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Abstract 

Every cryptosystem with an n-bit block length m a y  be modeled as  a system of 
n-bit boolean equations. The cipher is said to be nondegenerate if the equation f; 
that describes the output ci is nondegenerate, for 1 5 i 5 n. Let N"J' be the set 
of nondegenerate permutations. We will derive an exact expression for IN"J"', and 
show that 

1 Introduction 
One of the basic design criteria for a block encryption function is to ensure that each 
ciphertext bit depends nonlinearly on each message bit, for each fixed key. For example, 
this property is essential if the encryption function is to be used as the basis for an 
authentication algorithm [7], or if we are to avoid meet-in-the-middle attacks based on 
bit independence [3]. More generally, total nonlinear dependence between the message 
and ciphertext is a necessary condition for small changes in the message to produce large 
unpredictable changes in the ciphertext. This phenomenon, known as the avalanche effect 
[6], reduces the information that a cryptanalyst can gain by considering the encryption 
of similar messages. For a discussion of other design criteria for block ciphers see [I] [6] 

A boolean equation f is nondegenerate if its output depends on all the input bits 
to the equation. As each ciphertext bit can be described by a boolean equation in the 
message and the key, we are then interested in encryption functions for which the output, 
or the ciphertext, is described by a system of nondegeneiate equations. Ciphers with this 
property will be c d e d  laondegenerate ciphers. 
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Kam and Davida [ll] were the first to show that large nondegenerate product ciphers, 
the so-called SP-networks, can be constructed from small nondegenerate substitutions, or 
S-boxes. The Kam and Davida algorithm selects special transpositions at each round of 
the product cipher, which cause the influence of a variable to propagate throughout the 
intermediate ciphertext in a regular and controlled manner, such that the final round the 
propagation is complete (for a reason possibly similar to this, Kam and Davida called such 
functions complete rather than nondegenerate). Subsequently, Ayoub has shown that a 
similarly constructed product cipher, employing only random transpositions, would al- 
most certainly guarantee the nondegeneracy property of the product cipher [2]. Ayoub 
derives a combinatorial expression for the probability that a product cipher is nondegen- 
erate, and then demonstrates empirically that a randomly constructed product cipher 
attains the nondegeneracy property after a small number of rounds. 

From the work of Ayoub we may hypothesize that most product ciphers are nondegen- 
erate. We further observe that product ciphers give rise to a very general class encryption 
functions, and in fact it has been shown that for a given block size n, these ciphers can 
generate the alternating group of the set { 0 , 1 , . . . 2 " -  l} [4][5](12]. Thus we may further 
hypothesize that for a given n, most n-bit permutations are nondegenerate. 

Our main result is to show that almost all systems of boolean equations which describe 
a permutation will be nondegenerate. Consider the problem of determining the number 
of n-bit to m-bit boolean functions that are nondegenerate. The case where m = 1 
has been solved by Harrison [9], and also by Hu [lo].  If we let h/" denote the set of 
n-bit nondegenerate functions, then the number of n-bit to m-bit degenerate functions 
is simply (I,@"')". However, as noted by Mitchell [14], the difficulty of this problem 
seems to increase if we further require that the functions be nonsingular (n = m and the 
functions are invertible). 

Let A f n l n  denote the set of nondegenerate n-bit nonsingular functions, or nondegen- 
erate n-bit permutations. In this paper we will prove that 

and it clearly follows that Ih/"-"I N 2"!. The immediate implication is that as n increases, 
the probability of randomly selecting a nondegenerate n-bit permutation tends to unity. 

This paper is organized as follows. Section 2 contains the definitions and notations 
that will be used throughout the paper. In 53 we consider asymptotic estimates for the 
number of degenerate n-bit functions. In 54 we prove our main theorem by deriving an 
expression for INn#" I using the inclusion-exclusion principle. 
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2 Definitions and Notations 
The following definitions will be used throughout the paper when describing boolean 
functions and permutations. 

Definition 2.1 Let f be an n-bit function where f : {0,1}" + {0,1}. For 0 <_ i <_ 2"-1, 
let b(i) denote that element of {0,1}" whose decimal representation is i. The vector 
representation Vf of a function f is defined as Vf = vO,v1,..-~2--1 E {0,1}2" where 
v; = f ( b ( i ) ) ,  0 5 i 5 2" - 1. The distance between two n-bit functions f and g is defined 

Let the symmetric group on 2" elements be denoted as Szn. 
Definition 2.2 For P E Sp, define V j  = V O , V ~ , - * - V Z ~ - ~  E {0,1} as vj  = yi, where 
P ( j )  = Y = y1,y2,...ym E {O,l}"', 0 5 j 5 2" - 1, 1 5 i 5 m. The n-tuple of boolean 
functions F = [fl, fi,. - fm] is said to realize the permutation P if w(Vj @ Vfi) = 0, 1 5 
i 5 m. 0 

Definition 2.3 Let F = [f1,fZ.-.fk] be a k-tuple of n-bit functions. Let E ( F )  be 
defined as the set 

as d ( f , g )  = w(Vf @ 4) where w ( . )  is the hamming weight function. 0 

2" 

E ( F )  = { F' I F' = [ f i , " ' f k , f ~ + . + l , " ' f ~ ]  E SP} .  (2) 
Then E ( F )  will be called the extension set of F .  If IE(F)I > 0 then we will say that F 
is extendible. 

The following theorem was used implicitly by Gordon and Retkin [8]. 

Theorem 2.1 For k ,  0 5 k 5 n - 1, and an arbitrary k-tuple F of n-bit functions, if F 
is extendible then IE(F)I = (2n-k!)2k. 

proof. Proof by induction on Ic [16]. 0 

3 Nondegenerate Functions 
An n-bit function f is vacuous in variable zi if for all of q ,z2,  ---z,, E (0, l}", 

(3) 
- 

f(21, .. .z;, * -  * ,zn) = f (Z1, .  . -,z;, - .  *Zn). 

If f is vacuous in any variable then f is degenerate, otherwise f is nondegenerate. Let 
Af; be the set of n-bit nondegenerate functions of weight k, and let Af" = UHF. For 
degenerate functions, we may similarly define the sets D" and '0;. It follows that 1D;I = 

The number of nondegenerate functions has been determined by Harrison using in- 
ver.-ion formulae [9, ~1691,  and it follows that IN"] - 2'". Thus most n-bit functions are 
nondegenerat e. 

(2kn) - IAfLl. 
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Theorem 3.1 (Harrison) The number of degenerate n-bit functions of weight k is 

For 1 5 j 5 n - 1, let A i ( j )  = (z::), which are the coefficients of the sum in eq. (??). 
In general, A;( 1) dominates the sum, and we will prove this for the case where k = Zn-’, 
as we will require an asymptotic estimate of I in a later section. 

1 
Theorem 3.2 

= d&l(l)(l + o ( + ) ) .  ( 5 )  

proof. Using bounds for the factorial function [15, ~1831, we have that for 2 5 j 5 n - 1, 

1 
= (F) .  

The theorem follows from 
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4 Nondegenerate Permutations 
In this section we will determine the number of n-bit permutations that are nondegener- 
ate. 

Definition 4.1 Let h/"*" be the set of permutations P E Sp, such that if P is realized 
0 

Our technique is to enumerate all sets F = [fl, f2, - -. fk] where f; E V&, , and then com- 
pute the extension set of F. This method allows us to compute the necessary coefficients 
in the inclusion-exclusion expansion for In/"*"\. 

Definition 4.2 For I c ,  1 5 Ic 5 n, let C"(k) denote the number of tuples F = [ fi, f2, - - fk ]  

such that 

by F = [ f i , f 2 , " * f n ]  then f; E J V ~ - ~ ,  15 i 5 n. 

1. E(F)  # 0 ; 
2. f; E q,,-l, 1 5 i 5 k. 0 

Definition 4.3 For k, 1 5 Ic 5 n, let Cc be the set of all n-bit permutations P such 
that if P is realized by F = [ f1, f 2 , .  . . fn] then f; E 'D;,,-l, 1 I i 5 k. 0 

Thus Cn(k) is the number of degenerate &-tuples that realize the first k bits of some 
permutation, and Cc is the set of all Ic-tuples of degenerate functions that can be extended 
to permutations. The next theorem shows that the IC?l can be expressed in terms of the 
Cn(i), which leads to an expression for ~M""'~. 
Theorem 4.1 For n > 1, 

proof. We have that 
INn*"[ = 2"!- 1 u ci" I. (14) 

15;s" 
Let, c,y,i2 ,... ;' = f'I;G+l,;2 ,... ;'} c? where il, i 2 ,  - - * ik E { 1,2,. - - , n ). By symmetry we have 
that l c t 2  ,..., kl = lC{,i2 ,..., Then from Theorem 2.1 we have that 

l c ~ 2 , . . . , k l  = Cn(k) - (2n-k!)2b. (15) 
The theorem now follows using the inclusion-exclusion principle. 0 

It remains to calculate the coefficients C"(i). These coefficients can be calculated ex- 
actly [16], but the resulting expression is cumbersome. As we wil show, the first term 
dominates the sum in eq. (14), and we will concentrate on estimating this term. 
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Theorem 4.2 For n > 1, 1 5 k 5 n, 

proof. By induction on k. 
B Q S ~  Let k = 1. Then C"(1) is the number of balanced n-bit degenerate functions 
which is exactly ID!&1 I, and thus the theorem is true when k = 1. 
Induction Hypothesis. Assume that the theorem is true for k, 1 < k < n. 
Inductive Step. Let F k  = [fl, fi,... fk] such that f; €-lE&l, and F is extendible. 
We wish to determine the number of number of n-bit degenerate functions f such that 
Fk+l  = [fl, f2,  - .  fk, f] is extendible. 

Let f depend on the variables x~,x~,-.-x,, and partition Vf into 2k blocks of size 
2"-k . Denote these blocks as V,, , V,, , 

We may consider each function gi as depending on a subset of the variables 21, x2,. - . x,, 
and w.l.o.g., let these variables be x1,x2,**-xn-k. Now f is degenerate in the variable 
xj E {XI, 2 2 , .  - - Xn-k } if and only if g; is degenerate in xj, Vgi E G. Then it fol- 
lows that the number of functions f that are degenerate in some variable from the set 

The function f Will be degenerate in a variable from the set { X n - k f l ,  x,-k+2, * - * I, } 
if g;$zj = g;, for some j, 1 2 j 5 k.  The number of 2k-tuples G for which gia2j = g; is 

Vg2--', and let G = {gl, g2,. 92'). 

{ 21, X2, * * * X,-k } i S  less than lD;r!h-l 1 2 ' .  

given by 

where we have used the inclusion-exclusion principle. 
It follows C"(k + l)/Cn(k) gives the number of ways a degenerate function can be 

added to F such that the resulting (K + 1)-tuple is still extendible. Then using the 
induction hypothesis, we have that 

Thus the induction hypothesis is true for k + 1. 0 

Corollary 4.1 For k, 1 < k 5 n, 
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proof. Using the estimates of lzl from Theorem 3.2, and the fact that the sum in eq. 
(17) is dominated by its first term, it follows that 

n-i-1 2 
Using Stirling's approximation it can be shown that (22:rIl) > (in-,--,) , and with the 
observation that (n - i)2' + i < n2i for n 2 2 , i  2 1, the estimate of Cn(k) in eq. (21) 
can be simplified to  

(22) 

(23) 

since 

Using theses estimates of the Cn(k) we can in turn estimate Ic1, . . .k l ,  and thus give a 
lower bound on IJP"'. 
Theorem 4.3 

In/"Jy = 2"! - Icy[. (1 + o(1)). 

proof. Using bounds for the factorial function [15], we have that for 2 5 Ic 5 n, 
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Then from Theorem 4.1 we have that 

Corollarv 4.2 

= 2"! - Ic;l(l+ o(1)). 

= l + o ( 2  m ) 
2"! an-* +n-1 * 

proof. Using estimates of the factorial function we have that 

(32) 

(33) 

0 

(34) 

5 Conclusion 
Our main theorem states that nonlinearity and nondegeneracy are naturally occurring 
properties for permutations. The the denseness of nonlinear permutations is not unex- 
pected given that the the set of nondegenerate permutations are dense (there are only two 
linear functions that are nondegenerate, viz. f = 2 1  @ 2 2  - - z,, f = 51 @ 2 2  * * - Z, @ 1). 
These result provide strong evidence that DES is both nondegenerate and nonlinear, 
which has been justified previously through theoretical arguments [13], and empirical 
results [ 171. The inclusion-exclusion principle provides a convenient form for asymptotic 
estimates. In the case of degenerate functions, the coefficients of the expansion are ex- 
ponentially decreasing in magnitude, and the first coefficient of the expansion provides 
an asymptotic estimates of the sum itself. We may be able to apply similar techniques 
to decide whether or nct most permutations are correlatiou immune, or satisfy the strict 
avalanche criteiion. 

- 
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