these objects, we note the following. (We use the 

notation # A  to designate the cardinality of a set d.) 

Theorem 1 (Hasse) Let m be the cardinality of an elliptic curve E ( Z / p Z ) ,  then 

We use the notations of [18] for what follows and we refer the reader to it for more information. 

Theorem 2 (Deuring [ll]) Let t be a n y  integer such that It1 5 2 4 .  Letting K ( d )  denote the 

Kronecker class number of d ,  there ezists K(t’ - 4p) elliptic curves over Z l p Z  with number of points 

m = p + 1 - t ,  up to isomorphisms. 

Concerning the group structure of E ( Z / p Z ) ,  we have: 

Theorem 3 (Camels [7]) The group E ( Z / p Z )  is either cyclic or the product of two cyclic groups 

or order ml and mz that satisfy 

mllmz, mllgcd(m,p- 11, 

where m = # E ( Z / p Z ) .  

Note that if m is squarefree, then surely E ( Z / p Z )  is cyclic. 
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2.2 Twists 

We define the twisted curve E’ of E as the curve 

E’ : y z z  = x3 + acZxtZ + bc3t3, 

where c is any non-quadratic residue modulo p .  The main point in this is that if the cardinality of E 

is m = p + 1 - t ,  then # E ‘ ( Z / p Z )  = p + 1 + t .  Note that E and its twist have the same invariant j,. 

2.3 Computing # E ( Z / p Z )  

From a theoretical point of view, there exists an algorithm of Schoof’s that solves the problem 

in time polynomial in logp, see [23]. However, it appears difficult to implement, even after some 

improvements of Atkin [3] and Elkies [13]. In practice, it is not feasible as soon as p has more than 

65 decimal digits. 

3 Overview of ECPP 

The following results are at  the heart of the Elliptic Curve Primality Proving algorithm in [4]. The 

first one can be found as [lo, Prop. (5.29)] and the second one is a summary of the theory involved 

in [4]. 

Theorem 4 Let p be a prime number and D any positive integer. Then 4p = xz+ Dyz has a solution 

in integers (x,y) if and only i f  -D is a quadratic residue modulo p and the polynomial H D ( X )  has 

a root modulo p ,  where H D ( X )  is a monic polynomial with integer coeficients depending on D only. 

Theorem 5 Let p be a prime that can be written as 4 p  = x 2  + Dy2 for a given D .  Then there ezists 

an elliptic curve E defined over Z l p Z  such that 4 # ( E ( Z / p Z ) )  = ( x  - 2)2 + D y 2 .  Moreover, this 

curve can be computed explicitly using any root of the polynomial H D ( X )  modulo p .  

The algorithm then proceeds as in the classical DOWNRUN process of the well known primality 

proving algorithms based on the converse of Fermat’s Theorem [6, 221. 

4 Building curves of given order 

Let p be a given prime number greater than 3. Suppose we want to build an elliptic curve of order 

m, where rn satisfies (1). We will use the theory of ECPP to achieve this. The algorithm runs as 

follows: 
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procedure BuildCurveGivd(p) 

1. compute t = p + 1 - m and D = 4p - t Z ;  

2. compute HD(X), the minimal polynomial of j ( D )  where 

with q = exp(2irz) (see [4]); 

3. find a root j o  of H,-J(X) = 0 mod p; 

4. build the curve E of invariant j o  and cardinality m. 

5. end. 

The validity of this method is easily seen once we remark that 4p = t Z +  D and that the Theorems 

4 and 5 of the preceding section apply. 

Note also that there are a lot of technical details involved in such computations and the interested 

reader should consult [4, 221. 

Example. Suppose that p = 101. By Hasse's theorem, a good m satisfies: 82 5 rn 5 122. Let us 

try to build a curve of cardinality m = 85. We get t = 17 and D = 5 x 23. Using the algorithms 

described in [4], we compute 

Hi,,(X) = X2 + 427864611225600X + 130231327260672000. 
This polynomial has two roots modulo 101, namely {67,96}. We choose jo = 67 and get 

k = 98,a = 3k = 92,6= 2k = 95. 

Next, we select the point (1 : 17 : 1) on the curve 

E : y2z = x3 + azz' + bz3 mod p. 

But we find that 

85P = (24 : 88 : 1) 

and thus the cardinality of E(Z/ lOlZ)  is not m. We then consider the twisted curve E' obtained by 

replacing a (resp. 6) by a 2  (resp. 62) with c = 2. On 

E' : yZr = x3 + 65x2' + 53z3 
we take P' = (7 : 12 : 1) and find that 

85P' = Op. 
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repeat 

choose E (i.e. a and b )  at random and compute rn = # E ( Z / p Z )  using Schoof's algorithm 

until m is squarefree. 

From a theoretical point of view, this is quite nice, since the proportion of squarefree numbers is 

6/r2 x 0.608 and that Schoof's algorithm runs in polynomial time. However, this is not a practical 

algorithm. 

Let us turn to a more subtle way. We simply use ECPP and just modify it in such a way that we 

select a squarefree number of points in the process. The idea is that we will find a good squarefree 

m by looking at a list of D with small class numbers for which 4p = x2 + Dy2. Once we find a good 

m, we can build the curve by using a process similar to that of BuildCurveGivenM, but this time, 

the degree of HD is small. The algorithm is then 1 

It is now easy to verify that P' is a point of maximal order on E'. 

A rough analysis. We can now state the following result. 

Proposition 4.1 The running time of BuildCurveGivenM is exponential in logp. 

Proof: By Siegel's Theorem [24], we know that h(-D) is O(D'/'+'). Hence, we may want to find D 

small. If we brutally apply the preceding algorithm, we require that m be as close of (Js; f 1)' as 

possible. This implies that D is O(&, yielding h(-D) = O(p'/4fe). 

5 Finding cyclic curves 

Let p be as usual a given (large) prime. Suppose now that we do not insist on having a curve with 

given number of points, but simply that the curve be cyclic. This is the case in [15]. The easiest way 

to do this is to find a curve with squarefree order. It then follows from Theorem 3 that the resulting 

curve is cyclic. Note that we can relax this condition by imposing that any prime factor dividing m 

with a multiplicity greater than 1 does not divide p - 1: 
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procedure Modif iedECPP(p) 

1.  repea t  

1. find D such that 4p = x2 + Dy'; compute m = ((x - 2)' + Dy2)/4 

until m is squarefree and m is completely factored, maybe with a large prime cofactor. 

2. Build E as in BuildCurveGivenM. It is cyclic. 

3. end. 

To examplify this idea, take the smallest 100-digit prime number, namely 

p = low + 289. 
Using ECPP, we find that 

4p = A' + 1435B2 

with 

A = 21227399023578515608454660935335447183037478036989, 

B = 1572719859536665825156799896734976642256008720081. 

We get 

m = p +  1 - A  = 7 x 73 x p l  

where p1 is a probable prime. In order to prove the primality of p, we have to find a curve E of 
cardinality m. The degree of H1435(X) is equal to 4 and it is easy to compute this polynomial. We 
find that the right curve is E : y2z = x3 + axz2 + bz3 with 

a = 89332580780315577971243129589054030988344117387~751864455044211315789505524515985449257586521766. 

b = 186139045160321522179563353341738236059160835692651~53~7~5~9~5~25870~737628160~7~4~461 

and E is cyclic with generator P = (z : y : 1)  where 

I = 9 M 1 7 3 6 3 2 6 3 5 0 9 2 5 3 2 4 4 2 ~ ~ ~ ~ 2 ~ 1 7 4 2 8 9 . L M 1 4 ~ 1 9 4 9 6 8 1 8 4 ~ 2 M 1 ~ ~ 2 ~ 7 ~ 2 8 1 ~ ~ 2 1 1 2 6 8 4 2 2 3 6 0 .  

y = ~355101745~280537324569786186"1110023680670612827450398140872860725704901655610280810. 

We end this by the following results. 

Conjecture 5.1 Procedure Modif iedECPP has running time 0((10gp)~+'). 

Proof: It is easy to see that the complexity of Modif iedECPP is at  most that of ECPP, which can be 

heuristically estimated to O((logp)5+') (see [17]). 

Acknowledgments. The author wants to thank A. Miyaji for some valuable remarks on the pre- 

liminary version of this paper. 
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