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Abstract 
We give a characterization for the intractability of hyperelliptic discrete loga- 

rithm problem from a viewpoint of computational complexity theory. It is shown 
that the language of which complexity is equivalent to that of the hyperelliptic dis- 
crete logarithm problem is in NP n co-dM , and that especially for elliptic curves, 
the corresponding language is in NP n co-h/P. It should be noted here that the 
language of which complexity is equivalent to that of the discrete logarithm problem 
defined over the multiplicative group of a finite field is also characterized as in h/P 
n CO-NP. 

1 Introduction 

In the early times when Diffie and Hellman [DH] proposed a public key-distribution system 

based on the discrete logarithm problem over the multiplicative group of a finite field, 
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the intractability of the problem was not exactly characterized. However, Brassard [Br] 
soon pointed out that the language of which complexity is equivalent to that of the 

discrete logarithm problem is in NPnco-N?. Since then, the discrete logarithm problem 
associated with a finite group has been well studied, but the problem is not known to be 

solved in polynomial time. 

In 1985, Miller [Mil] showed that there is an alternative for the finite group over which 

the discrete logarithm problem can be defined, the abelian group of points on an elliptic 

curve over a finite field. The same idea was also proposed by Koblitz [Kol] independently 

of Miller’s work, and the notion of the elliptic curve discrete logarithm problem was 

clarified by Koblitz and Kaliski [Kal, Ka2, Ko2]. Informally, the elliptic curve discrete 

logarithm problem is, given two points X and B on an elliptic curve E over a finite field, 

to  find an integer rn such that X = mB. In 1989, Koblitz [Ko3] extended the elliptic 
curve discrete logarithm problem to cover hyperelliptic curves, which is the hyperelliptic 

discrete logarithm problem we discuss in this paper. 

Among those works of forerunners, Miller, Kaliski, and Koblitz, what we should rec- 

ognize is that they have a common observation on the intractability of the hyperelliptic 

discrete logarithm problem (including the elliptic curve discrete logarithm problem), i.e., 

the hyperelliptic discrete logarithm problem seems to be more difficult than the discrete 
logarithm problem defined over the multiplicative group of a finite field. It is remark- 
able that Menezes, Okamoto, and Vanstone [MOV] announced that if the elliptic curve 

is supersingular, the elliptic curve discrete logarithm problem is probabilistic polynomial 

time reducible to the discrete logarithm problem defined over the multiplicative group of 

the finite field. Although the reduction is restricted to specific curves, this is the first re- 

sult concerning the relationship between two distinct kind of discrete logarithm problems. 

However, in general, the intractability of the hyperelliptic discrete logarithm problem is 

not yet exactly characterized. So we challenge to  this work just as Brassard did for the 

discrete logarithm problem. 
In this paper, it is shown that the language of which complexity is equivalent to that 

of the hyperelliptic discrete logarithm problem is in NPnco-AM , and that especially 

for elliptic curves, the corresponding language is in NP n co-”P, where AM denotes 

the set of languages that have constant round Arthur-Merlin games [Ba]. This is the first 

characterization for the intractability of hyperelliptic discrete logarithm problem from a 

viewpoint of structural complexity theory. Note that NP is contained in AM , but the 

converse inclusion is not known to hold. It should also be noted here that the language 
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of which complexity is equivalent to that of the discrete logarithm problem defined over 

the multiplicative group of a finite field is characterized as in "P n co-NP. 
To our best knowledge, unlike other languages known to be in NP fl co-AM (such 

as graph isomorphism [GMW2, S C ~ ] ) ,  the hyperelliptic discrete logarithm problem is the 

first candidate of number-theoretic problems that are characterized as in "P n co-AM 

but not known to be in NP n co-N'P. 

2 Preliminaries 

2.1 The Mathematical Background 

We start with the definitions of notions and notations related to hyperelliptic curves 

[Ca, Ko31. 
Let K be an arbitrary field, and x denote its algebraic closure. A hyperelliptic curve 

C of genus g over K is the set of solutions ( u , v )  E K2 to an equation of the form 

d + h(u)v = f(u), where h(u) is a polynomial of degree at most g and f(u) is a monic 
polynomial of degree 2g + 1. We require that the curve has no singular points. 

Let L be a field containing K. By an L-point P E C, we mean either the symbol 

00 or else a finite point, that is a solution u = z E L, v = y E L of the equation 

v' + h(u)u = f (u ) .  Given a finite point P = P,," E C, we define its opposite I; to be 

P = ( z ,  -y  - h ( z ) ) .  
To introduce the jacobian of the curve C, we define in advance a divisor on C. A 

divisor is a finite formal sum of X-points D = Emi&. The degree of D is defined to be 

the integer C mi, and denoted by deg D. The divisors form an additive group D, and the 

divisors of degree 0 form a subgroup Do C D. Given D E D, we set Do = D - (deg D)m 
so that Do E Do. Given two divisors D1 = Ern& and D2 = En& in Do, we define 

g.c.d.(D1, D2) E Do to be Cmin(rn,,n,)P, - (Crnin(m,,n,))oo. 

For a polynomial g(u , ' v )  with coefficients in Ti;, the discrete valuation for q(u,u)  at a 

point P E C can be defined, which is called the order and denoted by ordp q. The divisor 

C(ordp p ) P  is denoted by (q ) ,  where the summation is taken over all points P on the 

curve (including co). It can be shown that (p) E Do. For polynomials p and q, a divisor 

of the form (p) - (4) is called principal, and such divisors form a subgroup P of Do. The 

jacobian J of the curve G is the quotient group Do/P. If D1, Dz E Do, we write D1 - Dz 
if D1 - Da E P, i.e., if D1 and Da are equal when considered as elements of J. We let 

J(C; L) denote the set of L-points of J associated with the curve C. 
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A divisor D = C m;Pmi,= - (C mi)m can be uniquely respresented M the g.c.d. of 
two principal divisors of polynomials of the form a(.) and b(u) - u,  that is, g.c.d.((a(u)), 

(6(u) - u)). We write D = div(u, 6) in short to denote such D. 
Let K = F,, a finite field of q elements, and let F,= be its extension. We regard 

them MI fixed. Given a divisor D, the unique representation div(u, b) can be obtained in 

O(n*) bits operations. Furthermore, given D E J(C;F,=), the multiples of the divisor, 

denoted by mD, can be computed efficiently by the repeated doubling method, which 
takes U(n3)  bits operation. Informally, the hyperelliptic discrete logarithm problem is, 
given two divisors X and B in J associated with a hyperelliptic curve C over a finite field, 

to find an integer rn such that X - rnB. 

2.2 HEDL and the Related Languages 

Throughout this paper, all strings will be over the finite alphabet C = (0 , l ) .  We use 

18) to represent the length of string 2. We let C’ designate the set of all possible strings 

including zero-length string A.  A language is a set of strings. A class is a set of languages, 

For a language L ,  we use z to denote I? \ L. For a class C, we use co-C to denote its class 

of complements, i.e. the set of any L such that is in C. For any finite set A, we let # A  
designate its cardinality. 

We now define HEDL, the hyperelliptic discrete logarithm problem on J(C; Fp).  

Definition 1 (HEDL) : 
HEDL(q,n,C,X,B) is a computing problem, where q is prime power, n is a positive 
integer, C is a hyperelliptic curve (with no singular points) defined over F,, and X 
and B are divisors in J(C;F,r). If there exists an integer m such that X - mB and 

0 5 m < nJ(C; FPm), then the answer is the smallest m, and if such rn does not exist, the 

answer is a special string “1”. 

Given q,n, and C, we can check in probabilistic polynomial time that the curve C has a 

singular point. Note that, by the definition, HEDL is the elliptic curve discrete logarithm 

problem when the genus of the curve is 1. 

Two languages L. and Ll are also introduced to  explore the intractability of this 

problem. The language L, is the set of instances of solvable hyperelliptic discrete logarithm 

problem, of which membership problem is to answer yes if the input causes HEDL to 

return a non-negative integer and no otherwise. The language Lf is the set of instances of 

location problem associated with hyperelliptic discrete logarithms, of which membership 
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problem is to answer yes if the input causes HEDL to return an integer 2 k and no 

otherwise. 

Definition 2 (L,): 
L, = {< q,n, C , X ,  B > I (3m 2 O)[HEDL(q,n, C , X ,  B) = m]}. 

Definition 3 ( LL)  : 

Li = (< q, n, C, X, B,  k > I (k E 220)  A (HEDL(q, n, C, X, B) 2 k)}. 

Obviously, L, is deterministic polynomial time Turing reducible to Lf. Furthermore, it is 

easy to see that the complexity of the language Ll is equivalent to the complexity of the 

problem HEDL. 

2.3 The Order of Jacobian 

It is important to note that J(C;F,n) is not necessarily a cyclic group but a (finite) 
abelian group. We also define the problem OrdJ and the language L N J  to investigate the 

complexity of computing the exact order of J( C; Fp).  

Definition 4 (OrdJ) : 

OrdJ(q, n, C) is a counting problem, where q is prime power, n is a positive integer, C is 

a hyperelliptic curve (with no singular points) defined over F,. If the input is valid, the 
answer is the exact order of J(C; FPs), and if invalid, the answer is “I”. 

Definition 5 ( L N J )  : 
LNJ = { < N, q, n, C >I (N is a positive integer) 

A (N =OrdJ(q,n, C)) }. 

Clearly, the language LNJ is in P if there exists a deterministic polynomial time algorithm 

fo computing OrdJ. Pila [20] showed the following theorem as an extension of Schoof’s 

result [Sch]. 

Theorem A (Pila [Pi]): Let A be an abelian variety over a finite field F,. Then one 

can compute the chaxacteristic polynomial of the Frobenius endomorphism of A in time 

O((1og q)*)  where A and the implied constant depend only on the form of the equations 

defining A. 

Theorem A implies that we can compute the order of J(C; F,”) in polynomial time. Thus, 
we have the following theorem, which will later become important. 

Theorem B: The language LNJ is in ‘P. 
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3 Main Results 

Recall that the complexity of the language Ll,  the set of instances of location problem 

associated with HEDL, is equivalent to that of HEDL. This implies that Lf  completely 

characterizes the complexity of HEDL. We show in this section the following results. 

Theorem 1 : Lf is in NP fl co-AM . 
Theorem 2 : For any elliptic curve E, let Lt be denoted by Lf. Then, Lf is in "P n 
co-NP. 

Whereas other complexity-theoretic properties of HEDL and L, are investigated in the 

appendix, where we show the folloyings as well as some immediate corollaries. 

Theorem A l :  The problem HEDL is random self-reducible in the sense of the definition 

in [TW]. 

Theorem A2: There exists a perfect zero-knowledge interactive proof system for the 

language L,. 
Theorem A3: There exists a perfect zero-knowledge interactive proof system for the 

language L,. 
- 

We now restrict ourselves to the discussion on the complexity of Lf .  In 1988, Gol- 
dreich and Kushilevitz [GK] showed a perfect zero-knowledge interactive proof for the 

language of which complexity is equivalent to that of the discrete logarithm problem over 

a multiplicative group of a finite field, and they mentioned that their protocol would be 

extended to cover the general discrete logarithm problem defined over a finite abelian 

group. However, they assume in [GK] that the structure of finite abelian group is known, 

whereas we do not. To investigate the complexity of HEDL without such assumption, 

we take into account the complexity of determining the structure of finite abelian group. 
Thus, the context in this paper is crucially different from that in [GK]. 

Proof of Theorem 1 : 

Ll is in  NP: It is easily seen that L f  is in N P  if N =OrdJ(q,n, G) is given. In fact, 

a nondeterministic polynomial time Turing machine can guess m = HEDL(q, n, C, X, B )  
among positive integers less than N, and then check in a straightforward manner that 

m 2 k. Here, by Theorem B, LNJ is in P .  Thus, Lf  is in NP. 
Lf is i n  co-AM : 

- 
We show that is in AM . Ll is expressed as follows: 

- 
Ll = (21 z does not satisfy at least one of the specifications for q, n, C, X, 8, and k) 

U {< q , n ,  C, X ,  B, k > I (3m 2 O)[HEDL(q,n, C ,  X, B )  = m < k]} UL,., 



where 

L,. = {< q , n , C , X , B  > I HEDL(q,n, C , X ,  B) = 

that is, the set of instances of unsolvable hyperelliptic discrete logarithm problem. 
L”}, 

For El,  the first two sets are both in NP. Thus, it suffices to  show that there exists 

a constant round interactive proof system for the language L,,, because Goldwasser and 

Sipser showed in [GS] that any language having a constant round interactive proof system 
can be simulated by a constant round Arthur-Merlin game. 

The interactive protocol over P and V on input < q, n, C, X, B > consists of three 

parts, where we use P and V to designate the all-powerful prover and the probabilistic 
polynomial time bounded verifier, respectively. Informally saying, in Part 1, P and V 

share a set of points on J(C; Fq=) that are seemingly the generators of J(C; Fqm). Note 

that J(C; Fp) is generated by at most 29 cyclic groups, where g is the genus of curve C 
(the proof for the case g = 1 will be found in [Sill). In Part 2, P shows V that the set is 

actually the set of generators of J(C;Fqn). This part is inspired by the constant round 

interactive protocol for graph non-isomorphism [GMWl]. In Part 3, P shows V that there 
exists no rn such that X - mB. 

The protocol works as follows: 

Input to (P,V) : < q,n, C, X ,  B > 
Part  1: 

V: does nothing. 

P: chooses G = (€1, . . . , f f ) ,  the tuple of generators of abelian decomposition of 

J(C; Fp) .  That is, each (i E G (1 5 a 5 1)  has the order of prime power, namely 
ord(&)=py, and G generates J(C; Fq=) itself J(C; Fq*) 2 (&) @ - .  - @ (&), where 
@ denotes the direct sum, and N = I I 6 , p y  = OrdJ(q, n, C). 

P-V: G, { p i } ,  { n i ) ,  and NP-proofs [Pr] for the fact that pi is prime (1 5 i 5 1). 
V: continues if ord(&) = p y  and N = I I ~ . - , p ~  with pi prime (1 5 i 5 L) else rejects 

and halts. 

P a r t  2: 

V: randomly picks c E Sf and T ;  E Zord(t,(i.) \ {0}, and computes T; - ~ i & ( i )  (1 5 i 5 
L), where Sl denotes the symmetric group of degree 1. 

V+P: Ti, ... , Tf 
P: computes T E St such that Ti - Fi&(il ( 1  I i I 1). 

P-v: r 

V: continues if T = c else rejects and halts. 
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Part 3: 
P: computes (z1,  . . . , zf) and (b l ,  . . . , bf )  such that 

X = [(:I, . . . , (71 and B = [(k', . . . , (?I. 
P+V: (q, . . .  , zf) and (bl,  . . .  , bt).  

V: accepts if 

X = [(:I, . . . , (;'I, B = [ ( F ,  . . . , (?I ,  
and there exists no m satisfying the linear equations 

(Vj)[zj = bjm mod ord((j)], 

else rejects and halts. (End of Protocol) 

Note that in the last step, V checks that 7(3m)[X - mB].  Because 

7(3m)[X - mB] e 7(3m)[(Vj)[(? = ((:)-]] 
@ -(3m)[(vj)[zj E bjm mod ord((j)]]. 

This protocol constitutes a constant round interactive proof system for L,,. Thus, it is 

immediate from the result in [GS] that L,, is in AM . 0 

It is clearly seen that determining the structure of J(C; Fqm) is in AM , hence L,, is in 

AM . In other words, if the structure is determined in nondeterministic polynomial time, 

then L,, is in n/P,  and consequently Lf is in N P  n co-NP. To prove Theorem 5 ,  we show 

that for an elliptic curve E, the structure of J(E; Fqn) is determined in nondeterministic 

polynomial time. The idea is based on Miller's algorithm [Mi21 to compute the value of 

Weil em-pairing, which also plays an important role in [MOV] to prove the reduction from 

the (supersingular) elliptic curve discrete logarithm problem to the discrete logarithm 

problem defined over the multiplicative group over the finite filed. 

Proof of Theorem 2: 

It suffices to show that for any elliptic curve E, LE is in NP, where Lf, is a subset of 

L,, for the case of genus g = 1. We use the notion of Weil em-pairing defined as follows 

(see also [Sil, p.951). 

Weil em-pairing [Mi2]: 
negative integer m, there is a unique function e, such that 

Given an elliptic curve E and a non- 

em : E[m] x E[m] -+ F q n ,  
where 

E[m] = (S E J(E;Fq=) I m # 0, mS = 0). 
Here, we use 0 to denote the identity element in J(E; Fqn). 
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Weil em-pairing has the following properties: 

1. em(S, T) is an m-th root of unity for all S, T E E[m] .  
2. Identity: e,(S, S) = 1 for all S E E[m]. 
3. Skew-symmetry: em(S, T) = e,(T, S)-’ for all S, T E E[m]. 
4. Linearity: em(S + U, T) = e,(S, T)em(U, T) for all S, T, U E E[m] 
5. Non-degeneracy: If e,(S, T) = 1 for all S E E[m], then T = 0. 

To determine the structure of J(E; F,,n), the following facts are essential: 

1. J ( E ;  Fa”) is always either cyclic, or the direct sum of two cyclic groups of orders a 

and /3 where alP. 

2. Let (1 and (1  be points on J(E; Fqn) of orders a and /3 respectively. If alp, a/3 = N = 

OrdJ(q,n,E), and ep(&,&)  # 1, then J(E;Fqn) is the direct sum of two cyclic 

groups ((1) and ((2). In fact, by the properties 1 and 4 of Weil pairing, if (1 = t ( 3  

for some t E ZN, ea (G,h )  = eg(&,G) = ep(&,&)’  = 1’ = 1. 

3. Miller [Mi21 showed an algorithm that on input an elliptic curve E over Fqn, a natural 

number m, and two points P,Q E E[m], outputs the value e , (P ,Q) ,  which runs 
in expected polynomial (in log q )  time. (This is now converted into a deterministic 

polynomial time algorithm by V. S. Miller.) To compute em(P,Q), the algorithm 

first picks additional points T, U E J(E; F,-) at random repeatedly until T and U 
satisfy the specific conditions [Ka2, Mi21. The conditions for the choice depends only 

on inputs m, P, Q, and they can be checked in deterministic polynomial time. Note 

that such points T, U always exist for any m, P, Q. Once T and U are appropriately 

fixed, the subsequent steps are executed in deterministic polynomial time. The 
reason why the running time is ezpected polynomial is explained by the random 

choice of the additional points T, U. 

By the above facts, we’show that Lf ,  is in NP. 
We guess ( E J(E;F,n) and the factorization of N = OrdJ(q, n , E ) ,  and check in 

deterministic polynomial time that ord([) = N. If the check is passed, we determine 

that J(E; Fp) = ((). Otherwise, we guess ( l , (a  E J(E; Fq=) and the additional points 

T,U E J(E;Fqn) to be used in Miller’s algorithm. Then, we check in deterministic 

polynomial time that ord(&).ord(t2) = aB = N, alp, and ea(.$,&) # 1. If the checks 

are passed, we determine that J(E;Fq-) S ((1) @ ((2). At this time, the structure of 

J(E; Fq=) has been determined in nondeterministic polynomial time. Next, we check 
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that ~ ( 3 r n ) [ X  N mB], which is an NP-statement as shown in Part 3 in the interactive 

protocol for Lu,. Thus, Lf, is in NP, and consequently Lf is in NP n co-NP. 0 

4 Concluding Remarks 

We showed that for curves with genus g 2 2, the complexity of hyperelliptic discrete 

logarithm problems is characterized as in NP n co-AM . Whereas, for curves with 

g = 1, the complexity is characterized as in ”P n co-NP. The latter is the same 

characterization for the discrete logarithm problem defined over the multiplicative group 
of a finite field. 

To characterize the complexity of hyperelliptic discrete logarithm problem as in NP 
n co-NP for any g ,  it suffices to  positively solve the question: Is L,,, the set of instances 

of unsolvable hyperelliptic discrete logarithm problem, in NP for any g 2 2? However, 

we have not yet solved it. If Miller’s algorithm can be used to determine the structure 

of jacobian J(C;F,) for C with any g ,  L,, is in N P .  But this requires an extension 

and redefinition of Weil pairing to cover curves with g 2 2. It is worth noting that the 
attempt to define such extended Weil pairing and to positively solve this open question 

has already been started by Okamoto and Sakurai [OS]. 
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Appendix 

A. l  Random Self-Reducibility of HEDL 

HEDL reduces to the elliptic curve discrete logarithm problem when g = 1, and we know 

that the elliptic curve discrete logarithm is random self-reducible [Shi] in the sense of 

definition in [TW]. We show here that HEDL is also random self-reducible. 

Theorem A1 : HEDL is random self-reducible. 

A lemma is required for the proof. For a finite group G under a binary operation, 

we mean by the accessibility of G that any element in G can be picked randomly and 

uniformly in time polynomial in IdGI, and that the binary operation for any pair of 
elements is computed in time polynomial in !#GI. 

Lemma A1 ([SI]) : 
Let GI and GI be accessible finite groups, respectively, and ‘p be a homomorphism from 

G1 onto G2. For any ( E G1, let (-I E G1 and ’p(() be computed in time polynomial in 

IlG1I. Then, given c E G2, the problem to compute some y E GI such that c = ‘p(y) is 

random self-reducible. 

Proof of Theorem A1 : 
Let ‘p be the homomorphism from the finite abelian group ZN onto (B) such that p(E) = 

( B ,  where N =OrdJ(q, n, C), and ( B )  is the group of divisors that consists of any multiple 
of B. By Pila’s theorem, N is computed in polynomial time. This implies that we can 

determine the range of elements in ZN to pick, thus ZN is accessible. In addition, given 

any element in ZN, its inverse is computed in a straightforward manner. Since 9 is 

computed in polynomial time by using the repeated doubling algorithm, any element in 

(B) can be picked randomly by computing (P(T) with T chosen randomly from ZN. This 
implies that ( B )  is also accessible. Thus, by Lemma A l ,  HEDL is random self-reducible. 
0 
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A.2 Perfect Zero-Knowledge Interactive Proof for L, 

Theorem A2 : There exists a perfect zero-knowledge interactive proof system for L,. 

Proof: The computing model is based on that in [TW], i.e., we consider the interaction 

between the prover (P) of unbounded power and the verifier (V) of probabilistic polyno- 

mial time bounded power. The construction of protocol is almost the same as shown in 

[TW] for the language membership. A perfect zero-knowledge protocol for L, on input 

(q ,  n, C, X, B) works as follows: 

P: picks r E [ O , N )  randomly and computes R such that R - rB ,  where N = OrdJ 

(q ,  n, C). 
P 4 V :  R 
V - + P :  e E {0,1} chosen at random. 

P+V: u such that R - aB - ex. 

By [TW], the above protocol forms a perfect zero-knowledge interactive proof system for 

the language membership in La.  0 

A.3 Perfect Zero-Knowledge Interactive Proof for z, 
We mean by 1, the complement of La.  More precisely, 
- 
La = {x I x does not satisfy at least one of the specifications for q,  n, C, X, and B} 

u {< q,n, c, XI B > I x E J(C; Fq") \ ( B ) ) .  
The latter set is equivalent to L,, which we discussed in Section 3. 

Theorem A3 : There exists a perfect zero-knowledge interactive proof system for TI. 
Proof: The protocol is essentially the same as the statistical zero-knowledge interactive 

proof for the language membership in {< p , a , b  > I b E Z i  \ (a)p} shown in [TW]. How- 

ever, the following construction of the protocol is converted into perfect zero-knowledge, 

based on the idea of perfect eero-knowledge interactive proof for graph non-isomorphism 

[GMW2). Note that in the protocol, steps to check the validity of input are omitted since 

V of probabilistic polynomial time power can check it without interaction. 

Input to (P,V) : < q,n, C, X ,  B > 
V: chooses T E ZN \ (0) and Q E {0,1} randomly and uniformly, and computes 

2 - TB + ax, where N = OrdJ ( q , n , C ) .  V also generates Ti = (Tio, Ti1) (1  I 
i 5 t = 21") such that Ti0 - 2 + sioB - pix and Ti1 - 2 + s;lB - (1 - pi)X, 
where a;j E ZN \ (0) ( j  = 0 , l )  and pi E (0 , l )  are chosen randomly, uniformly 

and independently. 
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v-P: 2, Ti(1 5 i 5 t )  
P: chooses at  random, a subset I {1,2,  . . . , t } .  

P+V: I 
V: rejects and halts if I {1 ,2 , .  . . , t}. Otherwise, V generates w;(l 5 i 5 t )  such 

that if i E 1, w; = (pi, s;o,e;l); if i 6 I, w; = (r;, u;) where 7; = Q + pi (mod 2) 
and u; E T + siri (mod N). 

V-rP: W i ( l  5 a 5 t )  
P: .checks that for w;(l 5 i 5 t ) ,  ((i E I )  A (T;o - 2 + 8;oB - pix) A (Ti1 - 

2 + s;lB - (1 - p i ) X ) )  V ((i $ I )  A (Tiri - u;B)) .  If either condition is violated, P 
stops. Otherwise, P computes 6 such that 6 = 0 if 2 E (B); 6 = 1 if 2 6 (B). 

P-rV: 6 
V: accepts if Q = 6. Otherwise, V rejects and halts. 

Completeness, soundness, and perfect zero-knowledgeness of the protocol are proven in a 

way like [GMW2]. In the proof of perfect zero-knowledgeness, i t  is essential that t = 21N1, 

because 2-* 2 N  < 1. 0 

A.4 Immediate Corollaries 

Combining Theorem A2 and the results of Fortnow [Fo] and Aiello-Histad [AH], we can 

show that L, is in AM n co-AM . However, L, is polynomial time Turing reducible to 

Lf, and our main results show that Ll is in NP n co-AM , and that for elliptic curves 
Lf is in NP n co-NP.  Thus, 

Corollary A l :  L, is in NP n co-AM , and Lf is in NP n co-NP,  where Lf designates 

L, for the case of genus g = 1. 

It immediately follows from [Fo] that neither L, nor Lf will be NP-complete unless 

the polynomial time hierarchy collapses to the second level. Furthermore, by Schoning’s 

results on his low and high hierarchies within NP [Scl, S C ~ ] ,  we can show 

Corollary A2: Neither L, nor Lf will be NP-complete unless the polynomial time 

hierarchy collapses to the second level. 

Corollary A3: Neither Lf nor Lf will be NP-complete unless the polynomial time 

hierarchy collapses to the first level. 
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